
P2055R1: A Relaxed Guide to
memory_order_relaxed

Hans Boehm
hboehm@google.com

David Goldblatt
davidtgoldblatt@gmail.com

Paul E. McKenney
paulmck@kernel.org

The Indefatigible TBD

April 8, 2024

Audience: SG1 (Informational)

Abstract

The out-of-thin-air (OOTA) and read-from-untaken-branch (RFUB) properties
of the specification of memory_order_relaxed have resulted in considerable
consternation over the years. Although there are no known instances of full-blown
OOTA behavior, and no known RFUB-induced failures of production code, the
theoretical possibility of these properties severely complicates automated analysis
of large C and C++ code bases. Thus far, attempts to eliminate OOTA and RFUB
properties from the memory model have resulted in otherwise needless added over-
heads on weakly ordered systems on the one hand or excessive implementation
complexity on the other. However, memory_order_relaxed never was in-
tended to be used in arbitrary code, but rather as a part of deliberate application
of specific concurrency designs. This paper forms an initial catalog of patterns
underlying such designs, with an eye towards identifying bugs in existing code and
preventing bugs in new code.

1 Background

1.1 Memory Ordering Strength and Expense
C++ atomic operations are sequentially consistent by default. In programs that use only
sequentially consistent atomic operations, these atomics enjoy mathematically appealing
interleaving semantics. However, no computer system in common use in the year
2023 provides sequential consistency at the hardware level, not even relatively strongly
ordered systems such as x86. This means that sequentially consistent atomics can be
quite expensive, and especially on weakly ordered systems such as ARM and IBM Power.
Furthermore, a great many use cases in real-world software do not require sequentially
consistent atomics, in fact, the much lower-overhead release/acquire ordering suffices in
a great many situations.

1



1.2 OOTA and RFUB

For this reason, C++ provides memory_order enum values to allow the user to
control the strength of individual atomic operations. The memory_order_release
and memory_order_acquire values provide the aforementioned release-acquire
ordering.

But most relevant to this document, memory_order_relaxed allows arbitrary
reordering of accesses to distinct locations. With the exception of the unlamented
Itanium CPU family, aligned and machine-word-sized memory_order_relaxed
loads and stores compile to unadorned load and store instructions, providing complete
control, excellent efficiency, and stunning scalability.

And in practice, memory_order_relaxed accesses provide well-understood
ordering properties, which has led to them being heavily used. Unfortunately, in theory
memory_order_relaxed accesses are subject to OOTA. RFUB can occur very
rarely in practice, and there is some debate as to whether this is acceptable.

These issues are discussed in the following section.

1.2 OOTA and RFUB
There has been considerable work done on OOTA and RFUB over many years, build-
ing on prior work in the Java community, perhaps best exemplified by the infamous
“Causality Test Cases”.1 There has long been hope that additional research effort will
identify a model of OOTA that all can live with, for example, on the part of Paul,
and that everyone would come to appreciate the relative simplicity of strengthening
memory_order_relaxed to forbid prior reads to be reordered with later writes, for
example, on the part of Hans [7, 6, 17]. And progress has been made on both fronts.

On the additional-research front, we now have methods of distinguishing between
OOTA on the one hand and simple reordering on the other. Unfortunately, one method
requires per-scenario creativity [21], while others have not as yet been looked upon
with favor by compiler implementers [17, 27, 18, 3]. Backwards-propagating undefined
behavior can be especially troublesome [14], but there proposals that this be restricted [4].
Perhaps such restrictions might eliminate some of the more troublesome examples of
OOTA.

On the reads-before-writes front, there are some indications that newer weakly
ordered hardware incurs reduced penalties for ordering relaxed reads before relaxed
writes, at least for low-end and high-end systems. However, middle-end systems still
incur significant penalties. This has led to renewed suggestions that a new memory_
order_load_store member be added to the memory_order enum. It has also
led to a renewed proposal that memory_order_relaxed be strengthened so as to
prohibit reordering of prior loads and subsequent stores [12], however, this proposal
was not universally loved [15].

A further complication is that although there is general agreement that OOTA
behaviors must be forbidden, there is some debate on the need to forbid RFUB behaviors.
Some of those who believe that RFUB behaviors should be allowed (for example, Paul)
argue that the scenarios where RFUB can occur are contrived and with no known

1http://www.cs.umd.edu/~pugh/java/memoryModel/unifiedProposal/
testcases.html.

2

http://www.cs.umd.edu/~pugh/java/memoryModel/unifiedProposal/testcases.html
http://www.cs.umd.edu/~pugh/java/memoryModel/unifiedProposal/testcases.html


1.3 OOTA Examples

1 atomic<int> x(0);
2 atomic<int> y(0);
3
4 void thread1()
5 {
6 unsigned long r1 = x.load(memory_order_relaxed);
7 y.store(r1, memory_order_relaxed);
8 }
9

10 void thread2()
11 {
12 unsigned long r2 = y.load(memory_order_relaxed);
13 x.store(42, memory_order_relaxed);
14 }

Listing 1: Simple Reordering

production use cases. There is general agreement that simple reordering should be
allowed, as it occurs in practice in scenarios that are both useful and commonplace.

1.3 OOTA Examples
This section looks at examples of simple reordering, OOTA, and RFUB.

Listing 1 shows an example of simple reordering. Both the compiler and the CPU
are within their rights to reorder lines 12 and 13, in which case the following sequence
of events will result in all of x, y, r1, and r2 having the value 42:

1. Line 13 stores 42 to x.

2. Line 6 loads 42 from x into r1.

3. Line 7 stores r1, and thus 42, to y.

4. Line 12 loads 42 from y to r2.

It is strongly and generally agreed that this simple reordering be allowed.
Listing 2 shows an OOTA example that should be prohibited. where where all

of x, y, r1, and r2 have final values of 42: In actual hardware, this prohibition is
enforced by TSO ordering in strongly ordered systems and by data dependency ordering
in weakly ordered systems. Compilers cannot store something until after they load it,
which results in instructions being emitted such that the hardware enforcement applies.
The need to prohibit simple OOTA is one reason why compiler-based value speculation
optimizations are frowned upon.

