
Remove Deprecated Volatile Features from C++26
Proposal to remove easily misunderstood feature

Document #: P2866R2
Date: 2024-04-16
Project: Programming Language C++
Audience: CWG, LWG
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents
1 Abstract 2

2 Revision History 2
R2: April 2024 (post-Tokyo mailing) . 2
R1: September 2023 (midterm mailing) . 2
R0: May 2023 (pre-Varna mailing) . 2

3 Introduction 3

4 Background 3

5 Feature Analysis 3
5.1 Core language . 3
5.2 Library . 4

6 C++23 Feedback 5
6.1 Initial EWG review . 5
6.2 Subsequent feedback . 5

7 Proposed Changes for C++26 6
7.1 Core language . 6
7.2 Library . 6
7.3 Concerns raised by core/library interaction . 7

8 C++26 Feedback 12
8.1 EWG initial review: Varna 2023 . 12
8.2 LEWG initial review: Kona 2023 . 12
8.3 LWG initial review: Tokyo 2024 . 12

9 Proposed Wording Changes 13
9.1 Update core wording . 13
9.2 Update library wording . 19
9.3 Update cross-reference for stable labels for C++23 . 21

10 Acknowledgements 22

11 References 22

1

mailto:ameredith1@bloomberg.net

1 Abstract
C++ has deprecated a number of features related to volatile semantics in both the core language specification
and in the library specification. This paper proposes removing those features from C++26.

2 Revision History
R2: April 2024 (post-Tokyo mailing)

— Wording updates
— Rebased wording onto latest working draft, [N4971]
— Annex C: changed “will not compile” to “may become ill-formed”
— Simplified note that removing trait specializations for volatile types does not remove support for

volatile-qualified elements

R1: September 2023 (midterm mailing)
— Removed revision history’s redundant subsection numbering
— Noted proposal passed EWG review, but awaiting LEWG confirmation before passing to Core
— Added SG22 C Interoperability to target audience
— Provided the missing Library Analysis
— Analyzed the remaining structured binding dependency on volatile in the library
— Wording updates

— Applied initial Core wordsmith preview from Jens Maurer
— Rebased onto latest working draft, N4958
— Updated stable label cross-reference to C++23

R0: May 2023 (pre-Varna mailing)
Original version of this document, extracted from the C++23 proposal [P2139R2].

Key changes since that earlier paper

— Combined core and library updates in a single paper
— C++23 undeprecated compound assignment
— Rebased wording onto N4944

2

3 Introduction
At the start of the C++23 cycle, [P2139R2] tried to review each deprecated feature of C++ to see which we
would benefit from actively removing and which might now be better undeprecated. Consolidating all this
analysis into one place was intended to ease the (L)EWG review process but in return gave the author so much
feedback that the next revision of the paper was not completed.

For the C++26 cycle, a much shorter paper, [P2863R1], will track the overall analysis, but for features that
the author wants to actively progress, a distinct paper will decouple progress from the larger paper so that the
delays on a single feature do not hold up progress on all.

This paper takes up the deprecated operations on volatile types, D.4 [depr.volatile.type], and the associated
deprecated library features.

4 Background
The volatile keyword is an original part of the C legacy for C++ and describes constraints on programs
intended to model hardware changing values beyond the program’s control. As this entered the type system of
C++, certain interactions were discovered to be troublesome, and latent bugs that could be detected at the time
of program translation go unreported. [P1152R4] breaks down each context where the volatile keyword can
be used and it deprecated for C++20 those uses that are unconditionally dangerous or serve no good purpose.

Following the C++20 deprecations, the C committee looked to adopt a similar stance on volatile and were
given feedback that a number of vendors were strongly opposed to the deprecation of compound-assignment
operators because, among other reasons, many hardware APIs and device drivers would expect to use volatile
compound assignment to communicate with their devices. This subset of the deprecated functionality was
undeprecated for C++23 by [P2327R1], followed by further undeprecations in [CWG2654].

5 Feature Analysis
5.1 Core language
A quick micro-analysis suggests the main concerns of the first two paragraphs are read/modify/write operations
where, by the nature of volatile objects, the value being rewritten may have changed since read and modified.
This kind of pattern is most likely in old (pre-C++11) code using volatile as a poor proxy for atomic. Since
we will have well over a decade of real atomic support in the language when C++26 ships, further encouraging
such code (when compiled in the latest dialect) to adapt to the memory model and its stronger guarantees could
be desirable.

The third paragraph addresses function arguments and return values. These temporary or elided objects are
created entirely by the compiler and guaranteed to not display the uncertainty of value implied by the volatile
keyword. As such, any use is redundant and misleading, so removing this facility sooner rather than later would
be helpful and would also mean one fewer oddity to teach when learning (and understanding) the language. The
biggest concern would be compatibility with C code that may still use this feature in its headers. To mitigate,
me may consider removing volatile function parameters and return values for only functions with extern "C++"
linkage.

The fourth paragraph considers the volatile qualifier in structured bindings, and can affect only code written
since C++17, and when C++23 is published such use of the qualifier will have been deprecated as long as it
was nondeprecated. It would be good to remove this now, before more deprecated code is written.

