
Remove evaluation_undefined_behavior and
will_continue() from the Contracts MVP

Timur Doumler (papers@timur.audio)
Tom Honermann (tom@honermann.net)

Ville Voutilainen (ville.voutilainen@gmail.com)

Document #: P3073R0
Date: 2024-01-26
Project: Programming Language C++
Audience: SG21

Abstract

This paper proposes to remove the enum value evaluation_undefined_behavior and the
function will_continue() from the Contracts MVP. Given the remaining open questions
surrounding these two library facilities, and given that neither is essential in order to use the
Contracts MVP, or depended upon by any other part of the Contracts MVP, we believe that
they should instead be standardised as post-MVP extensions, to give SG21 enough time to
resolve these open questions without putting at risk the SG21 roadmap to get the Contracts
MVP into C++26.

1 Introduction
By approving [P2811R5], SG21 adopted a standard library API for the Contracts MVP proposal
[P2900R4] that allows to query the properties of a runtime contract violation inside a user-defined
contract-violation handler invoked upon detection of such a violation. This query happens via an
object of type std::contracts::contract_violation created by the implementation and passed
into the contract-violation handler. For this purpose, std::contracts::contract_violation
offers a number of property functions, including:

— detection_mode(): returns an enum representing the mode by which the contract violation
was detected (evaluation of the predicate returned false or would have returned false; or
the evaluation of the predicate exited via an exception);

— kind(): returns an enum representing the kind of contract that was violated (precondition,
postcondition, or assertion);

— semantic(): returns an enum indicating which contract semantic was used to check the
contract assertion (enforce or ignore); and

— will_continue(): returns a bool value indicating whether evaluation of the program will
continue after the current contract-violation handler has returned normally, or whether the
program will be terminated.

1

mailto:papers@timur.audio
mailto:tom@honermann.net
mailto:ville.voutilainen@gmail.com


Recent discussions on the SG21 reflector have revealed that for two components of this proposed
standard library API, there is currently a substantial amount of open questions around their
meaning, their correct specification, and their motivating use cases. These components are: the
enum value evaluation_undefined_behavior, which is one of the possible values returned by
detection_mode(), and the will_continue() function. Neither facility is required in order to use
the rest of the std::contracts::contract_violation API or indeed the Contracts MVP as a
whole. We therefore propose, with this paper, that both facilities be removed from the Contracts
MVP.
Note that we are not suggesting that either facility is not useful or should not be standardised. We
merely propose that given the remaining open questions surrounding these two facilities, and given
that neither is essential in order to use the Contracts MVP, or depended upon by any other part
of the Contracts MVP, they should be treated as post-MVP extensions. Treating these facilities
as post-MVP extensions, in the same way as other useful features such as support for virtual
functions [D3097R0] and postcondition captures [D3098R0], will give SG21 enough time to resolve
the open questions surrounding these facilities without putting at risk the roadmap agreed to by
SG21 [P2695R1] and the chances of getting the Contracts MVP into C++26.

2 evaluation_undefined_behavior

2.1 What is evaluation_undefined_behavior for?

[P2811R5], the proposal approved by SG21 for the Contracts MVP, specifies that returning the
enum value evaluation_undefined_behavior from detection_mode() means that the “contract
predicate would have undefined behaviour when evaluated”.
Since approval of the paper, it has been suggested that the value could actually mean more than
that. In particular, the suggestion is that if a sanitiser or similar tool is capable of detecting
undefined behaviour at runtime anywhere in the program and report this to the user, it could do so
by calling the contract-violation handler, in which case std::contracts::contract_violation
would serve as a standard API for such tools to report intercepted defects. In this scenario,
evaluation_undefined_behavior would signal to the user that the nature of the intercepted
defect is an expression that, when evaluated, would have undefined behaviour.
Discussion of this idea on the SG21 reflector revealed that there is no consensus about whether
evaluation_undefined_behavior should mean that:

— Evaluation of the contract predicate expression itself, or one of its immediate subexpressions,
would have undefined behaviour, or

— Evaluation of any expression while evaluating the contract predicate, including inside any
function (possibly in another translation unit) called during such evaluation, would have
undefined behaviour, or

— Evaluation of any expression anywhere during the execution of the program would have
undefined behaviour, regardless of whether the program actually contains any contract
assertions.