Listing 3 shows a simple example of RFUB, which again means “read from untaken
branch”. The following sequnece of events will result in all of x, y, r1, and r2 having
the value 42:

3



1.3 OOTA Examples

1 atomic<int> x(0);
2 atomic<int> y(0);
3
4 void thread1()
5 {
6 unsigned long r1 = x.load(memory_order_relaxed);
7 y.store(r1, memory_order_relaxed);
8 }
9

10 void thread2()
11 {
12 unsigned long r2 = y.load(memory_order_relaxed);
13 x.store(r2, memory_order_relaxed);
14 }

Listing 2: Simple OOTA

1 atomic<int> x(0);
2 atomic<int> y(0);
3
4 void thread1()
5 {
6 unsigned long r1 = x.load(memory_order_relaxed);
7 y.store(r1, memory_order_relaxed);
8 }
9

10 void thread2()
11 {
12 bool assigned_42 = false;
13 unsigned long r2 = y.load(memory_order_relaxed);
14 if (r2 != 42) {
15 assigned_42 = true;
16 r2 = 42;
17 }
18 x.store(r2, memory_order_relaxed);
19 }

Listing 3: Simple RFUB

4



1.4 Classification of Patterns

1. The compiler notices that at line 17, the value of r2 is always 42.

2. The compiler thus substitutes the value 42 for r2 in line 18.

3. Both the compiler and the CPU are within their rights to reorder lines 13 and 18.

4. Line 18 stores 42 to x.

5. Line 6 loads 42 from x into r1.

6. Line 7 stores r1, and thus 42, to y.

7. Line 13 loads 42 from y to r2.

8. Because r2 is equal to 42, lines 15 and 16 are never executed, even though it was
exactly these lines of code that justified the above compiler optimizations.

Many concurrency experts believe that RFUB should be allowed.

1.4 Classification of Patterns
Perhaps agreement on all of these points will be reached, but in the meantime, memory_
order_relaxed use is increasing, and thus an increasing need to identify known-safe
usage patterns. In the best case, these usage patterns might be automatically checked in
existing code, but at a minimum we hope that this list will be useful to code reviewers.
Either way, the goals are to identify bugs in existing code and to help avoid bugs in new
code.

This paper is a first step toward such a set of patterns.
The term full C++ refers to the C++20 memory model as stated in the current draft.

The term strict C++ refers to the subset of full C++ obtained by dropping the following
normative encouragement from the C++20 memory model: “Implementations should
ensure that no "out-of-thin-air" values are computed that circularly depend on their own
computation.” Some (but not all) of the proto-patterns in this document are safe in strict
C++, but all of them are safe in full C++.

2 Relaxed Design Patterns
Many of these patterns are taken from Hans’s memory-model-design posting on
September 4, 2018.2

In the examples, x and y denote potentially shared locations, while r1 and r2
denote local variables (“registers”) whose addresses are not taken.

2Message-ID: <CAMOCf+jchGw6DeE2NyCJA3wfFbNH-WFn59JruZPSWt9_
jPW9NQ@mail.gmail.com>.

5



2.1 Non-Racing Accesses

1 int x = 0;
2 int y = 0;
3
4 void thread1()
5 {
6 if (x)
7 y = 1;
8 }
9

10 void thread2()
11 {
12 if (y)
13 x = 1;
14 }

Listing 4: Non-Atomic Accesses Sometimes Respect Control Dependencies

2.1 Non-Racing Accesses
Any non-racing access to an atomic object can be a relaxed access. Because the
access is not concurrent with a conflicting access (store against either store or load),
further ordering is unnecessary.3 In fact, such accesses can in theory be non-atomic.
In environments where atomicity is controlled by the access rather than the object
definition, such accesses are often non-atomic in practice [1].

For example, given concurrent execution of thread1() and thread2() in
Listing 4, the only permitted outcome results in both x and y being equal to zero in both
full C++ and strict C++. Any other outcome would violate the “sequential consistency
for data race free programs” principle, and must effectively be due to a compiler-created
data race, which is forbidden.

In contrast, in the analogous program using C++ atomics (see Listing 5), additional
behaviors are permitted by strict C++, including the one resulting in the final values of
both x and y being 1. The restriction to “strict C++” is important because this code
fragment is considered to be an example of the OOTA behavior that is forbidden by the
normative encouragement in that same standard.

In short, although any non-racing access to an atomic object may be relaxed, strict
C++ counter-intuitively classifies many access patterns as racy.

Relaxed atomics can nevertheless be useful for non-racing accesses in real-life
situations, as can be seen in the double-checked locking example shown in Listing 6.
Line 1 uses an acquire load from x_init to check whether initialization is needed,
in which case line 2 acquires mutex using an anonymous lock_guard (anonymity
being designated by the underscore where a local-variable name would be expected).
Once this lock is held, line 3 uses a relaxed load to recheck x_init to see whether
initialization is still needed. A relaxed load works here because holding the lock prevents
other threads from storing to x_init. Line 4 carries out the initialization, and line 5

3This covers case #8 in Hans’s September 4, 2019 email.