The recommendation is to remove support for these deprecated use cases from C++26 since we have had seven
years of deprecation warnings as well as the usages’ potential to diagnose hard-to-reproduce latent bugs for users
to fix. Reviewing each of the four noted usages separately would also be possible, as would be removing only
those features having the lowest risk from removal — notably paragraphs 3 and 4.

3

https://wg21.link/depr.volatile.type

5.2 Library
Three distinct feature sets were deprecated as part of the deprecating volatile work for C++20. Both
std::tuple and std::variant have an API to query how many elements or alternates a type contains, and
another to query what the type of a given element or alternate is. These APIs support volatile-qualified tuple
and variant types, yet a corresponding get API to retrieve the value of that type has never been available,
making these, making these interfaces largely redundant.

The other use of volatile in the Standard Library is as part of the atomic APIs, and several overloads for
volatile non-lock-free atd::atomic that should be constrained to not exist, per the primary library specifica-
tion, remain deprecated in Annex D.

5.2.1 Deployment experience

By testing the following program with all of the latest compilers and Standard Library implementations available
through Godbolt Compiler Explorer, we discovered that none of the existing library implementations are warning
on use of the deprecated tuple and variant APIs. Deeper analysis may be needed to confirm whether this is
a library issue, or whether such usage is something the compiler finds difficult to warn about when using the
[[deprecated]] attribute.
#include <tuple>
#include <type_traits>
#include <variant>

using TypeT = std::tuple<int, char, float> volatile;
using TypeV = std::variant<int, char, float> volatile;

static_assert(std::is_same_v<std::tuple_element<0, TypeT>::type, int volatile>);
static_assert(std::is_same_v<std::tuple_element_t<0, TypeT>, int volatile>);

static_assert(std::is_same_v<std::variant_alternative<0, TypeV>::type, int volatile>);
static_assert(std::is_same_v<std::variant_alternative_t<0, TypeV>, int volatile>);

4

6 C++23 Feedback
6.1 Initial EWG review
The following feedback was provided when this core language feature was originally discussed in the EWG telecon
on July 30, 2020.

This clause is effectively four different sub-features, that were reviewed and polled independently. The author
offered to pull this whole section out into another paper if there were concerns about processing a complex topic
in this simplified omnibus paper (which has effectively happened in this paper), but relatively little contention
arose throughout the discussion, so it will remain here for now.

Some concerns were raised that by removing some of these features, we would be creating inconsistencies between
the treatment of const and volatile in the language. Others suggested that this inconsistency was a good
thing and that one of the early concerns Bjarne expressed about the design and evolution of C++ was too much
consistency in the treatment of these two qualifiers that do different things in practice.

The observation was made — several times — that volatile qualifiers on locally scoped variables, such as
function arguments, rarely mean what naive users expect them to mean, and can be freely ignored by an
optimizing compiler. By removing support for some of those declarations, we make writing misleading (but
otherwise correct) code more difficult.

6.2 Subsequent feedback
Following feedback from WG14 and their progress for C23, reading the deprecated result of compound assignment
to a volatile lvalue for the bitwise operators was undeprecated for C compatibility in C++23 by [P2327R1].
Subsequently, responding to NB comment US 16-045, reading the result of the remaining compound assignment
operators was undeprecated by [CWG2654], reintroducing a potential C incompatibility in favor of consistency
and a simpler language.

5

7 Proposed Changes for C++26
This paper proposes removing from C++26 all the deprecated features regarding the use of volatile.

7.1 Core language
Remove the following language interactions:

— increment and decrement operators on volatile lvalues
— volatile qualifier on non-reference function parameters
— volatile qualifier on non-reference function return types
— volatile-qualified structured bindings

In addition, built-in assignment operator functions for volatile lvalues should be declared to return void.
C++23 deprecates calling assignment operators with volatile lvalues unless they are a discarded value expression
or an unevaluated operand. We can enforce this by simply removing the return value from the function signature.
However, this change is bigger than strictly necessary since it further removes the nondeprecated use case as
an unevaluated operand. This is the recommended choice as it means that code written to detect valid return
types using SFINAE constraints will report only valid code; otherwise, we would risk breaking metaprograms.

7.2 Library
7.2.1 tuple API

Remove deprecated tuple traits of volatile-qualified types. I tried and failed to demonstrate the need to support
a customization point of structured bindings of volatile-qualified types. Structured bindings of volatile-
qualified std::tuple objects already fail to compile due to a lack of get support, and my test cases of trying
to set up a user customization for their own types compiled without the volatile specializations.

7.2.2 variant API

Remove deprecated variant interface.

7.2.3 Non-lock-free atomics

Remove deprecated volatile members of atomic<T> when atomic<T>::is_lock_free is false.

7.2.4 Change volatile atomic interface to match nonatomic types

atomic<integal-type> and atomic<pointer-type> should remove volatile-qualified increment and decre-
ment operators.

All nondeleted volatile-qualified atomic<T> assignment operators should change their return value to void,
although this might be an ABI-breaking change.

