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Abstract
P2300 introduced the sender/receiver async framework. Such a standard framework will give the broader C++

ecosystem a composable lingua franca that all libraries can use to express asynchrony.

This paper aims to provide a high-level introduction to the design of P2300 and its guiding principles. For detailed

information on each component, please see P2300, P3143, and the experimental cppreference “execution” page.

Motivation for P2300

Mission and values
The mission of P2300 can be stated as:

To provide the basis for an ecosystem of standard and third-party async algorithms and execution contexts.
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The following values were of foremost importance to the authors of P2300, in priority order:

1. Safety : aim for correct-by-construction design

2. Composability : ability to treat async components as “black boxes” that compose

3. Universality : able to accommodate any source of asynchrony

4. Efficiency : little to no abstraction penalty, few allocations, non-blocking

5. Scalability : support asynchronous systems of any scale

In accordance with the above, the asynchronous model of P2300 is designed to enable developers to:

➔ Work generically with any source of asynchrony, whether multi-threading, file or network IO, operating system

timers and interrupts, or coprocessors and hardware accelerators like GPUs.

➔ Address the concern of what to execute separately from the concern of where.

➔ Compose asynchronous operations into non-blocking task graphs in a platform-agnostic way.

➔ Launch and orchestrate work that spans multiple different execution contexts.

➔ Cleanly respond to and propagate error conditions and cancellation requests.

➔ Integrate seamlessly with coroutines.

➔ Scale efficiently from single-threaded, zero-allocation embedded systems all the way to massively networked

supercomputing clusters.

The hope is that asynchronous APIs will return objects that satisfy – or that are easily convertible to objects that

satisfy – the sender concept described below. This allows them to be co_await-ed in coroutines and used with a

standard suite of sender-based generic algorithms, which in turn will foster an ecosystem of third-party algorithms

and execution contexts.

Structured concurrency
The design of P2300 encourages the use of structured concurrency constructs, where child operations complete

before parents, analogous to how functions complete before their callers, allowing P2300 to be alignd with

coroutines, which are similarly structured. Structured concurrency (as with structured programming in general)

allows components to be treated as black boxes with well-defined control flow that is easy to reason about.

It is essential to making concurrency safely composable.

P2300’s design fits comfortably in, and relies heavily on, the C++ object model by supporting nested lifetimes,

ordered construction and destruction, scopes and local variables. It obviates most uses of reference counting for

lifetime management.

Tiered design
P2300 is build with a tiered (layered) design:

● Facilities for consumers of asynchrony:

○ These users will see only senders and schedulers (and not with the internal components).

○ They will compose senders into other senders (by pipe or by algorithm), or that await them in

coroutines, or that block waiting for their completion.

● Facilities for producers of asynchrony:

○ These are developers extending the framework with custom senders, algorithms, and schedulers.

○ These developers will be writing “receivers” (structured callbacks) and “operation states”, and will be

following the sender/receiver protocol to ensure composability with other sender-based facilities.



This paper doesn’t distinguish between these user- and implementer-oriented facilities; it aims to show how all of

these parts fit together. However, the “hello world” example below shows how things may look from a “naive” user’s

perspective.

Introduction to the Framework

Basic Building Blocks

● Sender: A description of asynchronous work to be sent for execution. Produces an operation state (below).

○ Senders asynchronously “send” their results to listeners called “receivers” (below).

○ Senders can be composed into task graphs using generic algorithms.

○ Sender factories and adaptors are generic algorithms that capture common async patterns in objects

satisfying the sender concept.

● Receiver: A generalized callback that consumes or “receives” the asynchronous results produced by a sender.

○ Receivers have three different “channels” through which a sender may propagate results: success,

failure, and canceled, so-named “value”, “error”, and “stopped”.

○ Receivers provide an extensible execution environment: a set of key/value pairs that the consumer can

use to parameterize the asynchronous operation.

● Operation State: An object that contains the state needed by the asynchronous operation.

○ A sender and receiver are connected when they are passed to the std::execution::connect

customization point.