2.2 Is evaluation_undefined_behavior the correct API for runtime detection of
undefined behaviour?

We believe that adding a standard API to C++ for sanitisers and other tools to report undefined
behaviour to the user is a very promising idea. This approach, if done right, has the potential to
integrate three different strategies to mitigate undefined behaviour in C++ — contract-violation
handling, runtime detection of core language undefined behaviour, and the new concept of erroneous

2



behaviour currently in development (see [P2795R4] and [P2973R0]) — into a single integrated
facility designed to comprehensively address instances of undefined behavior in C++ that cannot be
diagnosed at compile time. We are currently working on a paper exploring this approach, [D3100R0],
and we are aware of at least one other paper currently in development that addresses integrating
Contracts and erroneous behaviour.
However, at present, we do not yet know exactly which extensions to the std::contracts::
contract_violation API are needed to evolve it into a comprehensive API for runtime detection
of undefined behaviour. As such, we consider it premature to add one part of such an API to the
Standard, in the form of the single enum value evaluation_undefined_behavior, without having
had a chance to discuss the other possible parts of such an API, or indeed consider this design space
more holistically.
In particular, it is not certain that undefined behaviour detected at runtime should call the
same callback as diagnosed contract violations (in particular if this undefined behaviour happens
outside of the evaluation of a contract predicate, which is a possibility not yet discussed in any
paper targeting SG21 at the time of writing). It seems like a plausible direction, but adding
evaluation_undefined_behaviour to the API of std::contracts::contract_violation now
would effectively set this direction into stone before SG21 even had a chance to discuss it, which
does not seem compatible with our usual consensus-finding process.
Further, even if runtime detection of undefined behaviour is to re-use the same callback as diagnosed
contract violations (that is, the contract-violation handler), it is not certain that this enum value is
the correct design choice. If we diagnose instances of undefined behaviour at runtime and report
them via this API, we might for example choose to:

— report the defect as an implicit precondition or postcondition predicate that evaluated to
false, such as an implicit precondition p != nullptr on a pointer dereference *p, or an
implicit postcondition of false on a function marked [[noreturn]], in which case the enum
value predicate_false might make more sense,

— report different kinds of undefined behaviour via different enum values rather than just a
single value that captures all of them, for example to programmatically distinguish defects
that may compromise memory safety from defects that merely compromise correctness.

Finally, it is not clear how evaluation_undefined_behavior would interact with other parts of the
std::contracts::contract_violation API. Consider again the example of a sanitiser detecting
undefined behaviour due to a null pointer dereference. What should kind() return in this case?

— If we wish to treat this case as the violation of an implicit precondition p != nullptr, we
might want to return contract_kind::pre.

— Otherwise, we might want to return a non-standard contract_kind supplied by the imple-
mentation as a vendor extension.

Discussion of this idea on the SG21 reflector revealed that there is no consensus on what the correct
choice is.

2.3 Specification challenges

Trying to find wording to correctly specify evaluation_undefined_behavior has generated a
considerable amount of discussion between the authors of [P2900R4]. At the time of writing, there
is no consensus on the correct specification strategy for this feature.
The original wording in [P2811R5] says that the meaning of the enum value is that the “contract
predicate would have undefined behaviour when evaluated”. This can be misunderstood to mean a

