
ISO/IEC JTC1/SC22/WG21 P2414R3, 2024-04-05

Pointer lifetime-end zap proposed solutions
Authors: Paul E. McKenney, Maged Michael, Jens Maurer, Peter Sewell, Martin Uecker, Hans Boehm, Hubert Tong,
Niall Douglas, Thomas Rodgers, Will Deacon, Michael Wong, David Goldblatt, Kostya Serebryany, Anthony Williams,
Tom Scogland, and JF Bastien.
Other contributors: Martin Sebor, Florian Weimer, Davis Herring, Rajan Bhakta, Hal Finkel, Lisa Lippincott, Richard
Smith, JF Bastien, Chandler Carruth, Evgenii Stepanov, Scott Schurr, Daveed Vandevoorde, Davis Herring, Bronek
Kozicki, Jens Gustedt, Peter Sewell, Andrew Tomazos, and Davis Herring.
Audience: SG1, EWG.
Goal: Summarize a proposed solution to enable zap-susceptible concurrent algorithms.

Abstract 2
History 2
Introduction 3
Terminology 3
What We Are Asking For 4
Detailed Proposal 5

Faithful Computation of Representation Bytes of Invalid Pointers 5
A usable_ptr<T> Template Class 6
Atomic Operations Forgive Pointer Invalidity 6
Volatile Accesses Forgive Pointer Invalidity 7

Examples 7
LIFO Push 7

Use Case 1: Invalid Pointer Use 8
Use Case 2: Zombie Pointer Dereference 8
Fixing LIFO Push Using This Proposal 9

User Tracking of Pointers and realloc() 10
Appendix: Prototype usable_ptr<T> Implementation 11
Appendix: Relationship to WG14 N2676 11
Appendix: Relation to WG21 P2434R0 11



Abstract

The C++ standard currently specifies that all pointers to an object become invalid at the end of its lifetime [basic.life].
Although this permits additional diagnostics and optimizations which might be of some value, it is not consistent with
long-standing usage, especially for a range of concurrent and sequential algorithms that rely on loads, stores, equality
comparisons, and even dereferencing of such pointers. Similar issues result from object-lifetime aspects of C++ pointer
provenance.

We propose (1) that all non-comparison non-dereference computations involving pointers, including normal
loads and stores, must faithfully compute the representation bytes, even if the pointers are invalid; (2) the
addition to the C++ standard library of the class template std::usable_ptr<T> that is a pointer-like type that is
still usable after the pointed-to object’s lifetime has ended (and that includes a new provenance fence); and (3)
that atomic operations be redefined to forgive lifetime-end pointer invalidity (volatile operations must already
forgive such invalidity).

Please note that this paper does not propose adding bag-of-bits pointer semantics to the standard. However, in the
service of legacy code, it is hoped that implementers provide such semantics, perhaps via some facility such as a
command-line option that causes all pointers to be exempt from lifetime-end pointer invalidity.

History
P2414R3:

● Includes feedback from the March 20, 2024 Tokyo SG1 and EWG meetings, and also from post-meeting email
reflector discussions.

● Change from reachability to fence semantic, resulting in provenance_fence().
● Add reference to C++ Working Draft [basic.life].

P2414R2:
● Includes feedback from the September 1, 2021 EWG meeting.
● Includes feedback from the November 2022 Kona meeting and subsequent electronic discussions, especially

those with Davis Herring on pointer provenance.
● Includes updates based on inspection of LIFO Push algorithms in the wild, particularly the fact that a LIFO Push

library might not have direct access to the stack node’s pointer to the next node.
● Drops the options not selected to focus on a specific solution, so that P2414R1 serves as an informational

reference for roads not taken.
● Focuses solely on approaches that allow the implementation to reconsider pointer invalidity only at specific

well-marked points in the source code.

P2414R1 captures email-reflector discussions:
● Adds a summary of the requested changes to the abstract.
● Adds a forward reference to detailed expositions for atomics and volatiles to the “What We Are Asking For”

section.



● Add a function atomic_usable_ref and change usable_ptr::ref to usable_ref. Change A2, A3, and
Appendix A accordingly.

● Rewrite of section B5 for clarity.

P2414R0 extracts and builds upon the solutions sections from P1726R5 and P2188R1. Please see P1726R5 for
discussion of the relevant portions of the standard, rationales for current pointer-zap semantics, expositions of
prominent susceptible algorithms, the relationship between pointer zap and both happens-before and
representation-byte access, and historical discussions of options to handle pointer zap.