6

7.3 Concerns raised by core/library interaction
One corner case retains a core language dependency on tuple_size and tuple_element through structured bind-
ings. Let us build up an example to demonstrate the specific corner that this paper proposes removing (without
deprecation) from the Core specification, allowing LWG to remove the partial specializations of tuple_size and
tuple_element for volatile-qualified types.

7.3.1 Tailored structured binding

First, demonstrate the feature that has been deprecated for the last two editions of the Standard. Below, we
create a type in namespace test, struct Binding, that is a simple aggregate-like class that defines all the
customization points necessary to use that type in a structured binding.
#include <tuple>
#include <type_traits>
#include <utility>

namespace test {
struct Binding {

int data{};
char code{};
float value{};

Binding() = default;
Binding(Binding const&) = default;

};

template<unsigned N>
auto get(Binding& obj) {

if constexpr (0 == N) {
return obj.data;

}

if constexpr (1 == N) {
return obj.code;

}

if constexpr (2 == N) {
return obj.value;

}

std::unreachable();
}

template<unsigned N>
auto get(Binding const & obj) {

if constexpr (0 == N) {
return obj.data;

}

if constexpr (1 == N) {
return obj.code;

}

if constexpr (2 == N) {

7

return obj.value;
}

std::unreachable();
}

}

namespace std {

template <>
struct tuple_size<test::Binding> : std::integral_constant<unsigned, 3> {};

template <>
struct tuple_element<0, test::Binding> {

using type = int;
};

template <>
struct tuple_element<1, test::Binding> {

using type = char;
};

template <>
struct tuple_element<2, test::Binding> {

using type = double;
};

}

int main() {
test::Binding x = {};
auto [a,b,c] = x;
return a;

}

Here, explicitly specialize the templates std::tuple_size and std::tuple_element for our class type, and add
get overloads in its own namespace that are found via ADL. This is a basic demonstration of supporting our
own type in a structured binding.

7.3.2 Deprecated volatile structured binding

Then we update the main program:
int main() {

test::Binding x = {};
auto volatile [a,b,c] = x;
return a;

}

This program gives warnings that this use of volatile is deprecated and is the usage this paper proposes
removing.

8

7.3.3 Nondeprecated structured binding to a volatile-qualified lvalue

Next, we bind from a volatile-qualified lvalue instead:
int main() {

test::Binding volatile x = {};
auto [a,b,c] = x;
return a;

}

This fails to compile as the structure binding wants to make a copy of x, but no constructor that can take a
volatile-qualified argument is found, so we update Binding as follows:
struct Binding {

int data{};
char code{};
float value{};

Binding() = default;
Binding(Binding const&) = default;
Binding(Binding const volatile &) {} // construct with default intiializers

};

By overloading with the const volatile & copy constructor, the program with the volatile-qualified x now
compiles:
int main() {

test::Binding volatile x = {};
auto [a,b,c] = x; // this will compile now
return a;

}

Note that this use of volatile is not deprecated and should remain supported. However, we may be wondering
if this uses tuple_size on a volatile-qualified type? So let us test that!

Define explicit specializations of tuple_size for all cv-qualified variations of test::Binding so that only the
unqualified version provides the integral constant base characteristics required by the structured binding protocol:
template <>
struct tuple_size<test::Binding> : std::integral_constant<unsigned, 3> {};

template <>
struct tuple_size<test::Binding const> {}; // canary

template <>
struct tuple_size<test::Binding volatile> {}; // canary

template <>
struct tuple_size<test::Binding const volatile> {}; // canary

If the structured binding attempted to find the tuple_size of a volatile-qualified object, it should fail to
compile; however, our program continues to compile just fine, indicating that structured bindings are querying
the non-volatile-qualified copy of x used for the by-value binding. Hence, this valid use of volatile is not
impacted by the proposal to remove volatile support from tuple_size (and tuple_element).

7.3.4 Binding by reference to a volatile-qualified lvalue

Now, let us try to make a structured binding by-reference to a volatile lvalue. Note that according to the core
language wording this is well-defined behavior that is not deprecated in C++23:

9

int main() {
test::Binding volatile x = {};
auto & [a,b,c] = x;
return a;

}

Here we find that the structured binding relies upon the deprecated library value tuple_size<volatile test::Binding>::value,
suggesting that our proposal would break this code. However, retaining the volatile-qualified support for
tuple_size is not yet enough for the above code to compile, even in the original C++17 specification that
preceded the deprecations. The remaining issue is that our get overloads do not accept references to volatile-
qualified types. Hence, to complete our implementation and as required for C++17, which is not affected by
any changes proposed by this paper, we must add the ADL-discoverable volatile-qualified overloads:
template<unsigned N>
auto get(Binding volatile & obj) {

if constexpr (0 == N) {
return obj.data;

}

if constexpr (1 == N) {
return obj.code;

}

if constexpr (2 == N) {
return obj.value;

}

std::unreachable();
}

template<unsigned N>
auto get(Binding const volatile & obj) {

if constexpr (0 == N) {
return obj.data;

}

if constexpr (1 == N) {
return obj.code;

}

if constexpr (2 == N) {
return obj.value;

}

std::unreachable();
}

Adding these two overloads is sufficient to create a structured binding by-reference to our volatile-qualified lvalue.
Note that the get overloads in namespace std for native arrays, std::array, std::pair, and std::tuple do
not support volatile-qualified objects and never have. Hence, support for reference bindings to volatile lvalues
has only ever been supported for user-provided types that supply the necessary ADL-discoverable overloads of
get.