3



normative requirement, which would be impossible to implement and therefore impossible to specify
normatively. The reason this is impossible to implement is that the predicate may call an existing
library function or a function otherwise defined in a separate translation unit, and when such a
function definition was compiled, it was not compiled with any sort of undefined behaviour detection
mechanisms in place. An implementation cannot reasonably detect all undefined behaviour that
would occur in the cone of evaluation of a predicate through all possible translation unit boundaries
when calling arbitrary functions.
In reality, the specification in [P2811R5] only gives a non-normative encouragement to call the
violation handler upon detection of undefined behaviour (with varying degrees of QoI). But even if
we do that, it is still an open question how we should specify evaluation_undefined_behavior
normatively.
One suggested option is to say that no program with well-defined behaviour will ever result in the
value evaluation_undefined_behavior being passed into the violation handler. This is techni-
cally correct, but does not work as a specification, as it makes evaluation_undefined_behavior
effectively a variant of std::unreachable(): the value cannot be meaningfully used by a contract-
violation handler in an if-statement, because an optimizer will optimise away conditions and
branches where this would be the value returned by detection_mode().
Another suggested option is to say that the value evaluation_undefined_behavior is passed into
the violation handler for contract violations that occurred “for implementation-defined reasons”.
However, this immediately raises the question what the permissible reasons are, which is a question
we currently do not have consensus on (see Section 2.1).
More generally, while we already have some facilities in the Standard that do nothing normatively
and exist only for the convenience of tools (std::breakpoint, some attributes), we do not yet have
a facility in the Standard that only has meaning for programs that have undefined behaviour and
are therefore outside of the scope of the Standard itself. We need to figure out how to acknowledge
the existence of sanitisers in the Standard; doing so is novel.
One suggestion is that if the behaviour of a program is undefined, it may be permissible for a
sanitiser to change the program into a different program that no longer has undefined behaviour,
and to thus bring it back into the scope of the Standard where we can specify something about the
behaviour of the program. Another suggestion is that it may be possible to modify [defns.undefined]
to introduce, for the first time, requirements on C++ programs with undefined behaviour in the
Standard. At any rate, we believe it would be better if exploring and reviewing these specification
strategies would not block the progression of the Contracts MVP into C++26.

2.4 Lack of usage experience

As we already pointed out, having a sanitiser that not only detects runtime undefined behaviour,
but also reports information about where and how it occurred to a user-defined callback, where
these properties can be programmatically queried through a standard API, is an idea very much
worth exploring. However, as far as we know we do not yet have any usage experience with this
approach, raising the question whether adding it to the Standard at this time would be premature.
All clang sanitisers have a callback __sanitizer_set_death_callback, but it takes no arguments.
The callback can therefore be used to inform the user that the process is about to terminate, but it
does not provide any API whatsoever to programmatically query what happened or where.
ASan has a slightly more sophisticated callback __asan_set_error_report_callback which takes
a single argument of type const char*. However, this merely provides a string with the report
dump that will be written to the console, so again this does not provide an API to programmatically
query what happened or where. Moreover, this callback is specific to ASan and does not exist for
UBSan (see UBSan issue 1298).

4

https://eel.is/c++draft/defns.undefined
 https://github.com/google/sanitizers/issues/1298


In conclusion, at the time of writing we are not aware of any sanitiser or other tool that is capable
of detecting undefined behaviour at runtime and reporting meaningful information about the defect
to a user callback with an API along the lines of std::contracts::contract_violation.

3 will_continue()

The class std::contracts::contract_violation was added to the Contracts MVP with the
member function will_continue() at a time when the only possible contract semantics were ignore
and enforce, the latter being the only possible value returned by semantic() because ignore never
results in an invocation of the contract-violation handler.
At the time, will_continue() was intended as a futureproofing facility to be able to program-
matically distinguish the enforce semantic from the not-yet-standard observe semantic on an
implementation that decides to provide the latter as a vendor extension. Later, the observe semantic
was added to the Contracts MVP via adopting [P2877R0], making will_continue() seemingly
redundant (a value of true maps to observe and a value of false maps to enforce), but nevertheless
will_continue() remained in the MVP.
The motivation given for retaining will_continue() is usually some combination of the three
possible usages discussed below. As we will see, all three have problems.