The WG14 C-Language counterparts to this paper, N2369 and N2443, have been presented at the 2019 London and
Ithaca meetings, respectively.

Introduction
The C language has been used to implement low-level concurrent algorithms since at least the early 1980s, and C++
has been put to this use since its inception. However, low-level concurrency capabilities did not officially enter either
language until 2011. Given decades of independent evolution of C and C++ on the one hand and concurrency on the
other, it should be no surprise that some corner cases were missed in the efforts to add concurrency to C11 and C++11.

A number of long-standing and heavily used concurrent algorithms, one of which is presented in a later section, involve
loading, storing, casting, and comparing pointers to objects which might have reached their lifetime end between the
pointer being loaded and when it is stored, reloaded, cast, and compared, due to concurrent removal and freeing of the
pointed-to object. In fact, some long-standing algorithms even rely on dereferencing such pointers, but in C++, only in
cases where another object of similar type has since been allocated at the same address. This is problematic given that
the current standards and working drafts for both C and C++ do not permit reliable loading, storing, casting, or
comparison of such pointers. To quote Section 6.2.4p2 (“Storage durations of objects”) of the ISO C standard:

The value of a pointer becomes indeterminate when the object it points to (or just past) reaches the end of its
lifetime. (See WG14 N2369 and N2443 for more details on the C language’s handling of pointers to
lifetime-ended objects and WG21 P1726R5 for the corresponding C++ language details.)

However, (1) concurrent algorithms that rely on loading, storing, casting, and comparing such pointer values have been
used in production in large bodies of code for decades, (2) automatic recognition of these sorts of algorithms is still very
much a research topic (even for small bodies of code), and (3) failures due to non-support of the loading, storing,
comparison, and (in certain special cases) dereferencing of such pointers can lead to catastrophic and hard-to-debug
failures in systems on which we all depend. We therefore need a solution that not only preserves valuable
optimizations and debugging tools, but that also works for existing source code. After all, any solution relying on
changes to existing software systems would require that we have a way of locating the vulnerable algorithms, and we
currently have no such thing.

This is not a new issue: the above semantics have been in the C standard since 1989, and the algorithm called out
below was put forward in 1973. But this issue’s practical consequences will become more severe as compilers do more
optimisation, especially link-time optimisation, and especially given the ubiquity of multi-core hardware.

This paper proposes straightforward specific solutions.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2188r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1726r5.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2369.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2443.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2369.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2443.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1726r5.pdf


Terminology
● Bag of bits: A simple model of a pointer consisting only of its associated address and type, excluding any

additional information that might be gleaned from lifetime-end pointer zap and pointer provenance. A simple
compiler might well model its pointers as bags of bits. For the purposes of this paper, a non-simple compiler can
be induced to treat pointers as bags of bits by marking all pointer accesses and indirections as volatile,
albeit with possible performance degradation.

● Invalid pointer: A pointer referencing an object whose storage duration has ended. For more detail, please see
the “What Does the C++ Standard Say?” section of P1726R5, particularly the reference to section 6.7.5.1p4
[basic.stc.general] of the standard (“When the end of the duration of a region of storage is reached, the values of
all pointers representing the address of any part of that region of storage become invalid pointer values”). In the
C standard, such a pointer is termed an indeterminate pointer.

● Invalid pointer use: Any use of an invalid pointer (including reading, writing, comparison, casting, passing to a
non-deallocation function), and indirection through it. [Intended to correspond to [basic.stc.general] p4 "Any
other use of an invalid pointer value has implementation-defined behavior."]

● Lifetime-end pointer zap: An event causing a pointer to become invalid, or, in WG14 parlance, indeterminate.
Because this is a WG21 document, the term becomes invalid is used in preference to “lifetime-end pointer zap”,
however, text that needs to cover both C++ and C will use the term “lifetime-end pointer zap”, “pointer zap”, or
just “zap”.