6



2.1 Non-Racing Accesses

1 std::atomic<int> x = 0;
2 std::atomic<int> y = 0;
3
4 void thread1()
5 {
6 if (x.load(memory_order_relaxed))
7 y.store(1, memory_order_relaxed);
8 }
9

10 void thread2()
11 {
12 if (y.load(memory_order_relaxed)
13 x.store(1, memory_order_relaxed);
14 }

Listing 5: Strict C++ Does Not Require Atomics to Respect Control Dependencies

1 if (!x_init.load(memory_order_acquire)) {
2 lock_guard<mutex> _(x_init_mtx);
3 if (!x_init.load(memory_order_relaxed)) {
4 initialize(&x);
5 x_init.store(true, memory_order_release);
6 }
7 }

Listing 6: Double-Checked Locking

7



2.2 Single-Location Data Structures

updates x_init to indicate that initialization is complete.
When the acquire load on line 1 returns the value true, that load synchronizes with

the release store on line 5, guaranteeing that any code following line 7 sees the results
of that initialization.

These patterns can be at least partially checked using data-race detectors, both static
and runtime.

2.1.1 Initialization and Cleanup

Important special cases of this pattern are the single-threaded initialization and cleanup
phases of an otherwise concurrent program. These use cases are one motivation for the
strong ordering guarantees of thread creation and destruction. These guarantees permit
the single-threaded initialization and cleanup code to run race free, with no need to
consider interference from the intervening code that runs multithreaded.

2.1.2 Lock-Based Critical Sections

Exclusive locks provide mutual exclusion, so that objects accessed only while holding a
given lock may be accessed using memory_order_relaxed accesses, or, for that
matter, using non-atomic accesses.

Reader-writer locks provide a weaker form of mutual exclusion, However, objects
that are updated only while a given reader-writer lock is write-held and read only when
that same lock is either read-held or write-held may also be accessed using memory_
order_relaxed accesses, or, again, using non-atomic accesses.

Of course, non-atomic accesses are almost always used with pure locking. However,
memory_order_relaxed accesses are sometimes quite useful, for example, in
cases where objects pass through a software pipeline, where one stage uses pure locking
and another stage relies on atomic operations.

2.2 Single-Location Data Structures
Relaxed atomic operations provide sequentially consistent access to a single object.
This means that data structures that fit into a single object can be accessed with relaxed
atomics with no possibility of OOTA or RFUB behavior.

Note well that a group of single-location data structures might well interact in a
way that could raise the spectre of OOTA or RFUB. As before, design review should
therefore pay careful attention to information flow.

These patterns can be checked by verifying that no store to another shared variable
is affected by the value of the single-location data structure, unless that value can be
shown not to affect that same single-location data structure, for example, if that other
shared variable is part of a unidirectional data flow (see Section 2.6).

2.3 Shared Fences
The atomic_thread_fence() function can be used to order multiple accesses.

8



2.3 Shared Fences

For example, consider a series of acquire loads that are intended to provide order
against subsequent accesses, but not against each other. Because the compiler will
normally not be able to determine that the acquire loads need not be ordered against
each other, on some platforms this will result in a memory-fence instruction being
emitted after each and every acquire load, when only the last fence is required. These
unnecessary fences can be avoided by replacing the acquire loads with relaxed loads
followed by a single atomic_thread_fence(memory_order_acquire) [26,
Section 4.1]. This will have the desired effect of ordering all of these loads with
any subsequent accesses, while also avoiding the overhead of the redundant fence
instructions that would be expected from the acquire loads.

Similarly, consider a series of release stores that are intended to provide order
against prior accesses, but not against each other. Again, the compiler might emit
a memory-fence instruction before each of the stores, when only the first fence is
required. These unnecessary fences can be avoided by replacing the release stores with
relaxed stores preceded by a single atomic_thread_fence(memory_order_
release) followed by a series of relaxed stores [26, Section 4.2]. This will have the
desired effect of ordering all of these stores with any prior accesses, while also avoiding
the overhead of any redundant fence instructions emitted for the release stores.

In many cases, other ordered atomic operations may be substituted for the atomic_
thread_fence() operations. For example, synchronize_rcu() (also known
as rcu_synchronize() in recent C++ working papers) implies the semantics of
atomic_thread_fence(memory_order_acqrel). In addition, thread cre-
ation and thread join provide the ordering semantics of:

• atomic_thread_fence(memory_order_release) for thread creation.

• atomic_thread_fence(memory_order_acquire) for the initializa-
tion of the corresponding thread.

• atomic_thread_fence(memory_order_release) for the termination
of the corresponding thread.

• atomic_thread_fence(memory_order_acquire) for the join opera-
tion of the corresponding thread.

It is of course more conventional to consider thread creation to synchronize with
the created thread and thread termination to synchronize with the corresponding join
operation. This leads to the final example, which is that the shared-fences pattern also
applies to any pair of calls to library where one synchronizes with the other.

In this design pattern, OOTA and RFUB behaviors are ruled out by the semantics of
atomic_thread_fence() or by synchronizes-with, as the case may be.

This pattern can in theory be checked by verifying that all accesses are associated
with a fence, however, current checker technology likely requires that the associated
fence be explicitly called out.

9



2.4 Atomic Reference-Count Updates

1 unsigned long expected = x.load(memory_order_relaxed);
2 while (!x.compare_exchange_weak(expected, f(expected))
3 continue;

Listing 7: Untrusted Load Checked by CAS

2.4 Atomic Reference-Count Updates
In certain reference-count use cases, the ordering of the increments and decrements is
irrelevant. One common case is where it is only legal to increment the reference count
when the incrementing thread already holds a reference, in which case the count cannot
possibly decrease to zero in the meantime. Because only the one-to-zero transition
requires ordering, reference-count increments can be relaxed in cases where another
reference is guaranteed to be held throughout.

Similarly, reference-count decrements can also be relaxed, but only if the thread will
still hold at least one reference after the decrement. In other words, a thread releasing
its last reference is forbidden from using a relaxed operation to do so, because in that
case there is no guarantee that another reference is guaranteed to be held throughout.4

This pattern can be checked in conjunction with lock dependency checkers such as
the Linux kernel’s lockdep facility [11].