○ The result of connecting a sender and a receiver is an operation state.

○ Work is not enqueued for execution until “start” is called on an operation state.

○ Once started, the operation state’s lifetime cannot end before the async operation is complete, and its

address must be stable.

● Scheduler: A lightweight handle to an execution context.

○ An execution context is a source of asynchronous execution such as a thread pool or a GPU stream.

○ A scheduler is a factory for a sender that completes its receiver from a thread of execution owned by

the execution context.

Execution Guarantees

Every asynchronous operation (i.e., the result of connecting a sender and a receiver), once started, is guaranteed1 to

call exactly one of the following members on the receiver:

1. set_value

2. set_error

3. set_stopped

These functions shall not be called before start is called. Once one of these is called, the contract between the

sender and receiver is satisfied, and the operation state can be destroyed.

1 Unless the operation never completes.



Analyzing an Example Sender Pipeline
In this section we will break the code into:

1. Compile time – composing a sender and connecting it to a receiver), and

2. Runtime – executing the sender on the worker thread driving the run_loop.

#include <thread>
#include <iostream>
#include <execution>
using namespace std::literals;
namespace stdex = std::execution;

stdex::run_loop loop;
std::thread worker([]{ loop.run(); });

int main()
{

stdex::sender auto hello = stdex::just("hello world"s);
stdex::sender auto print = hello

| stdex::then([](auto msg) {
std::puts(msg.c_str());
return 0; // This will be returned as the

// result of the async op
});

stdex::scheduler auto io_thread = loop.get_scheduler();
stdex::sender auto work = stdex::on(io_thread, print);

auto [result] = std::this_thread::sync_wait(work).value();
loop.finish(); // Close registration of tasks (senders) on the loop
worker.join(); // Blocks till the worker thread exits
return result; // return 0

}

https://godbolt.org/z/b8bWYMbqW

Note: Some details (such as std::move) in the code snippet above were dropped for the sake of simplicity.

https://godbolt.org/z/b8bWYMbqW


Note: The following diagram highlights the main parts of the framework. Detailed flow can be found in P3143.

https://wg21.link/P3143


The code will be build and run as execution in two stages:

Stage 1: Composition

Building the task graph:

1. just(“hello…”) creates a sender that, when connected to a receiver and started, passes the string

“hello world” to the receiver’s value callback.

2. The then sender adapts the just sender, causing the just sender’s result value to be passed to a

user-specified invocable. It does that by connect-ing the just sender with a custom receiver. The result of

the invocable is then passed to the receiver connected to the then sender.

3. The on algorithm takes the then(just(…),…) sender and a scheduler from the run_loop context,

and returns a sender that – when connected and started – will cause the then/just sender to start execution

on the thread driving the run_loop.

4. The sync_wait algorithm connects the sender to a receiver, calls start on the resulting operation state,

and blocks waiting on a condition variable.

Stage 2: Execution

Calling “start” on the work, which will cause the asynchronous operation to be enqueued for execution:

1. The start call cascades through the operation states “outside in”:

a. The “on” algorithm, when started, will start the work produced by the run_loop scheduler, which

causes a work item to be inserted into the run_loop’s queue.

b. That work item will “start” the then(just(…),…) operation,

c. … which “start”s the just operation,

d. … which passes “hello world” to then’s receiver,

e. … which passes the string to the invocable, passing the resulting integer to the on receiver,

f. … which passes the results to sync_wait’s receiver, which saves the results into a buffer, sets a

condition variable signaling completion, and then returns the results to the caller.

2. loop.finish() signals the loop that we’re not going to add more work to the queue, causing run() to

return the next time the queue is empty.

3. worker.join() blocks the main thread until the worker thread exits.

Summary
Producer of asynchronous interfaces offer a way to obtain a sender as the unit of asynchronous work. Consumers of

asynchronous interfaces can then await the work in a coroutine or avoid the coroutine frame allocation by using a

generic algorithm instead from the standard library or from an ecosystem of sender-savvy third-party libraries.
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