● Pointer provenance: Implementations are permitted to model pointers as more than just a bag of bits.
● Simple compiler: A compiler that does no optimization. For the purposes of this paper, results similar to those

of a simple compiler can be obtained by treating all pointers as bags of bits.
● Zap-susceptible algorithm: An algorithm that relies on invalid pointer use and/or zombie pointer dereference.
● Zombie pointer: An invalid pointer whose representation bytes happen to correspond to the same memory

address as a currently valid pointer to an object of compatible type.
● Zombie pointer dereference: Indirection through a zombie pointer. [The relevant part of the standard being

[basic.stc.general] p4: "Indirection through an invalid pointer value and passing an invalid pointer value to a
deallocation function have undefined behavior."]

What We Are Asking For
In order to support a number of critically important algorithms, this paper proposes a usable_ptr<T> template class to
mark pointers in order to forgive pointer invalidity of that pointer, and also a provenance_fence() function that is
described in more detail below.

Note that this paper does not propose blanket bag-of-bits pointer semantics, despite a great many users being strongly
in favor of such semantics (P2188R1). It is therefore hoped that implementers will provide some facility to cause
pointers to be treated as bags of bits from a pointer-invalidity viewpoint, perhaps by implicitly treating all pointer types as
if they were usable_ptr<T>. This would be helpful for legacy code.

In addition, this paper proposes that non-comparison non-dereference computations involving pointers, including normal
loads and stores, must faithfully compute the representation bytes, even if the pointers are invalid. In particular, the

https://docs.google.com/document/d/1l1d1f6rtZVOTroUuK5WXuxubZ2sYT6XJwkUoYPIcg2A/edit#heading=h.d9ga4z5sru3
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2188r1.html


standard must require that implementations are not allowed to modify the pointer’s representation bytes in response to
the end of the lifetime of the pointed-to object.

This paper additionally proposes that atomic operations have the side effect of forgiving pointer invalidity (details in next
section).

Furthermore, this paper also notes that volatile accesses must necessarily forgive invalidity in order to support
passing of virtual addresses to and from I/O devices, which has long been supported in hardware, either by virtue of
that hardware lacking any sort of memory-management unit (MMU) or that hardware being equipped with an I/O MMU
that maps addresses provided by hardware devices.

Finally, this paper notes that the implementation must prove that a given pointer is invalid before taking action based on
invalidity.

The following sections provide more detail on this proposal and also of the options considered since P1726R4. Those
interested in seeing a wider array of historical options are invited to review P1726R5 and P2188R1.

Detailed Proposal
As noted earlier, this paper proposes: (1) Faithful computation of representation bytes of invalid pointers, (2) A
usable_ptr<T> template class, including a provenance_fence() function, and (3) That atomic operations have the
side effect of forgiving pointer invalidity (and that volatile accesses continue forgiving pointer invalidity).

Faithful Computation of Representation Bytes of Invalid Pointers
Non-comparison non-dereference computations involving pointers, including normal loads and stores, must faithfully
compute the representation bytes, even if the pointers are invalid. In particular, implementations are not allowed to
modify the pointer’s representation bytes in response to the end of the lifetime of the pointed-to object.

First, the implementation must actually execute the corresponding load or store instruction, give or take optimizations
that fuse or invent load and stores. Note that load and store operations include passing of parameters and returning of
values.

Second, non-comparison arithmetic operations must produce representation bytes consistent with those of their
operands. For example, adding an integral constant to an invalid pointer must result in the same representation bytes
as would that same addition to a valid pointer of the same type having the same initial representation bytes.

Third, comparison operations must be deterministic, that is, successive comparisons of a pair of pointers A and B must
give consistent results. Note that this applies only so long as each of the pointers A and B remain identical. In
particular, suppose that a pointer C is derived from pointer A, but with provenance recomputed, perhaps due to having
traversed a translation-unit boundary. Then there is no requirement that comparisons of A and B be consistent with
comparisons of C and B.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1726r4.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2188r1.html


Finally, note that any remaining implementations that use trap representations for pointers need special attention, at
least assuming that there is any such hardware that is using modern C++ implementations. Alternatives include:

1. Remove support for platforms having trappable pointer values. This approach is best if there are no longer any
such platforms, or if all such platforms will continue to use old compiler versions.

2. Support trappable pointer values using some non-standard extension, for example, using a command-line
argument for that purpose (or an environment variable, or a compiler-installation option, or a special build of the
compiler, or similar). Note that programs relying on trappable pointer values are already non-portable, so this
approach does not place additional limits on such programs.

3. Modify the standard to provide explicit syntax for trappable pointers. This approach would require changes to
existing programs that rely on trappable pointers, but such changes might provide great documentation benefits
and might also be quite useful to tools carrying out pointer-based formal verification.