We suspect that this is an example of a more general class of patterns, but other
examples of such a class do not immediately come to mind. One can of course imagine
things like preprocessed sensor values where these values are irrelevant except in their
relation to cutoff values. We would welcome examples used in actual code.

2.5 Untrusted Loads
In many cases, it is acceptable for a load from an atomic shared variable to occasionally
return random bits because the value is checked by some later operation. In such cases,
the load can be a relaxed load.

Listing 7 demonstrates this pattern. If misordering, OOTA, or RFUB were to cause
line 1 to return a bogus value, then the compare_exchange_weak() on line 2
would fail, implicitly re-loading the value and retrying.

2.5.1 Pre-Load for Compare and Swap

Perhaps the most well-known later checking operation is a non-relaxed compare-and-
swap (CAS). The atomic_compare_exchange_*() family of read-modify-write
CAS operations are typically used in a loop, and often require an initial load prior to
the first pass through that loop. For non-relaxed CAS operations, this initial load can
typically be a relaxed load, with the CAS operation’s ordering preventing OOTA and
RFUB behaviors. Relaxed CAS operations need to be part of some other design pattern

4More elaborate variants of this pattern allow these rules to be relaxed. For example, if a parent thread is
guaranteed not to release its last reference until after joining with its child threads, then those child threads
may use relaxed decrements to release their final reference.

10



2.6 Unidirectional Data Flow

(for example, the shared fences pattern called out in Section 2.3) if cycles containing
them are to be guaranteed to be OOTA/RFUB-free in conjunction with an initial relaxed
load. One common design pattern is the single-location data structure discussed in
Section 2.2.

Additional examples are presented by Sinclair et al. [27].
This pattern can be checked by verifying that the values from the relaxed loads

propagate only to a CAS operation.

2.5.2 Sequence Locking

The accesses within a sequence-locking read-side critical section can used relaxed loads
because any concurrency with the corresponding update will result in a retry, thus
discarding any loaded values. Assuming that sequence-locking readers never store to
shared memory, this not only prevents the surfacing of any OOTA or RFUB cycles, but
also of any other non-SC behaviors.

Note that a proposal5 provides an atomic_load_per_byte_memcpy() that
allows safe non-atomic access to data for sequence-lock readers, as well as an atomic_
store_per_byte_memcpy() to update that same data by sequence-lock updaters.
It is nevertheless quite possible that some sequence-lock readers might continue to use
relaxed atomics in order to permit reliable computations within readers in the presence
of data objects having trap representations.

Furthermore, sophisticated sequence-locking use cases may need to use relaxed
accesses for other reasons. For example, the Linux kernel’s lockless path-to-inode
traversal uses the closely related sequence counters to detect large-scale changes to the
filesystem tree that would otherwise confuse this traversal [9, 10]. Such confusion could
result is a number of anomalies, including successful lookup of paths that never actually
existed.

This pattern can be checked by enlisting the aid of lock dependency checkers to
verify that the access is within the scope of a sequence lock reader. Checking that the
value does not leak out of that sequence lock is more difficult.

2.6 Unidirectional Data Flow
If data flows only in one direction, then OOTA cycles cannot form. The following
sections give several examples of this general design pattern.

2.6.1 Independent Input Data

Input data consisting of independent objects may be read using relaxed accesses because
these objects are not affected by downstream computations. Here input data is defined
broadly, including:

1. Measurements of outside environmental conditions.

2. Device configuration data.

5http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1478r0.html

11

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1478r0.html


2.6 Unidirectional Data Flow

1 atomic<int> s1(0);
2 atomic<int> s2(0);
3
4 void thread1()
5 {
6 int s1 = get_ext_state(1);
7 int s2 = get_ext_state(2);
8 cs1.store(reduce_state(s1), memory_order_relaxed);
9 cs2.store(reduce_state(s2), memory_order_relaxed);

10 }
11
12 void thread2()
13 {
14 int c = compute_ctl(cs1.load(memory_order_relaxed,
15 cs2.load(memory_order_relaxed));
16 set_ext_ctl(c);
17 }

Listing 8: Unidirectional I/O Data Flow

3. Software configuration data.

4. Security policies.

5. Network routing information.

The key point is that the concurrent-computation portion of application references
but does not modify this data, and that there are no object-to-object consistency con-
straints.

2.6.2 Independent Output Data

Similarly, output data consisting of independent objects may be written using relaxed
accesses because these objects do not affect upstream computations. As before, output
data is defined broadly, including:

1. Control of objects external to the computer.

2. Many classes of debug output.

3. Some use cases involving video frame buffers.

4. Some use cases involving communication to a later stage of a software pipeline.

Similar to the independent input data discussed in the preceding section, the key
point is that the concurrent-computation portion of application modifies but does not
reference this data, and that there are no object-to-object consistency constraints.

12



2.6 Unidirectional Data Flow

1 StatCounter<unsigned long> a;
2 StatCounter<unsigned long> b;
3
4 void thread1()
5 {
6 unsigned long r1 = a.readout();
7 b.increase(r1);
8 }
9

10 void thread2()
11 {
12 unsigned long r2 = b.readout();
13 a.increase(r2);
14 }

Listing 9: Statistical-Counter Abuse and OOTA

Listing 8 combines item 2 from the lists in Sections 2.6.2 and 2.6.1. The thread1()
input data flows from the get_ext_state() functions through the reduce_
state() functions into the cs1 and cs2 shared variables. The thread2() output
data flows from these same cs1 and cs2 shared variables though compute_ctl()
and finally is output by set_ext_ctl(). The data flow is unidirections from input
to output, so no OOTA cycles can form.

2.6.3 Statistical Counters

The canonical instance of a unidirectional data-flow pattern is the statistical counter,
in which each thread (or CPU, as the case may be) updates its own counter, and the
aggregate value of the counter is read out by summing all threads’ counters [20, Section
5.2].

