
constexpr std::shared_ptr
Document #: P3037R1
Date: 2024-03-05
Project: Programming Language C++
Audience: SG7 Compile-time programming, LEWG Library Evolution
Reply-to: Paul Keir

<graham.keir@gmail.com>

Contents
1 Revision History 2

2 Introduction 2

3 Motivation and Scope 2
3.1 Atomic Operations . 3
3.2 Two Memory Allocations . 3
3.3 Relational Operators . 4
3.4 Maybe Not Now, But Soon . 5

4 Impact on the Standard 5

5 Implementation 5

6 Proposed Wording 5

7 Acknowledgements 5

8 References 6

1

mailto:graham.keir@gmail.com

1 Revision History
— R1 2024-03-05

— Added a motivating example
— Included libc++ & MSVC STL in atomic operation considerations

— R0 2023-11-06
— Original Proposal

2 Introduction
Since the adoption of [P0784R7] in C++20, constant expressions can include dynamic memory allocation; yet
support for smart pointers extends only to std::unique_ptr (since [P2273R3] in C++23). As at runtime, smart
pointers can encourage hygienic memory management during constant evaluation; and with no remaining tech-
nical obstacles, parity between runtime and compile-time support for smart pointers should reflect the increased
maturity of language support for constant expression evaluation. We therefore propose that std::shared_ptr
and associated class templates from 20.3 [smartptr] permit constexpr evaluation.

3 Motivation and Scope
It is convenient when the same C++ code can be deployed both at runtime and compile time. Our recent project
investigates performance scaling of parallel constant expression evaluation in an experimental Clang compiler
[ClangOz]. As well as C++17 parallel algorithms, a prototype constexpr implementation of the Khronos SYCL
API was utilised, where a SYCL buffer class abstracts over device and/or host memory. In the simplified code
excerpt below, the std::shared_ptr data member ensures memory is properly deallocated upon the buffer’s
destruction, according to its owner status. This is a common approach for runtime code, and a constexpr
std::shared_ptr class implementation helpfully bypasses thoughts of raw pointers, and preprocessor macros
here; and the impact of adding constexpr functionality to the SYCL implementation is minimised.
template <class T, int dims = 1>
struct buffer
{
constexpr buffer(const range<dims> &r)
: range_{ r }, data_{ new T[r.size()], [this](auto* p){ delete [] p; } } { }

constexpr buffer(T* hostData, const range<dims>& r)
: range_{ r }, data_{ hostData, [](auto){} } { }

const range<dims> range_{};
std::shared_ptr<T[]> data_{};

};

Two proposals adopted for C++26 and C++23 can facilitate a straightforward implementation of comprehen-
sive constexpr support for std::shared_ptr: [P2738R1] and [P2448R2]. The former allows the get_deleter
member function to operate, given the type erasure required within the std::shared_ptr unary class template.
The latter can allow even minor associated classes such as std::bad_weak_ptr to receive constexpr qualifica-
tion, while inheriting from the currently non-constexpr class: std::exception. We furthermore propose that
the relational operators of std::unique_ptr, which can legally operate on pointers originating from a single
allocation during constant evaluation, should also adopt the constexpr specifier.

As with C++23 constexpr support for std::unique_ptr, bumping the value __cpp_lib_constexpr_memory
is our requested feature macro change; yet in the discussion and implementation presented here, we adopt the
macro __cpp_lib_constexpr_shared_ptr.

We below elaborate on points which go beyond the simple addition of the constexpr specifier to the relevant
member functions.

2

https://wg21.link/smartptr

3.1 Atomic Operations
The existing std::shared_ptr class can operate within a multithreaded runtime environment. A number of
its member functions may therefore be defined using atomic functions; so ensuring that shared state is updated
correctly. Atomic functions are not qualified as constexpr; but as constant expressions must be evaluated by a
single thread, a constexpr std::shared_ptr implementation can safely skip calls to atomic functions through
the predication of std::is_constant_evaluated (or if consteval). For example, here is a modified function
from GCC’s libstdc++, called from std::shared_ptr::use_count() and elsewhere:
constexpr long
_M_get_use_count() const noexcept
{
#ifdef __cpp_lib_constexpr_shared_ptr
return std::is_constant_evaluated()