3.1 Usage for nonstandard checked contract semantics

One possible use case for will_continue() in the current MVP is for working with checked contract
semantics other than enforce and observe that an implementation may decide to provide as a vendor
extension. It is often not necessary to know the exact behaviour of each such semantic within the
contract-violation handler; it is however useful to programmatically distinguish a semantic that
continues running the program after the contract-violation handler returns (will_continue() ==
true) from one that will terminate the program. In the latter case, the contract-violation handler
can decide to take special measures (such as throwing an exception) to circumvent the termination
in applications where it is undesirable.
While this use case is at least somewhat plausible, the problem lies in specifying what it means exactly
for the program to “continue” or “terminate” after the contract-violation handler returns and what
“after it returns” means; these are currently open questions. Proposal 1.6 in [P2811R5], which was
adopted by poll into the Contracts MVP, says that will_continue() indicates “whether, when the
contract-violation handler returns normally, evaluate is expected to continue immediately following
the violated contract-checking annotation”. From this specification, it is not clear whether the
compiler is allowed (or even required) to report will_continue() == false if it can prove that, for
example, the next statement after the violated contract assertion is a call to std::terminate():

void test(bool b) {
contract_assert(b);
std::terminate(); // does it count as “continue” if control flow reaches this line?

}

Reasoning about user code that follows the contract assertion seems like an unnecessarily hard
task for implementations. The model seems more clear when the property will_continue() can
be determined solely from the evaluation semantics of the contract assertion itself. And indeed,
[P2900R4] describes will_continue() along those lines by specifying that it “returns true if flow of
control will continue into user-provided code should the contract-violation handler return normally,
false otherwise.
Alas, this specification does not work either. For example, if a vendor-specific checked semantic is
specified to call std::terminate after the contract-violation handler returns instead of std::abort
(called by enforce), it will call the termination handler, which may run “user-provided code”; if

5



the semantic is specified to call std::exit, then destructors of global objects will be called, which
almost certainly will run “user-provided code”. The current specification in [P2900R4] suggests
that in both cases, will_continue() should return true, which is counterintuitive and renders the
facility useless for this purpose.
There might be a way to specify will_continue() such that it would be more useful for reasoning
about vendor-specific contract semantics, but at the time of writing it is unclear how this could be
accomplished.

3.2 Usage for runtime detection of undefined behaviour

If we are not using will_continue() to reason about vendor-specific contract semantics, we are left
with using it for the two standard checked semantics, observe and enforce. At first glance, it seems
that will_continue() should always be true for observe and false for enforce, however [P2900R4]
says that for observe this “will generally be true, but it may be false should the platform identify
that user-provided code will never execute along the branch where this contract-violation has been
detected.”
It is not clear from this description in which possible cases the latter would occur, and earlier
revisions of [P2900R4] did not give an example. This prompted several confused SG21 members to
ask for such an example. The only example that [P2900R4] now provides — and indeed, the only
motivation given in the paper for having will_continue() in the MVP at all — has to do with
runtime detection of undefined behaviour:

void f(int* p) {
contract_assert(p != nullptr);
*p = 5;

}

[P2900R4] argues that if a sanitiser or other tool can prove that all control flow paths which would
be reached after the contract assertion is evaluated have undefined behavior (in this case because
they dereference a null pointer), it can inform the contract-violation handler of this impending
undefined behaviour by returning the value false from will_continue().
We believe that motivating will_continue() with the desire to use it for runtime detection of
undefined behaviour is problematic, because of many of the same reasons why using the value
evaluation_undefined_behavior for runtime detection of undefined behaviour is problematic (see
Section 2). Such usage is inherently unreliable and unportable, hinges on reasoning about code
not local to the violated contract assertion, poses specification challenges that we do not yet have
agreed-upon solutions for, and suffers from a lack of usage experience. It also offers no way to
distinguish between the case where will_continue() returns false because the implementation
detected undefined behaviour following the evaluation of the contract annotation, and the case where
will_continue() returns false because the chosen contract semantic will invoke (well-defined)
termination, which feels like an important distinction to make in order to detect the relevant defect.
At the same time, we cannot think of any other case, that is, any program with well-defined behaviour,
where it would make sense for will_continue() to return false for the observe semantic.