Statistical counters do have concurrent updates and reads, and thus must use atomics.
However, the concurrent reads can be modeled as returning approximate results (for
example, for monitoring or debugging), and can in fact be modeled as sequentially
consistent approximate operations. But more to the point, data flow in real use cases is
always unidirectional, proceeding from the updater responding to an event and flowing
through the counter to some reader displaying or logging statistics. This unidirectional
data flow precludes the cycles required for OOTA or RFUB behavior to manifest.

An example abuse is shown in Listing 9. Lines 1 and 2 define a pair of statistical
counters a and b. The thread1() and thread2() functions form a classic data-
dependent OOTA cycle. Assuming both statistical counters start out with all counters
zero, we could in theory see the following OOTA sequence of events:

1. Line 6 sums a’s counters, obtaining the sum 42.

2. Line 7 increases the current component of b’s counter by 42.

13



2.6 Unidirectional Data Flow

3. Line 12 sums b’s counters, obtaining the sum 42 due to the increase from line 7.

4. Line 13 increases the current component of a’s counter by 42, thus justifying the
sum of 42 obtained by line 6.

Of course, the code in Listing 9 is complete nonsense: Counters should count events,
not each others’s cumulative values. The code as written is about as useful as the
proverbial screen door in a submarine. Problems of this sort should be located in a code
review, or better yet during the preceding design review.6

Exact values are sometimes obtained from statistical counters in stop-the-world situ-
ations, such as checking for consistent results at the end of a stress test or benchmarking
run [20, Sections 5.3 and 5.4]. Alternatively, counter updates might be carried out while
read-holding a given reader-writer lock and counter reads while write-holding that same
lock. In all of these cases, OOTA and RFUB behaviors are additionally avoided due to
the fully synchronized nature of the readout.

2.6.4 Software Pipelines

Software pipelines break computation up into stages that might proceed concurrently. If
the interface between a consecutive pair of stages is simple enough, relaxed accesses
might be used for the corresponding communication of data. Pipelines are not necessarily
strictly linear, in fact it can be quite advantageous to have concurrent stages feeding into
a single subsequent stage via a reduction step. If the output of the concurrent stages is
sufficiently simple, the reduction step might be a simple relaxed atomic fetch-and-op
operation to a single scalar object. An example of a sufficiently simple output is event
counts emanating from concurrent stream processing feeding into later sequential logic.

Note that the independent input and output data patterns discussed in Sections 2.6.1
and 2.6.2 might be endpoints of a software pipeline.

2.6.5 Owner Field for Re-Entrant Mutex

This pattern is first analyzed for full C++, and then for strict C++. Spoiler warning:
There is reason to believe that this pattern works in full C++, but not in strict C++.

Pseudo-code for a re-entrant exclusive mutex is shown in Listing 10. Each mutex
must track its owner (owner on line 5) in order to avoid self-deadlock when the owner
re-acquires a mutex that it already holds. This owner field is updated only while the
mutex is held (line 18), and its value is used only to compare for equality to the current
thread’s ID. Before releasing the mutex, the owner writes a special ID to the owner field
that is guaranteed not to match the ID of any thread. Other threads can access the owner
concurrently with the owner’s update, so the owner field must be atomic in order to
avoid data races. Of course, a nesting counter (count on line 7) must also be used in
order identify the outermost lock-release operation, however this counter is accessed

6Yes, this could be considered analogous to a difference-equation control system. But in that case, the
system being controlled is part of the loop, and proper synchronization must be used when communicating
with that system. In addition, the actual difference-equation computation will normally be single-threaded.
More importantly, if the system being controlled might pose a threat to life and limb, the design review had
jolly well better be sufficiently well-informed and thorough as to avoid this sort of problem.

14



2.6 Unidirectional Data Flow

1 class my_reentrant_mutex {
2 std::mutex m;
3 // Writes of owner are protected by m.
4 // Only owner writes or clears its id.
5 std::atomic<std::thread::id> owner; // id() if not held
6 // Protected by m.
7 int count; // Held count-1 times by owner
8 . . .
9 }

10
11 void my_reentrant_mutex::lock() {
12 std::thread::id me = std::this_thread::get_id();
13 // No other thread can change whether owner == me.
14 if (owner.load(memory_order_relaxed) == me) {
15 ++mutex.count; // Done; reacquired the lock.
16 } else {
17 ... // Acquire m, leaving count == 0
18 owner.store(me, memory_order_relaxed);
19 }
20 }

Listing 10: Re-Entrant Mutex Owner Field

only by the thread currently holding the lock (line 15). Therefore, if the lock works
correctly, exclusive access will be provided to the nesting counter, as is required. Those
wishing to produce a proof of correctness are encouraged to try induction.

However, the only time that the owner field can be equal to the thread ID is when
that thread carried out the last update to the owner field and still holds the mutex:

1. Each thread writes only its ID or the special ID.

2. Because memory_order_relaxed loads are single-variable SC, and because
each thread sets the owner field to the special ID before releasing the mutex, a
given thread cannot see its own ID unless it still holds the mutex.

3. Because atomic accesses forbid load tearing, each load from the owner field will
return either the special ID or the thread ID corresponding to some thread that
recently held the mutex.

4. Therefore, when a thread is not holding the mutex, it is guaranteed not to load its
own ID from the owner field.

No other thread is allowed to write to the owner field while the mutex is held, so
it is impossible to form the cycles required for OOTA or RFUB behavior to manifest.
Therefore, both the reads from and the writes to the owner field may use memory_
order_relaxed.

15



2.6 Unidirectional Data Flow

This is a special case of unidirectional data flow, with the data flowing from the
mutex holder to threads not holding the mutex. The mutual exclusion provided by the
mutex prevents any OOTA or RFUB cycles from forming.