? _M_use_count
: __atomic_load_n(&_M_use_count, __ATOMIC_RELAXED);

#else
return __atomic_load_n(&_M_use_count, __ATOMIC_RELAXED);

#endif
}

The use of atomic intrinsics within Clang’s libc++ and MSVC’s STL can be similarly elided. In
__memory/shared_ptr.h, libc++ makes calls to the atomic intrinsic __atomic_load_n, only via the in-
line C++ functions __libcpp_relaxed_load and __libcpp_acquire_load; while __atomic_add_fetch is
accessed only via __libcpp_atomic_refcount_increment and __libcpp_atomic_refcount_decrement. Each
of these four functions is comprised only of return statement pairs, predicated upon object-like macros including
_LIBCPP_HAS_NO_THREADS; and so could easily be modified to involve std::is_constant_evaluated as above.

In stl/inc/memory, the std::shared_ptr of MSVC’s STL inherits a _Ref_count_base member through
_Ptr_base. _Ref_count_base has two _Atomic_counter_t members (aliases of unsigned long), updated
atomically using the _InterlockedCompareExchange; _InterlockedIncrement (via the macro _MT_INCR); or
_InterlockedDecrement (via the macro _MT_DECR) atomic intrinsics. All the (five) functions invoking these
intrinsics can again make use of std::is_constant_evaluated to avoid the atomic operations.

Adding constexpr support to an implementation of std::shared_ptr built directly upon an std::atomic
instance would need to take an alternative approach; likely involving the modification of its std::atomic defi-
nition.

3.2 Two Memory Allocations
Unlike std::unique_ptr, a std::shared_ptr must store not only the managed object, but also the type-erased
deleter and allocator, as well as the number of std::shared_ptrs and std::weak_ptrs which own or refer to
the managed object. This information is managed as part of a dynamically allocated object referred to as the
control block.

Existing runtime implementations of std::make_shared, std::allocate_shared,
std::make_shared_for_overwrite, and std::allocate_shared_for_overwrite, allocate memory for both
the control block, and the managed object, from a single dynamic memory allocation; via reinterpret_cast.
This practise aligns with a remark at 20.3.2.2.7 [util.smartptr.shared.create]; quoted below:

—(7.1) Implementations should perform no more than one memory allocation.
— [Note 1: This provides efficiency equivalent to an intrusive smart pointer. — end note]

As reinterpret_cast is not permitted within a constant expression, an alternative approach is required for
std::make_shared, std::allocate_shared, std::make_shared_for_overwrite, and
std::allocate_shared_for_overwrite. A straightforward solution is to create the object first, and pass its
address to the appropriate std::shared_ptr constructor. Considering the control block, this approach amounts

3

https://wg21.link/util.smartptr.shared.create

to two dynamic memory allocations; albeit at compile-time. Assuming that the runtime implementation need
not change, the remark quoted above can be left unchanged; as this is only a recommendation, not a requirement.

3.3 Relational Operators
Comparing dynamically allocated pointers within a constant expression is legal, provided the result of the
comparison is not unspecified. Such comparisons are defined in terms of a partial order, applicable to pointers
which either point “to different elements of the same array, or to subobjects thereof”; or to “different non-static
data members of the same object, or to subobjects of such members, recursively…”; from paragraph 4 of 7.6.9
[expr.rel]. A simple example program is shown below:
constexpr bool ptr_compare()
{
int* p = new int[2]{};
bool b = &p[0] < &p[1];
delete [] p;
return b;

}

static_assert(ptr_compare());

It is therefore unsurprising that we include the std::shared_ptr relational operators within the scope of our
proposal to apply constexpr to all functions within 20.3 [smartptr]; the std::shared_ptr aliasing constructor
makes this especially simple to configure:
constexpr bool sptr_compare()
{
double *arr = new double[2];
std::shared_ptr p{&arr[0]}, q{p, p.get() + 1};
return p < q;

}

static_assert(sptr_compare());

Furthermore, in the interests of constexpr consistency, we propose that the relational operators of
std::unique_ptr also now include support for constant evaluation. As discussed above, the results of such
comparisons are very often well defined.