If we adopt this proposal to remove support for volatile-qualified types in the tuple metafunctions, then users
will have to add their own specializations for tuple_size and tuple_element for their own type in addition to

10

their existing get overloads:
template <>
struct tuple_size<test::Binding> : std::integral_constant<unsigned, 3> {};

template <>
struct tuple_size<test::Binding const>

: tuple_size<test::Binding>::type {};

template <>
struct tuple_size<test::Binding volatile>

: tuple_size<test::Binding>::type {};

template <>
struct tuple_size<test::Binding const volatile>

: tuple_size<test::Binding>::type {};

Note that whether users are currently permitted to specialize tuple_size in this way is unclear. However, if
such specializations are not allowed, the original example and all like it are also not allowed, so no breakage of
well-defined code would occur under this proposal.

7.3.5 Proposed resolution

We pre-emptively reject any proposal that would, without a period of deprecation, disqualify structured binding
to volatile-qualified lvalues. Perhaps such a deprecation was intended by the original paper, [P1152R4], but if
so, that has not been explicitly drafted.

The only breakage that occurs by removing the tuple_size and tuple_element specializations is binding
by-reference to a volatile-qualified lvalue, and that already requires a user to provide partial and/or explicit
specializations of the primary template for their type as well as a larger set of get overloads in their namespace
(or as template-member functions of the class) than provided in namespace std for standard types, supporting
volatile-qualified objects.

Assuming a user has already done all of the above so that their program would fail to compile with C++26,
the specification is already clear on how users can fix their programs: The compiler is going to look for those
specializations of tuple_size and tuple_element for their type, and being a user-provided type, the users can
provide those specializations themselves.

Hence, the recommendation of this paper is to remove the deprecated tuple API, and maybe add a note to the
structured bindings clause to suggesting how the user may support this edge case, in addition to any Annex C
wording.

11

8 C++26 Feedback
8.1 EWG initial review: Varna 2023
FIND AND COPY NOTES

Forward to Core after the paper passes LEWG review

8.2 LEWG initial review: Kona 2023
FIND AND COPY NOTES

Forward the library component of “P2866R1 Remove Deprecated Volatile Features From C++26” (8.2, and
parts of 8.3) to LWG, to be confirmed by electronic polling.

8.3 LWG initial review: Tokyo 2024
FIND AND COPY NOTES

Several corrections were made live during review and are incorporated in the proposed wording below.

12

9 Proposed Wording Changes
Make the following changes to the C++ Working Draft. All wording is relative to [N4971], the latest draft at
the time of writing.

9.1 Update core wording
First, where we want to restrict operations to modifiable lvalues that no longer support volatile-qualified types,
we will call out “modifiable non-volatile lvalues”, which excludes all cv-qualifiers, so we can strike cv-qualification
too.

Then, to eliminate special treatment of discarded value expressions for the assignment operator (but not for the
undeprecated compound-assignment operators), we will change the return type to void when the argument is a
volatile-qualified lvalue. We must validate that this will not break ABIs, although we believe we are safe since
taking the address of a built-in operator should not be possible and users are responsible for their own operator
overloads on their own volatile-qualified types. Note that this change could break code relying on the result
of assigning to a volatile-qualified lvalue in unevaluated expressions, which was not previously deprecated.

Finally, we remove support for the volatile qualifier without a reference qualifier when declaring a structured
binding.

9.1.1 Update core clauses

7.6.1.6 [expr.post.incr] Increment and decrement
1 The value of a postfix ++ expression is the value of its operand.

[Note 1: The value obtained is a copy of the original value. —end note]

The operand shall be a modifiable non-volatile lvalue. The type of the operand shall be an arithmetic type other
than cv bool, or a pointer to a complete object type. An operand with volatile-qualified type is deprecated; see
D.4 [depr.volatile.type]. The value of the operand object is modified (3.1 [defns.access]) by adding 1 to it. The
value computation of the ++ expression is sequenced before the modification of the operand object. With respect
to an indeterminately-sequenced function call, the operation of postfix ++ is a single evaluation.

[Note 2: Therefore, a function call cannot intervene between the lvalue-to-rvalue conversion and the side effect
associated with any single postfix ++ operator. —end note]

The result is a prvalue. The type of the result is the cv-unqualified version of the type of the operand. If
the operand is a bit-field that cannot represent the incremented value, the resulting value of the bit-field is
implementation-defined. See also 7.6.6 [expr.add] and 7.6.19 [expr.ass].

2 The operand of postfix -- is decremented analogously to the postfix ++ operator.

[Note 3: For prefix increment and decrement, see 7.6.2.3 [expr.pre.incr]. —end note]

7.6.2.3 [expr.pre.incr] Increment and decrement
1 The operand of prefix ++ is modified (3.1 [defns.access]) by adding 1. The operand shall be a modifi-

able non-volatile lvalue. The type of the operand shall be an arithmetic type other than cv bool, or a
pointer to a completely-defined object type. An operand with volatile-qualified type is deprecated; see
D.4 [depr.volatile.type]. The result is the updated operand; it is an lvalue, and it is a bit-field if the operand is
a bit-field. The expression ++x is equivalent to x+=1.