However, things might well be more difficult in strict C++.
These potential difficulties stem from the possibility of undefined behavior (UB)

back-propagating through a cycle so as to justify the OOTA behavior [13]. To see the
rationale for this back-propagating self-justifying UB (BPSJUB?), consider a pair of
threads each concurrently attempting to acquire a mutex, but where (incorrectly and
inconsistently) each see that the owner field matches their respective thread IDs. Both
threads would then simultaneously execute within their respective critical sections,
which could result in UB. UB can back-propagate in time, which could quite possibly
result in the threads each seeing their own values in the owner field, which is what
instigated the UB in the first place.7

Therefore, developers and reviewers should assume that owner fields for re-entrant
mutexes require full C++ in order to operate correctly.

2.6.6 One-Way Memory Allocation

One-way memory allocation provides fresh memory that is never deallocated, or that
is deallocated using a heavy weight one-sided mechanism, for example, a stop-the-
world deallocation phase. Such an allocator might use a relaxed atomic fetch-and-add
operation on a shared pointer to allocate memory from a contiguous buffer. This pointer
would be initialized to reference the beginning of the buffer, and each fetch-and-add
operation would add the desired allocation size (perhaps rounded up to meet alignment
constraints), returning the initial value of the pointer and leaving the pointer referencing
the portion of the buffer following the just-completed allocation.

The semantics of the C++ fetch-and-add operation guarantees that data flows from
one runtime operation to the next, acyclicly. Therefore, OOTA cycles cannot be formed
on this type of allocator’s pointer manipulation alone.8 However, OOTA cycles can
form based on the pointer values returned from such an allocator and from dereferences
of these pointers. Adventurous readers can find an early drafty draft analysis of this
situation (but on a more complicated allocator) in Appendix A.

In the meantime, code reviewers should view relaxed stores of pointers to newly
allocated objects with great suspicion.

2.6.7 Relaxed Consumption

In cases where a full-speed memory_order_consume is needed on a weak-memory
system and where the developers are willing to live within strict coding standards [19],
memory_order_relaxed may be used to head dependency chains. In many (but
not all!) use cases, the data flow is also unidirectional, proceeding from the thread
installing the new object to the threads consuming it.

7Full disclosure: Paul wrote this paragraph, and he is not completely sold on back-propagating self-
justifying UB. The critical reader should therefore review both David Goldblatt’s working paper [13] and
Hans Boehm’s recent proposal [5].

8This pattern can also be considered to be a single-location data structure, as discussed in Section 2.2.

16



2.7 Java-Style Lazy Scalar Initialization

1 atomic<int> x(0);
2 atomic<int> y(0);
3
4 void thread1()
5 {
6 long r1 = x.load(memory_order_relaxed);
7 if (r1 == 0) {
8 r1 = pure_function();
9 x.store(r1, memory_order_relaxed);

10 }
11 // r1 is now trusted
12 if (is_bad(r1))
13 bad_behavior();
14 }
15
16 void thread2()
17 {
18 long r2 = y.load(memory_order_relaxed);
19 if (r2 == 0) {
20 r2 = pure_function();
21 y.store(r2, memory_order_relaxed);
22 }
23 // r2 is now trusted
24 if (is_bad(r2))
25 bad_behavior();
26 }

Listing 11: Lazy Scalar Initialization

Note well that this design pattern is outside of the current standard.
All of these patterns can be checked by looking for cycles in a dataflow that has

been marked unidirectional.

2.7 Java-Style Lazy Scalar Initialization
Given the “Java” in the title, it is only natural to ask why this applies to C or C++. The
answer is simple: It applies because this portion of Java is written in C++.9

Java-style lazy scalar initialization can be used to track values that are expensive to
compute and not known until runtime on the one hand, but immutable and deterministic
on the other. A natural way to handle this situation is to have each access check to see if
the desired value has already been computed, and, if not, compute the value and store it
for later use, as shown in Listing 11. Of course, it is possible that two threads might
concurrently load the initial not-yet-computed value, in which case, both threads will

9Documented here: https://docs.oracle.com/javase/7/docs/api/java/lang/
Object.html.

17

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html


2.8 Chaotic Relaxation

compute the value and store it. This does waste CPU time, but this waste is often greatly
outweighed by reduced synchronization cost. This reduced synchronization cost is due
to the memory_order_relaxed loads and stores used to access the value. After
all, the fact that the values are deterministic means that the two threads will be storing
the same value, so strongly ordered stores provide no benefit. Furthermore, any other
thread is guaranteed to see either the before-computation initial value or the exact same
computed value.

Given that each value is deterministic, there cannot be a cyclic chain of interdepen-
dent values, so this pattern works in both full C++ and in strict C++.

This pattern must be used with caution in cases where the value is a pointer to
allocated memory, especially if that memory is allocated and initialized at runtime. First,
racing initializations will result in one-time memory leaks. Second, a store of a pointer to
recently initialized memory should be a memory_order_release store or stronger,
and the corresponding loads should be memory_order_consume loads or stronger.
Therefore, this pattern might not be helpful when the immutable and deterministic
values are linked data structures, but it is often used for scalar values.

This pattern can be checked by looking for the check-compute-store pattern of
accesses.

2.8 Chaotic Relaxation
There are a number of iterative numerical algorithms for which unsynchronized access
does not slow convergence as much as waits for barrier synchronization. These algo-
rithms can use relaxed loads and stores to update the numerical data [2]. The idea is
that the iterative convergence tests correct any small errors due to accessing data from
some other iteration.

In theory, these algorithms are subject to OOTA and RFUB behaviors. For example,
one thread might speculate a NaN10, which might result in a store of that NaN which
might in turn justify some other thread’s speculation of a NaN, which could finally
justify the first thread’ initial speculation. However, in practice, current implementations
avoid such behaviors.

How to check this pattern?