It may be argued that a std::unique_ptr which is the sole owner of an array, or an object with data members,
presents less need for relational operators. Yet we must consider that a custom deleter can easily change
the operational semantics; as demonstrated in the example below. A std::unique_ptr should also be legally
comparable with itself.
constexpr bool uptr_compare()
{
short* p = new short[2]{};
auto del = [](short*){};
std::unique_ptr<short[]> a{p+0};
std::unique_ptr<short[],decltype(del)> b{p+1, del};
return a < b;

}

static_assert(uptr_compare());

4

https://wg21.link/expr.rel
https://wg21.link/smartptr

3.4 Maybe Not Now, But Soon
A core message of C++23’s [P2448R2] is that the C++ community is served better by including the language
version alongside the tuple of possible inputs (i.e. function and template arguments) considered for a constexpr
function invocation within a constant expression. Consequently, while there are some functions in 20.3 [smartptr]
which cannot possibly be so evaluated today, we propose that these should also be specified with the constexpr
keyword. The following lists all such functions or classes:

— 20.3.2.1 [util.smartptr.weak.bad]: std::bad_weak_ptr cannot be constructed as it inherits from a class,
std::exception, which has no constexpr member functions.

— 20.3.3 [util.smartptr.hash]: The operator() member of the class template specialisations for
std::hash<std::unique_ptr<T,D>> and std::hash<std::shared_ptr<T>> cannot be defined ac-
cording to the Cpp17Hash requirements (16.4.4.5 [hash.requirements]). (A pointer cannot, during constant
evaluation, be converted to an std::size_t using reinterpret_cast; or otherwise.)

— 20.3.2.5 [util.smartptr.owner.hash]: The two operator() member functions of the recently adopted
owner_hash class, also cannot be defined according to the Cpp17Hash requirements.

— 20.3.2.2.6 [util.smartptr.shared.obs]: The recently adopted owner_hash() member function of
std::shared_ptr, also cannot be defined according to the Cpp17Hash requirements.

4 Impact on the Standard
This proposal is a pure library extension, and does not require any new language features.

5 Implementation
An implementation based on the GNU C++ Library (libstdc++) can be found here. A comprehensive test suite
is included there within tests/shared_ptr_constexpr_tests.cpp; alongside a standalone bash script to run
it. All tests pass with recent GCC and Clang (i.e. versions supporting P2738; __cpp_constexpr >= 202306L).

6 Proposed Wording

7 Acknowledgements
Thanks to all of the following:

— (In alphabetical order by last name) Thiago Macieira, Arthur O’Dwyer, Jonathan Wakely and everyone
else who contributed to the online forum discussions.

5

https://wg21.link/smartptr
https://wg21.link/util.smartptr.weak.bad
https://wg21.link/util.smartptr.hash
https://wg21.link/hash.requirements
https://wg21.link/util.smartptr.owner.hash
https://wg21.link/util.smartptr.shared.obs
https://github.com/SCT4SP/constexpr_shared_ptr

8 References
[ClangOz] Paul Keir. 2024. Performance Analysis of Compiler Support for Parallel Evaluation of C++ Constant

Expressions.
https://doi.org/10.1007/978-3-031-51075-5_6

[P0784R7] Daveed Vandevoorde. 2019. More constexpr containers.
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0784r7.html

[P2273R3] Andreas Fertig. 2021. Making std::unique_ptr constexpr.
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2273r3.pdf

[P2448R2] Barry Revzin. 2022. Relaxing some constexpr restrictions.
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2448r2.html

[P2738R1] David Ledger. 2023. constexpr cast from void*: towards constexpr type-erasure.
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2738r1.pdf

6

https://doi.org/10.1007/978-3-031-51075-5_6
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0784r7.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2273r3.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2448r2.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2738r1.pdf

	Revision History
	Introduction
	Motivation and Scope
	Atomic Operations
	Two Memory Allocations
	Relational Operators
	Maybe Not Now, But Soon

	Impact on the Standard
	Implementation
	Proposed Wording
	Acknowledgements
	References