Please note that trapping pointers are not mainstream. Current proposals such as Cheri instead reserve pointer bits
that can be thought of as approximating provenance information. Please also note that (as of March 23, 2024), the
proposed resolution to CWG2822 (“Side-effect-free pointer zap”) makes it clear that the end of an object’s lifetime does
not affect the representation bytes of pointers to that object, which is a welcome step in the right direction.

A usable_ptr<T> Template Class
A usable_ptr<T> template class may be used to mark pointers in order to forgive pointer invalidity. The provenance
discussion gives a solid basis for this, but there is a need to treat normal user-supplied pointers as if they were of the
usable_ptr<T> template class.

In addition, we propose a provenance_fence() function that causes the implementation to recompute provenance for
any currently invalid pointer that is accessed following a call to this function, and whose representation bytes
correspond to the address of a currently live object of a compatible type that has previously been “exposed”, that is,
converted to integer type, sent to output, or involved in an atomic or volatile operation. In other words, the
provenance_fence() function operates only on zombie pointers, and even then only in cases where a pointer to the
new instance has already been exposed. This does not restrict current compiler optimizations because the compiler
either:

1. Knows about the call to provenance_fence() or
2. Knows nothing about the pointer, and thus cannot apply any preconceived provenance.

In addition, the compiler is free to recompute provenance for a given invalid pointer at any time between the call to
provenance_fence() and the next use of that pointer.

Please keep in mind that the compiler is not permitted to invent pointer comparisons. However, if the user compares
pointers, the compiler is of course permitted to draw reasonable conclusions regarding provenance, especially if the
pointers compare equal. Please note also that the compiler cannot assume that a call to a function with an unknown
definition does not invoke provenance_fence().

https://wiki.edg.com/pub/Wg21tokyo2024/CoreWorkingGroup/cwg_active.html#2822


This provenance_fence() function addresses existing use cases where the LIFO Push library does not have direct
access to the pointer from one stack node to the next. Note that in both GCC and Clang/LLVM, the following statement
has the desired effect:

__asm__ __volatile__("": : :"memory");

In Clang/LLVM, the following statements also has the desired effect:

atomic_signal_fence(memory_order_seq_cst);

These facilities might restrict compiler optimizations more than is necessary, so a lighter-weight mechanism would be
welcome. However, these facilities have the virtue of already existing and having been used heavily for some decades.

The name usable_ptr<T> has been criticized as not being particularly illuminating. Perhaps something like
reevaluate_provenance<T>, regenerate_provenance<T>, recompute_provenance<T>,
update_provenance<T>, immune_to_zap<T>, or similar would be better. But what is in a name?

Atomic Operations Forgive Pointer Invalidity
Atomic operations have the side effect of forgiving pointer invalidity. One way to think of this (due to Davis Herring) is
that values stored in atomic pointers are treated as if the member of the atomic<T*> type holding the pointer value is
of integral type, with each access to that pointer value involving an appropriate cast. This means that provenance is
re-evaluated whenever a pointer is loaded from an atomic<T*> object. It also means that whenever a pointer is
stored to an atomic<T*> object, the implementation treats that pointer as having been exposed.

Although concerns were raised at the 2022 Kona meeting about possible optimization limitations from this approach, the
fact is that any thread might update a given atomic pointer at any time, making tracking of provenance through atomic
pointers of dubious utility at best.

Previous discussions have put forward the notion of “flattening” optimizations that combine all threads into a single
thread, with the notion that the implementation might perform exact analysis of this single thread. However, such
optimizations can generate infinite loops and deadlocks that would not be present in the original multithreaded code.
Given the oracular analysis required to make flattening work for locking and polled atomic operations, the additional
analysis required to forgive invalidity for atomic pointers should not be at all difficult by comparison.

Whenever a reference to a pointer value is used as the old value by a CAS operation (even a successful one that might
not be considered to modify the old value), any prior provenance associated with that pointer value is discarded.

As soon as a value is loaded from an atomic pointer, the resulting non-atomic pointer is immediately subject to any
future lifetime-end pointer invalidity. However, as noted earlier, implementations are not permitted to allow this invalidity
to affect the values of the representation bytes.