[Note 1: See the discussions of addition7.6.6 [expr.add] and assignment operators 7.6.19 [expr.ass] for information
on conversions. —end note]

2 The operand of prefix -- is modified (3.1 [defns.access]) by subtracting 1. The requirements on the operand of
prefix -- and the properties of its result are otherwise the same as those of prefix ++.

[Note 2: For postfix increment and decrement, see 7.6.1.6 [expr.post.incr]. —end note]

13

https://wg21.link/expr.post.incr
https://wg21.link/depr.volatile.type
https://wg21.link/defns.access
https://wg21.link/expr.add
https://wg21.link/expr.ass
https://wg21.link/expr.pre.incr
https://wg21.link/expr.pre.incr
https://wg21.link/defns.access
https://wg21.link/depr.volatile.type
https://wg21.link/expr.add
https://wg21.link/expr.ass
https://wg21.link/defns.access
https://wg21.link/expr.post.incr

7.6.19 [expr.ass] Assignment and compound assignment operators
4 …
5 An assignment whose left operand is of a volatile-qualified type is deprecated (D.4 [depr.volatile.type]) ill-formed

unless the (possibly parenthesized) assignment is a discarded-value expression or an unevaluated operand
(7.2.3 [expr.context]).

9.3.4.6 [dcl.fct] Functions
3 …
4 The parameter-declaration-clause determines the arguments that can be specified, and their processing, when

the function is called.

[Note 1: The parameter-declaration-clause is used to convert the arguments specified on the function call; see
7.6.1.3 [expr.call]. —end note]

If the parameter-declaration-clause is empty, the function takes no arguments. A parameter list consisting of
a single unnamed parameter of non-dependent type void is equivalent to an empty parameter list. Except for
this special case, a parameter shall not have type cv void. A parameter with shall not have a volatile-qualified
type is deprecated; see D.4 [depr.volatile.type]. If the parameter-declaration-clause terminates with an ellipsis or
a function parameter pack (13.7.4 [temp.variadic]), the number of arguments shall be equal to or greater than
the number of parameters that do not have a default argument and are not function parameter packs. Where
syntactically correct and where “...” is not part of an abstract-declarator, “, ...” is synonymous with “...”.

[Example 1: The declaration
int printf(const char*, ...);

declares a function that can be called with varying numbers and types of arguments.
printf("hello world");
printf("a=%d b=%d", a, b);

However, the first argument must be of a type that can be converted to a const char*. —end example]

[Note 2: The standard header <cstdarg> (17.13.2 [cstdarg.syn]) contains a mechanism for accessing arguments
passed using the ellipsis (see 7.6.1.3 [expr.call] and 17.13 [support.runtime]). —end note]

5 The type of a function is determined using the following rules. The type of each parameter (including function
parameter packs) is determined from its own parameter-declaration (9.3 [dcl.decl]). After determining the type
of each parameter, any parameter of type “array of T” or of function type T is adjusted to be “pointer to T”.
After producing the list of parameter types, any top-level cv-qualifiers const-qualifier modifying a parameter
type are is deleted when forming the function type. The resulting list of transformed parameter types and the
presence or absence of the ellipsis or a function parameter pack is the function’s parameter-type-list.

6 …
15 The return type shall be a non-volatile non-array object type, a reference type, or cv possibly const-qualified

void.

[Note 8: An array of placeholder type is considered an array type. —end note]
16 A volatile-qualified return type is deprecated; see 13.7.4 [temp.variadic].

9.6 [dcl.struct.bind] Structured binding declarations
1 A structured binding declaration introduces the identifiers v0, v1, v2,… of the identifier-list as names of structured

bindings. Let cv denote the cv-qualifiers in the decl-specifier-seq and S consist of the storage-class-specifiers of
the decl-specifier-seq (if any). A cv that includes volatile is deprecated; see D.5 ill-formed. First, a variable

14

https://wg21.link/expr.ass
https://wg21.link/depr.volatile.type
https://wg21.link/expr.context
https://wg21.link/dcl.fct
https://wg21.link/expr.call
https://wg21.link/depr.volatile.type
https://wg21.link/temp.variadic
https://wg21.link/cstdarg.syn
https://wg21.link/expr.call
https://wg21.link/support.runtime
https://wg21.link/dcl.decl
https://wg21.link/temp.variadic
https://wg21.link/dcl.struct.bind

with a unique name e is introduced. If the assignment-expression in the initializer has array type cv1 A and no
ref-qualifier is present, e is defined by

attribute-specifier-seqopt S cv A e ;

and each element is copy-initialized or direct-initialized from the corresponding element of the assignment-
expression as specified by the form of the initializer. Otherwise, e is defined as-if by

attribute-specifier-seqopt decl-specifier-seq ref-qualifieropt e initializer ;

where the declaration is never interpreted as a function declaration and the parts of the declaration other than
the declarator-id are taken from the corresponding structured binding declaration. The type of the id-expression
e is called E.

