
P3068R0: Allowing exception throwing in constant-evaluation
Date: 2023-02-10
Audience: EWG
Authors: Hana Dusíková (cpp@hanicka.net)

Motivation
Since having added the constexpr keyword in C++11, WG21 has gradually expanded the scope of language features
for use in constant-evaluated code. At first users couldn't even use if, else, or loops. C++14 added them. C++17
added constexpr lambdas. C++20 finally added ability to use allocation, std::vector and std::string. These
improvements have been widely appreciated by many users, and they lead to simpler code that doesn't need to make
workarounds for differences between normal and constexpr C++.
The last major language feature from C++ still not present in constexpr code is the ability to throw an exception. This
absence forces library authors to use more intrusive error reporting mechanisms. One example would be usage of
std::expected, std::optional. Another one is complete omission of error handling. This leaves users with long and
confusing errors generated by the compiler.
Throwing exceptions in constant evaluated code is the preferred way of error reporting in the proposal adding Static
Reflection for C++26 . Some meta-functions can fail and allowing them to throw will significantly simplify reflection 1

code.

Proposed changes in wording
7.7 Constant expressions [expr.const]
(5.25) a throw-expression ([expr.throw]);, unless the thrown exception is caught within the evaluation of E;

Implementation experience
None in a C++ compiler. The author implemented this in simple AST walking scripting language which is how
constexpr code is evaluated in most of C++ compilers.
The implementation strategy is usually registering a handler for specific exception types when try and catch blocks are
found and unregistering when the try block is left.

Impact on existing code
This change shouldn't break any existing code as throwing exceptions without catching them is already an error and is
used by various libraries to improve compile-time errors. 2

The intent is to keep this useful mechanism intact. The proposed wording change will only modify behavior in cases
where there is try/catch block present.

Only language changes in this paper
Intention of this proposal is to allow throwing any type of exception as long as it can be constructed in constant
evaluated context. We don't propose making a magic type of a constexpr exception type to be inherited from.
This paper doesn't propose any library changes, but we think another paper should mark helper functions to be
constexpr, namely: std::current_exception, std::uncaught_exception, and std::rethrow_exception.

 https://wg21.link/P2996R1#error-handling-in-reflection1

 libfmt (https://github.com/fmtlib/fmt/blob/master/include/fmt/format.h#L2245) 2

CTHASH (https://github.com/hanickadot/cthash/blob/main/include/cthash/sha2/sha512/t.hpp#L18)

mailto:cpp@hanicka.net
https://wg21.link/P2996R1#error-handling-in-reflection
https://github.com/fmtlib/fmt/blob/master/include/fmt/format.h#L2245
https://github.com/hanickadot/cthash/blob/main/include/cthash/sha2/sha512/t.hpp#L18

What is allowed and what's not?
Defining a new constexpr variable always creates a new constant evaluation context. try/catch blocks around such
definition won't catch the exception thrown from inside of it and it will lead to a compile-time error. This behavior is
similar to constexpr memory allocations, which can't leave the constexpr context.
constexpr auto just_error() {
 throw my_exception{"this is always an error"};
}

constexpr void foo() {
 try {
 auto v = just_error(); // OK
 } catch (my_exception) { }

 try {
 constexpr auto v = just_error(); // ERROR: constexpr variable creates new constant evaluation context
 } catch (my_exception) { }
}

Exceptions must be caught
constexpr unsigned divide(unsigned n, unsigned d) {
 if (d == 0u) {
 throw std::invalid_argument{"division by zero"}; // if std::invalid_argument has constexpr constructor
 }
 return n / d;
}

constexpr auto b = divide(5, 0); // UNCHANGED: still a compilation failure

constexpr std::optional<unsigned> checked_divide(unsigned n, unsigned d) {
 try {
 return divide(n, d);
 } catch (const std::invalid_argument &) {
 return std::nullopt;
 }
}

constexpr auto a = checked_divide(5, 0); // BEFORE: compilation failure
 // AFTER: std::nullopt value

Constant evaluation violation behavior won't be changed
constexpr int throw_if_odd(const int* p) {
 if (*p % 2 == 1) {
 throw 0;
 } else {
 return 1;
 }
}

constexpr int g() {
 try {
 return throw_if_odd(nullptr);
 } catch (...) {
 return 2;
 }
}

static_assert(g() == 2); // UNCHANGED: still an error, not magically okay because dereferencing an int throws

Special thanks
To Richard Smith, Barry Revzin, Daveed Vandevoorde, Inbal Levi, Jana Machutová and Christopher Di Bella.

	P3068R0: Allowing exception throwing in constant-evaluation