Volatile Accesses Forgive Pointer Invalidity
Note that volatile accesses must necessarily forgive invalidity in order to support passing of virtual addresses to and
from I/O devices. To see this, keep firmly in mind that the OS kernel (written in C or C++) is communicating via memory
with device firmware (also written in C or C++). In other words, the value loaded from a volatile pointer might have no
relation to the value most recently stored to that same pointer.

Therefore, a volatile load from a pointer should be treated as if that pointer was of integral type with appropriate cast
to the pointer’s type. This causes provenance to be re-evaluated, forgiving any prior invalidity. This forgiveness is at
that point in time only, ending as soon as the pointer value is placed in a non-volatile/non-atomic object. Similarly, a
volatile store to a pointer should be treated as if that pointer was of integral type with appropriate cast to the integral
type. In particular, any invalidity of the pointer stored is forgiven.

However, just as for atomic operations, as soon as any value is obtained from a volatile load, the resulting
non-volatile pointer is immediately subject to any future lifetime-end pointer invalidity. Also just as for atomic
operations, implementations are not permitted to allow this invalidity to affect the values of the representation bytes.

Examples

LIFO Push
A simple (but according to the standard, buggy) atomic LIFO Push algorithm is as follows:

template <typename Node> class LIFOList { // Node must support set_next()

std::atomic<Node*> top_{nullptr};

public:

void push(Node* newnode) {

while (true) {

Node* oldtop = top_.load(); // step 1

newnode->set_next(oldtop); // step 2

if (top_.compare_exchange_weak(oldtop, newnode) return; // step 3

}

}

Node* pop_all() { return top_.exchange(nullptr); }

};

Again, note the use of the set_next() member function as opposed to direct access to the pointer linking the nodes in
the stack. This idiom is used in the wild, for example, in cases where instrumenting this member function assists with
debugging and performance-analysis tasks.

This code is buggy because it is subject to lifetime-end pointer zap:



Use Case 1: Invalid Pointer Use
The following sequence of events illustrates an invalid-pointer vulnerability given the current C++ standard:

● top_ holds pointer to node X1 at location A.
top_ --> A (address of X1)

● Thread T1 executes steps 1 and 2 of push(&X2).
X2.next_ --> A (address of X1)

● Thread T2 executes pop_all, deletes X1.
X1 deleted
top_ --> null

X2.next_ --> A (address of X1)
● Thread T1 executes step 3 of push(&X2) and uses invalid pointer A in .compare_exchange_weak.

Use Case 2: Zombie Pointer Dereference
The following sequence of events illustrates a zombie-pointer vulnerability given the current C++ standard:

● top_ holds pointer to node X1 at location A.
top_ --> A (address of X1)

● Thread T1 executes steps 1 and 2 of push(&X2).
X2.next_ --> A (address of X1)

● Thread T2 executes pop_all, deletes X1.
X1 deleted
top_ --> null

X2.next_ --> A (address of X1)
● Thread T2 allocates node X3 that happens to be at location A, and executes push(&X3)

top_ --> A (address of X3)
X2.next_ --> A (address of X1 and X3) <<<<< zombie pointer!!!

● Thread T1 executes step 3 of push(&X2) and .compare_exchange_weak succeeds
top_ --> &X2

X2.next_ --> A (address of X1 and X3)
● Thread T1 executes pop_all, dereferences X2.next_, which holds value A (address of X1 and X3), i.e., a

zombie pointer.

Fixing LIFO Push Using This Proposal
The required source-code changes are highlighted in yellow:

template <typename Node> class LIFOList { // Node must support set_next()

std::atomic<Node*> top_{nullptr};

public:

void push(Node* newnode) {

while (true) {

Node* oldtop = top_.load(); // step 1

newnode->set_next(oldtop); // step 2



if (top_.compare_exchange_weak(oldtop, newnode) return; // step 3

}

}

Node* pop_all() { Node *ret = top_.exchange(nullptr); provenance_fence(); return ret; }

};

The first use case is fixed due to the requirement that pointer invalidity not modify representation bytes:

● top_ holds pointer to node X1 at location A.
top_ --> A (address of X1)

● Thread T1 executes steps 1 and 2 of push(&X2).
X2.next_ --> A (address of X1)

● Thread T2 executes pop_all, deletes X1.
X1 deleted
top_ --> null

X2.next_ --> A (address of X1)
● Thread T1 executes step 3 of push(&X2) and uses invalid pointer A in .compare_exchange_weak. However,

this atomic operation looks only at representation bytes, which must not be unaffected by pointer invalidity, which
fixes this example.