[Note 1: E is never a reference type (7.2 [expr.prop]). —end note]
2 …
5 Otherwise, …

[Example 2:
struct S { mutable int x1 : 2; volatile double y1; };
S f();
const auto [x, y] = f();
volatile auto [a, b] = f(); //error, volatile structured binding

The type of the id-expression x is “int”, the type of the id-expression y is “const volatile double”. —end
example]

12.5 [over.built] Built-in operators
3 …
4 For every pair (T , vq) type T, where T is a cv-unqualified arithmetic type other than bool or a cv-unqualified

pointer to (possibly cv-qualified) object type, there exist candidate operator functions of the form
vq T& operator++(vq T&);
T operator++(vq T&, int);
vq T& operator--(vq T&);
T operator--(vq T&, int);

5 …
18 For every triple (L , vq, R), where L is an arithmetic type, and R is a floating-point or promoted integral type,

there exist candidate operator functions of the form
vq L& operator=(vq L&, R);
void operator=(volatileL&,R);
vq L& operator*=(vq L&, R);
vq L& operator/=(vq L&, R);
vq L& operator+=(vq L&, R);
vq L& operator-=(vq L&, R);

19 For every pair (T , vq), where T is any type, there exist candidate operator functions of the form
T*vq& operator=(T*vq&, T*);
void operator=(T* volatile &,T*);

20 For every pair (T , vq), where T is an enumeration or pointer-to-member type, there exist candidate operator
functions of the form

15

https://wg21.link/expr.prop
https://wg21.link/over.built

vq T & operator=(vq T &, T);
void operator=(volatile T &,T);

9.1.2 Update Annex C

C.1.2 [diff.cpp23.expr] Clause 7: expressions
2 Affected subclause: 7.6.1.6 [expr.post.incr] and 7.6.2.3 [expr.pre.incr]

Change: Cannot increment or decrement volatile scalars

Rationale:

Effect on original feature:
3 Affected subclause: 7.6.19 [expr.ass]

Change: Cannot use the return value of assignment to a volatile-qualified type

Rationale:

Effect on original feature:

Clause 9: declarations [diff.cpp23.dcl]
1 Affected subclause: 9.3.4.6 [dcl.fct]

Change: Cannot declare volatile-qualified function parameter types and function return types

Rationale:

Effect on original feature:
2 Affected subclause: 9.6 [dcl.struct.bind]

Change: Cannot define a volatile-qualified structured binding

Rationale:

Effect on original feature:

C.7.4 [diff.expr] Clause 7: expressions
x Affected subclause: 7.6.1.6 [expr.post.incr] and 7.6.2.3 [expr.pre.incr]

Change: Cannot increment or decrement volatile scalars

The implicitly-declared copy constructor and implicitly-declared copy-assignment operator cannot make a copy
of a volatile lvalue. For example, the following is valid in ISO C:
struct X { int i; };
volatile struct X x1 = {0};
struct X x2 = x1; // invalid C++
struct X x3;
x3 = x1; // also invalid C++

Rationale: Several alternatives were debated at length. Changing the parameter to volatile const X& would
greatly complicate the generation of efficient code for class objects. Discussion of providing two alternative
signatures for these implicitly-defined operations raised unanswered concerns about creating ambiguities and
complicating the rules that specify the formation of these operators according to the bases and members.

Effect on original feature: Deletion of semantically well-defined feature.

16

https://wg21.link/diff.cpp23.expr
https://wg21.link/expr.post.incr
https://wg21.link/expr.pre.incr
https://wg21.link/expr.ass
https://wg21.link/dcl.fct
https://wg21.link/dcl.struct.bind
https://wg21.link/diff.expr
https://wg21.link/expr.post.incr
https://wg21.link/expr.pre.incr

Difficulty of converting: Semantic transformation. If volatile semantics are required for the copy, a
user-declared constructor or assignment must be provided. If non-volatile semantics are required, an explicit
const_cast can be used.

How widely used: Seldom.
y Affected subclause: 7.6.19 [expr.ass]

Change: Cannot use the return value of assignment to a volatile-qualified type

Rationale:

Effect on original feature:

How widely used: Seldom.

C.7.6 [diff.dcl] Clause 7: declarations
x Affected subclause: 9.6 [dcl.struct.bind]

Change: Cannot declare volatile-qualified function parameter types and function return types

Rationale:

Effect on original feature:

How widely used: Seldom.

9.1.3 Strike core wording from Annex D

D.4 [depr.volatile.type] Deprecated volatile types
1 Postfix ++ and -- expressions (7.6.1.6 [expr.post.incr]) and prefix ++ and -- expressions (7.6.2.3 [expr.pre.incr])

of volatile-qualified arithmetic and pointer types are deprecated.

[Example 1:
volatile int velociraptor;
++velociraptor; // deprecated

—end example]
2 Certain assignments where the left operand is a volatile-qualified non-class type are deprecated; see 7.6.19

[expr.ass].