2.9 Garbage Collection
By definition, concurrent garbage collectors read pointers in th user’s heap while the
application is running. On weakly ordered machines, such accesses must use memory_
order_relaxed accesses, since anything else would require all pointer accesses by
the user program to be ordered, which is usually far too expensive. Since such collectors
often both read and write heap pointers, it is currently difficult or impossible to strictly
preclude OOTA in strict C++. However, neither OOTA nor RFUB behavior has been
observed in practice.

Note that although such garbage collection for C++ is rare, such garbage collectors,
e.g. for Java, are often implemented in C++.

10IEEE floating point “not a number”.

18



M
ul

tip
le

T
hr

ea
ds

C
on

cu
rr

en
tW

W

C
on

cu
rr

en
tR

W

B
ut

C
he

ck
ed

B
ut

D
is

ca
rd

ed

B
ut

Fu
ng

ib
le

U
no

rd
er

ed
C

yc
le

St
ri

ct
C

++
Sa

fe

Non-Racing Accesses (Section 2.1) Y Y
Single-Location Data Structures (Section 2.2) Y Y Y Y
Shared Fences (Section 2.3) Y Y Y Y
Atomic Reference-Count Updates (Section 2.4) Y Y Y Y Y
Untrusted Loads (Section 2.5) Y Y S S S Y
Unidirectional Data Flow (Section 2.6) Y Y Y Y
Reentrant Mutex (Section 2.6.5) Y Y Y
Java-Style Lazy Scalar Initialization (Section 2.7) Y Y Y Y
Chaotic Relaxation (Section 2.8) Y Y Y Y Y S
Garbage Collection (Section 2.9) Y Y Y S S

Table 1: Attributes of Categories of Relaxed Design Patterns

How can this pattern be checked?

3 Attributes of Relaxed Design Patterns
Table 1 shows attributes of design patterns. Cell with “Y” indicate “yes”, with “S”
indicate “sometimes”, and otherwise indicate “no”. Please note that this table assumes
that back-propagating self-justifying undefined behavior is prevented. The attributes are
as follows:

1. Multiple Threads: “Y” indicates that the design pattern uses multiple threads in
and of itself. Note that ostensibly single-threaded patterns often interact with other
patterns extending across multiple threads. For example, the allocator caches
discussed in Section A operate within a single thread, but the resulting memory
blocks and associated pointers might be passed to other threads using some other
pattern such as release-acquire or release-consume.

2. Concurrent WW: “Y” indicates that the design pattern involves concurrent relaxed
writes to a given object.

3. Concurrent RW: “Y” indicates that the design pattern involves concurrent relaxed
reads and writes to a given object, but not necessarly concurrent relaxed writes.

4. But Checked: “Y” indicates that the values from the concurrent reads are checked
if there might have been a concurrent write. See for example Section 2.5.1.

19



5. But Discarded: “Y” indicates that the values from the concurrent reads are dis-
carded if there might have been a concurrent write. See for example Section 2.5.2.

6. But Fungible: “Y” indicates that set of writers are fungible if a reader running
concurrently with those writers will exhibit the same behavior regardless of which
of those writes’ values that read returns. An important special case is when all the
writers are storing the same value, as discussed in Section 2.7. Another important
special case is where readers take one action if the value is (say) zero and another
for any non-zero value, and all concurrent writers will write a non-zero value, as
discussed in Section 2.4.

In all of these “But” columns, “S” indicates that some examples in the category
might possess the corresponding attribute.

7. Unordered Cycle: “Y” indicates that the design pattern can produce an unordered
cycle in and of itself. Of course, a combination of design patterns that individ-
ually exclude the possibility of an unordered cycle might nevertheless produce
an unordered cycle when used in combination. Design and code reviews should
therefore carefully consider ordering at the intersection of multiple design pat-
terns.

8. Strict C++ Safe: “Y” indicates that the design pattern is expected to work
correctly in strict C++ as well as in strict C++. “S” indicates that only some
examples in the category are agreed to be safe for strict C++, in which case
the examples that are believe to be unsafe for strict C++ are called out in their
respective sections.

The key attribute that renders an idiom potentially unsafe is the loading of an atomic
value with a relaxed load, and then relying on that value for correctness, for example,
by:

1. Using it to determine the value stored into another atomic, or

2. Relying on it to avoid disastrous misbehavior.

In this last, the potential unsafety normally stems from having generated undefined
behavior. But this requires the loads to read a bad value, which in practice normally
cannot happen in the absence of that bad value actually being explicitly stored some-
where. The exception occurs in case of backwards-propagating undefined behavior. If
the bad_behavior() functions on lines 8 and 15 invoke undefined behavior, and if
that undefined behavior can back-propagate, then that undefined behavior can justify
the value loaded that resulted in the call to the bad_behavior() function in the first
place.

4 Marking of Relaxed Design Patterns
It is currently believed that these design patterns will need to be explicitly marked in
order for code reviewers and automatic verifiers to recognize them and validate their

20



1 atomic<int> x(0);
2 atomic<int> y(0);
3
4 void thread1()
5 {
6 unsigned long r1 = x.load(memory_order_relaxed);
7 if (is_bad(r1)
8 bad_behavior();
9 }

10
11 void thread2()
12 {
13 unsigned long r2 = y.load(memory_order_relaxed);
14 if (is_bad(r2)
15 bad_behavior();
16 }

Listing 12: Canonical Unsafe Pattern

usage, although the authors would love to be proven wrong on this point. Here are
some candidate marking strategies that have been discussed within the C++ standards
committee:

1. Create new memory_order enum members for each new design pattern. This
has the benefit of calling out the pattern in an unmistakable way that is visible to
the compiler, but requires that each new design pattern be standardized. It also
does not support the case where a given access plays a role in multiple overlapping
design patterns.

2. Use structured comments to mark each design pattern. This avoids the time delays
and administrative overhead inherent in standardization, and could potentially
allow multiple comments to handle a given access that plays a role in multiple
overlapping design patterns.