The second use case is fixed by the use of usable_ptr<T> and provenance_fence():

● top_ holds pointer to node X1 at location A.
top_ --> A (address of X1)

● Thread T1 executes steps 1 and 2 of push(&X2).
X2.next_ --> A (address of X1)

● Thread T2 executes pop_all, deletes X1.
X1 deleted
top_ --> null

X2.next_ --> A (address of X1)
● Thread T2 allocates node X3 that happens to be at location A, and executes push(&X3)

top_ --> A (address of X3)
X2.next_ --> A (address of X1 and X3) <<<<< still a zombie pointer

● Thread T1 executes step 3 of push(&X2) and .compare_exchange_weak succeeds
top_ --> &X2

X2.next_ --> A (address of X1 and X3)
● Thread T1 executes pop_all, dereferences X2.next_, which holds value A (address of X1 and X3), i.e., a

zombie pointer. However, the provenance_fence() forces the current provenance for that address (X3) to be
used, thus repairing this use case. Note that X3 has been exposed by virtue of being pushed onto the stack,
and having been stored in the atomic object top_. Had X3 not been exposed, the implementation would have
been under no obligation to use its provenance.

These two examples demonstrate use of the changes proposed in this paper.



User Tracking of Pointers and realloc()

Hans’s realloc() example compares the return value of realloc() with its argument to determine whether other
pointers to the pointed-to object need to be updated. Here is Hans’s original code:

q = realloc(p, newsize);

if (q != p)

update_my_pointers(p, q);

This code can be simplified as follows:

T* p;

q = realloc(p, newsize);

if (q != p)

p = q;

And then this simplified code can be fixed using usable_ptr<T> as follows:

usable_ptr<T> p;

q = realloc(p, newsize);
if (q != p)

p = q;

This will re-evaluate provenance on p according to its representation bytes any time that p would otherwise be an
invalid pointer.



Appendix: Prototype usable_ptr<T> Implementation

#include <atomic>

#include <iostream>

void provenance_fence() { __asm__ __volatile__("": : :"memory"); }

The memory-clobber asm can be argued to be overkill, but it relies on a mechanism that has long seen heavy use in
practice. Some implementations may use a less time-honored but equally effective prototype implementation of
provenance_fence() in terms of atomic_signal_fence(memory_order_seq_cst).

This implementation assumes that any C++ implementations that might currently track pointer provenance through
integer conversions stop doing so. Note that usable_ptr<T> may be trivially implemented in terms of intptr_t or
uintptr_t on the one hand or Atomic<T*>or the other, but with only constructors, destructors, assignment, and
indirection member functions exported.

Appendix: Relationship to WG14 N2676
WG14’s N2676 “A Provenance-aware Memory Object Model for C” is a draft technical specification that aims to clarify
pointer provenance, which is related to lifetime-end pointer zap. This technical specification puts forward a number of
potential models of pointer provenance, most notably PNVI-ae-udi. This model allows pointer provenance to be
restored to pointers whose provenance has previously been stripped (for example, due to the pointer being passed out
of the current translation unit as a function parameter and then being passed back in as a return value), but the restored
provenance must correspond to a pointer that has been exposed, for example, via a conversion to integer, an output
operation, or direct access to that pointer’s representation.

Note that compare_exchange operations access a pointer’s representation, and thus expose that pointer. We
recommend that other atomic operations also expose pointers passed to them. We also note that given modern I/O
devices that operate on virtual-address pointers (using I/O MMUs), volatile stores of pointers must necessarily be
considered to be I/O, and thus must expose the pointers that were stored. In addition, either placing a pointer in an
object of type usable_ptr<T> or accessing a pointer as an object of type usable_ptr<T> exposes that pointer.
Finally, note that the changes recommended by N2676 would make casting of pointers through integers a good basis
for the usable_ptr<T> class template.

We therefore see N2676 as complementary to and compatible with pointer lifetime-end zap. We do not see either as
depending on the other.}

Appendix: Relation to WG21 P2434R0
WG21’s “P2434R0: Nondeterministic pointer provenance” proposes refinements to the definition of pointer zap. This
current paper does not conflict with that paper, but rather provides ways for the user to avoid pointer zap.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2676.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2434r0.html