[Example 2:
int neck, tail;
volatile int brachiosaur;
brachiosaur = neck; // OK
tail = brachiosaur; // OK
tail = brachiosaur = neck; // deprecated
brachiosaur += neck; // OK

—end example]
3 A function type (9.3.4.6 [dcl.fct]) with a parameter with volatile-qualified type or with a volatile-qualified return

type is deprecated.

[Example 3:
volatile struct amber jurassic();
void trex(volatile short left_arm, volatile short right_arm);
void fly(volatile struct pterosaur* pteranodon);

17

https://wg21.link/expr.ass
https://wg21.link/diff.dcl
https://wg21.link/dcl.struct.bind
https://wg21.link/depr.volatile.type
https://wg21.link/expr.post.incr
https://wg21.link/expr.pre.incr
https://wg21.link/expr.ass
https://wg21.link/dcl.fct

—end example]
4 A structured binding (9.6 [dcl.struct.bind]) of a volatile-qualified type is deprecated.

[Example 4:
struct linhenykus { short forelimb; };
void park(linhenykus alvarezsauroid) {
volatile auto [what_is_this] = alvarezsauroid; // deprecated
// ...

}

—end example]

18

https://wg21.link/dcl.struct.bind

9.2 Update library wording
9.2.1 No changes to zombie names

As all the entities being struck are overloads of identifiers that retain their original meaning, no new names need
be added to 16.4.5.3.2 [zombie.names].

9.2.2 Add Annex C Library wording

C.1.X Annex D: compatibility features [diff.cpp23.depr]

Change: Remove volatile support for volatile-qualified tuple and variant in the metafunctions tuple_element,
tuple_size, variant_alternative, and variant_size.

Rationale: The library does not make extra effort to support volatile types and the support offered by just
these metafunctions without support from the function get provided little value.

Effect on original feature: A valid C++ 2023 program using these metafunctions for volatile-qualified tuple
or variant may become ill-formed.

[Note N : This change does not remove support for volatile-qualified types stored in a tuple or variant. —end
note]

Change: Remove support for operations on volatile atomic<T> unless atomic<T>::is_always_lock_free
is true.

Rationale: …

Effect on original feature: A valid C++ 2023 program using a such an atomic<T> object may become
ill-formed.

9.2.3 Strike Library wording from Annex D

D.17 [depr.tuple] Tuple
1 The header (22.4.2 [tuple.syn]) has the following additions:

namespace std {
template<class T> struct tuple_size<volatile T>;
template<class T> struct tuple_size<const volatile T>;
template<size_t I, class T> struct tuple_element<I, volatile T>;
template<size_t I, class T> struct tuple_element<I, const volatile T>;

}

template<class T> struct tuple_size<volatile T>;
template<class T> struct tuple_size<const volatile T>;

2 Let TS denote tuple_size<T> of the cv-unqualified type T. If the expression TS::value is well-
formed when treated as an unevaluated operand (7.2.3 [expr.context]), then specializations of each
of the two templates meet the Cpp17TransformationTrait requirements with a base characteristic of
integral_constant<size_t, TS::value>. Otherwise, they have no member value.

3 Access checking is performed as if in a context unrelated to TS and T. Only the validity of the immediate context
of the expression is considered.

4 In addition to being available via inclusion of the <tuple> (22.4.2 [tuple.syn]) header, the two templates are
available when any of the headers <array> (24.3.2 [array.syn]), <ranges> (ranges.syn), or <utility> (22.2.1
[utility.syn]) are included.
template<size_t I, class T> struct tuple_element<I, volatile T>;
template<size_t I, class T> struct tuple_element<I, const volatile T>;

19

https://wg21.link/zombie.names
https://wg21.link/depr.tuple
https://wg21.link/tuple.syn
https://wg21.link/expr.context
https://wg21.link/tuple.syn
https://wg21.link/array.syn
https://wg21.link/utility.syn

5 Let TE denote tuple_element_t<I, T> of the cv-unqualified type T. Then specializations of each of the
two templates meet the Cpp17TransformationTrait requirements with a member typedef type that names the
following type:

— for the first specialization, add_volatile_t<TE>, and
— for the second specialization, add_cv_t<TE>.

6 In addition to being available via inclusion of the <tuple> (22.4.2 [tuple.syn]) header, the two templates are
available when any of the headers <array> (24.3.2 [array.syn]), <ranges> (ranges.syn), or <utility> (22.2.1
[utility.syn]) are included.

D.18 [depr.variant] Variant
1 The header (22.6.2) has the following additions:

namespace std {
template<class T> struct variant_size<volatile T>;
template<class T> struct variant_size<const volatile T>;
template<size_t I, class T> struct variant_alternative<I, volatile T>;
template<size_t I, class T> struct variant_alternative<I, const volatile T>;

}

template<class T> struct variant_size<volatile T>;
template<class T> struct variant_size<const volatile T>;

2 Let VS denote variant_size<T> of the cv-unqualified type T. Then specializations of each of the two templates
meet the Cpp17UnaryTypeTrait requirements with a base characteristic of integral_constant<size_t, VS::value>.
template<size_t I, class T> struct variant_alternative<I, volatile T>;
template<size_t I, class T> struct variant_alternative<I, const volatile T>;

3 Let VA denote variant_alternative<I, T> of the cv-unqualified type T. Then specializations of each of the
two templates meet the Cpp17TransformationTrait requirements with a member typedef type that names the
following type:

— for the first specialization, add_volatile_t<VA::type>, and
— for the second specialization, add_cv_t<VA::type>.