3.3 Usage as a shorthand for querying the semantic

If we are not using will_continue() to reason about vendor-specific contract semantics, and we are
not using it for runtime detection of undefined behaviour, then the meaning of will_continue() is
merely that it is a shorthand for semantic == std::contracts::contract_semantic::observe,
similar to how empty() is a shorthand for size() == 0. Such a specification is very clear and does
not suffer from any of the problems described earlier in this paper. It also does not seem useful
enough to justify the addition of will_continue(), and the potential for confusion that comes
with it, to the C++ Standard.

6



4 Summary
In this paper, we have discussed the enum value evaluation_undefined_behavior and the function
will_continue() which are currently part of the standard library API of the Contracts MVP
proposal [P2900R4]. We identified several open questions around the meaning, correct specification,
and motivating use cases for both facilities.
[P2900R4] motivates both facilities by the desire to programmatically report undefined behaviour
detected at runtime by a sanitiser or similar tool. While this is a promising direction that should be
explored further, it is not clear whether the proposed API is indeed the most suitable for this task;
further, there are currently significant specification challenges as well as a lack of user experience
with this approach.
One of these two facilities, will_continue(), also has a potential use outside of the context of
runtime detection of undefined behaviour. One suggested use case is for reasoning about vendor-
specific contract semantics, however it is currently unclear how to specify the function such that it
is usable for this purpose. The only other known use case for will_continue() is as a shorthand
for querying the contract semantic (whether it is enforce or observe) by calling semantic() directly,
which does not seem particularly useful.
Overall, we do not believe that a proposal with this amount of open questions can be forwarded
to EWG and LEWG for design review. Considering that these open questions are non-trivial;
that there is currently a lack of consensus in SG21 on how to resolve them; that it will take
time and effort to reach such consensus; and that neither evaluation_undefined_behavior nor
will_continue() are essential in order to use the Contracts MVP, or depended upon by any other
part of the Contracts MVP, we propose that both be removed from the Contracts MVP at this
stage and instead considered for standardisation as post-MVP extensions, in order to maximise our
chances of getting the Contracts MVP into C++26.

References

[D3097R0] Timur Doumler et al. Contracts for C++: Support for virtual functions. Manuscript in
preparation, 2024-??-??

[D3098R0] Timur Doumler et al. Contracts for C++: Postcondition captures. Manuscript in
preparation, 2024-??-??

[D3100R0] Timur Doumler et al. Contracts, Undefined Behaviour, and Erroneous Behaviour.
Manuscript in preparation, 2024-??-??

[P2695R1] Timur Doumler and John Spicer. A proposed plan for Contracts in C++. https:
//wg21.link/p2695r1, 2023-02-09.

[P2795R4] Thomas Köppe. Erroneous behaviour for uninitialized reads. https://wg21.link/
p2795r4, 2023-11-10.

[P2811R5] Joshua Berne. Contract-violation handlers. https://wg21.link/p2811r5, 2023-06-08.

[P2877R0] Joshua Berne and Tom Honermann. Contract Build Modes, Semantics, and Implemen-
tation Strategies. https://wg21.link/p2877r0, 2023-06-09.

[P2900R4] Joshua Berne, Timur Doumler, and Andrzej Krzemieński. Contracts for C++. https:
//wg21.link/p2900r4, 2024-01-16.

[P2973R0] Jonathan Wakely and Thomas Köppe. Erroneous behaviour for missing return from
assignment. https://wg21.link/p2973r0, 2023-09-15.

7

https://wg21.link/p2695r1
https://wg21.link/p2695r1
https://wg21.link/p2795r4
https://wg21.link/p2795r4
https://wg21.link/p2811r5
https://wg21.link/p2877r0
https://wg21.link/p2900r4
https://wg21.link/p2900r4
https://wg21.link/p2973r0

	1 Introduction
	2 evaluation_undefined_behavior
	3 will_continue()
	4 Summary
	References