D.26.2 [depr.atomics.volatile] Volatile access
1 If an atomic specialization has one of the following overloads, then that overload participates in overload resolu-

tion even if atomic<T>::is_always_lock_free is false:
void store(T desired, memory_order order = memory_order::seq_cst) volatile noexcept;
T operator=(T desired) volatile noexcept;
T load(memory_order order = memory_order::seq_cst) const volatile noexcept;
operator T() const volatile noexcept;
T exchange(T desired, memory_order order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_weak(T& expected, T desired,

memory_order success, memory_order failure) volatile noexcept;
bool compare_exchange_strong(T& expected, T desired,

memory_order success, memory_order failure) volatile noexcept;
bool compare_exchange_weak(T& expected, T desired,

memory_order order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_strong(T& expected, T desired,

memory_order order = memory_order::seq_cst) volatile noexcept;
T fetch_key(T operand, memory_order order = memory_order::seq_cst) volatile noexcept;
T operator op=(T operand) volatile noexcept;
T* fetch_key(ptrdiff_t operand, memory_order order = memory_order::seq_cst) volatile noexcept;

20

https://wg21.link/tuple.syn
https://wg21.link/array.syn
https://wg21.link/utility.syn
https://wg21.link/depr.variant
https://wg21.link/depr.atomics.volatile

D.26.3 [depr.atomics.nonmembers] Non-member functions

template<class T>
void atomic_init(volatile atomic<T>* object, typename atomic<T>::value_type desired) noexcept;

template<class T>
void atomic_init(atomic<T>* object, typename atomic<T>::value_type desired) noexcept;

x Constraints: For the volatile overload of this function, atomic<T>::is_always_lock_free is true.
1 Effects: Equivalent to: atomic_store_explicit(object, desired, memory_order::relaxed);

9.3 Update cross-reference for stable labels for C++23
Cross-references from ISO C++ 2023

All clause and subclause labels from ISO C++ 2023 (ISO/IEC 14882:2023, Programming Languages — C++)
are present in this document, with the exceptions described below.

container.gen.reqmts see
container.requirements.general

depr.arith.conv.enum removed
depr.atomics.volatile removed
depr.codecvt.syn removed
depr.default.allocator removed
depr.locale.stdcvt removed
depr.locale.stdcvt.general removed
depr.locale.stdcvt.req removed
depr.res.on.required removed
depr.string.capacity removed
depr.tuple removed
depr.variant removed
depr.volatile.type removed

mismatch see alg.mismatch

21

https://wg21.link/depr.atomics.nonmembers

10 Acknowledgements
Thanks to Michael Park for the pandoc-based framework used to transform this document’s source from Mark-
down.

Thanks again to Matt Godbolt for maintaining Compiler Explorer, the best public resource for C++ compiler
and library archaeology, especially when researching the history of deprecation warnings!

Thanks to Jens Maurer for the initial wording review and corrections.

Thanks to JF Bastien for the Annex C wording (to be supplied!)

Thanks to Lori Hughes for reviewing this paper and providing editorial feedback.

11 References
[CWG2654] US. 2022-11-03. Un-deprecation of compound volatile assignments.

https://wg21.link/cwg2654

[N4971] Thomas Köppe. 2023-12-18. Working Draft, Programming Languages — C++.
https://wg21.link/n4971

[P1152R4] JF Bastien. 2019-07-22. Deprecating volatile.
https://wg21.link/p1152r4

[P2139R2] Alisdair Meredith. 2020-07-15. Reviewing Deprecated Facilities of C++20 for C++23.
https://wg21.link/p2139r2

[P2327R1] Paul M. Bendixen, Jens Maurer, Arthur O’Dwyer, Ben Saks. 2021-10-04. De-deprecating volatile
compound operations.
https://wg21.link/p2327r1

[P2863R1] Alisdair Meredith. 2023-08-15. Review Annex D for C++26.
https://wg21.link/p2863r1

22

https://wg21.link/cwg2654
https://wg21.link/n4971
https://wg21.link/p1152r4
https://wg21.link/p2139r2
https://wg21.link/p2327r1
https://wg21.link/p2863r1

	Abstract
	Revision History
	R2: April 2024 (post-Tokyo mailing)r2-april-2024-post-tokyo-mailing
	R1: September 2023 (midterm mailing)r1-september-2023-midterm-mailing
	R0: May 2023 (pre-Varna mailing)r0-may-2023-pre-varna-mailing

	Introduction
	Background
	Feature Analysis
	Core language
	Library

	C++23 Feedback
	Initial EWG review
	Subsequent feedback

	Proposed Changes for C++26
	Core language
	Library
	Concerns raised by core/library interaction

	C++26 Feedback
	EWG initial review: Varna 2023
	LEWG initial review: Kona 2023
	LWG initial review: Tokyo 2024

	Proposed Wording Changes
	Update core wording
	Update library wording
	Update cross-reference for stable labels for C++23

	Acknowledgements
	References