3. Use structured comments with a per-instance identifier for a given use of a pattern.
The idea here is to enable tools to more easily spot unintended interactions
between different design patterns being applied to a given group of objects. On
the other hand, this raises the issue of namespace management.

4. Define C++ template types for each design pattern. This is an excellent
idea where it applies, as it might well for the statistical counters discussed in
Section 2.6. However, we have reason to doubt that template types can be
reasonably created for all possible relaxed-access design patterns.

More ideation and discussion is needed on this topic.

21



5 Concluding Remarks
Use of memory_order_relaxed can be tricky because we do not yet have an effi-
cient way to formally define the boundaries of OOTA and RFUB. Important memory_
order_relaxed use cases work in practice, but some have no known precise cor-
rectness argument. We define “strict C++” as that portion of the standard excluding the
vague normative encouragement to avoid OOTA. The good news is that many common
memory_order_relaxed use cases are demonstrably correct even in strict C++.

This paper starts the work of classifying known-safe design patterns involving
memory_order_relaxed. It is hoped that this work will be of use in design and
code reviews, and that it might eventually lead to improved theoretical models of
memory_order_relaxed accesses.

22



A Allocator Caches
This appendix expands on the one-way memory allocator discussed in Section 2.6.6 by
way of a multithreaded allocator with caches. Once agreement is reached on the simpler
one-way case, this appendix might be promoted to the main paper.

Allocator caches provide per-CPU or per-thread pools of free memory in order
to provide high-performance scalable memory allocation in the common case [22, 8].
Accesses to these pools are normally single-threaded by design for reasons of perfor-
mance and scalability. However, objects are often allocated for concurrent algorithms,
It may be helpful to list phases of a dynamically allocated object’s typical lifetime in a
concurrent context:

1. Allocation.

2. Initialization, including construction.

3. Use. This might include subphases, but given that any such subphases are defined
by the user, safely transitioning between them is the user’s responsibility. This is
usually the only phase that permits concurrent access.

4. Cleanup, including destruction.

5. Deallocation.

Note the possibility of memory reuse means that this is a cycle rather than a sequence.
The key point is that there must be a happens-before edge for each phase transition.

In the case of the cleanup to deallocation to allocation to initialization transitions, this
happens-before edge is frequently supplied by sequenced-before, courtesy of the fact
that allocator caches cause all of those transitions to occur within a single thread in the
common case. However, some sort of happens-before edge is required for each phase
transition regardless of which thread is executing any given phase.

In the common case, the transitions requiring other-thread-visible ordering are those
to and from the “Use” phase. In particular, the complexities of transitioning from the
“Use” phase to the “Cleanup” phase has inspired safe memory reclamation schemes,
including reference counting, hazard pointers [24, 16, 25], and RCU [23].

In less-common cases where inter-thread transitions occur between other phases,
proper synchronization must be provided. For example, the earlier phase might use a
release store and the later phase might use an acquire or consume load.

Proper phase-transition synchronization rules out the infamous RFUB cycle shown
in Listing 13.11 This is because the allocation phase on line 15 is required to happen
before any later phase, a requirement that is violated by the relaxed accesses on lines 5,
12, and 17.

Again, code reviewers should view relaxed stores of pointers to newly allocated
objects with great suspicion.

11Adapted from Boehm and Demsky[7, Figure 5].

23



1 void *heap;
2
3 void thread1()
4 {
5 r1 = x.load(memory_order_relaxed);
6 y.store(r1, memory_order_relaxed);
7 }
8
9 void thread2()

10 {
11 bool allocated(false);
12 r1 = y.load(memory_order_relaxed);
13 if (r1 != heap) {
14 allocated = true;
15 r1 = heap;
16 }
17 x.store(r1, memory_order_relaxed);
18 assert_not(allocated);
19 }

Listing 13: RFUB Allocator-Like Example

B History
This is a revision of “P2055R0: A Relaxed Guide to memory_order_relaxed”
based on discussions at the 2020 Prague meeting and also a presentation12 to CPPCON
2020.

References
[1] Jade Alglave, Will Deacon, Boqun Feng, David Howells, Daniel Lustig, Luc

Maranget, Paul E. McKenney, Andrea Parri, Nicholas Piggin, Alan Stern, Akira
Yokosawa, and Peter Zijlstra. Who’s afraid of a big bad optimizing compiler?
Linux Weekly News, July 2019.

[2] Gregory R. Andrews. Concurrent Programming, Principles, and Practices. Ben-
jamin Cummins, 1991.

[3] Mark Batty, Simon Cooksey, Scott Owens, Anouk Paradis, Marco Paviotti, and
Daniel Wright. D1780R0: Modular relaxed dependencies: A new approach to
the out-of-thin-air problem. http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2019/p1780r0.html, June 2019.

12https://docs.google.com/presentation/d/1HT-Gaj5oRT5VArx_
4bVyos3y6vCkxubx1rF4Nqo4n64/edit?usp=sharing

24

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1780r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1780r0.html
https://docs.google.com/presentation/d/1HT-Gaj5oRT5VArx_4bVyos3y6vCkxubx1rF4Nqo4n64/edit?usp=sharing
https://docs.google.com/presentation/d/1HT-Gaj5oRT5VArx_4bVyos3y6vCkxubx1rF4Nqo4n64/edit?usp=sharing


REFERENCES

[4] Hans Boehm. “undefined behavior” and the concurrency memory model.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2020/p2215r0.pdf, August 2020.

[5] Hans Boehm. “Undefined behavior” and the concurrency memory model.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2020/p2215r0.pdf, August 2020.

[6] Hans-J. Boehm. P1217R2: Out-of-thin-air, revisited, again. http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/
p1217r2.html, June 2019.

[7] Hans-J. Boehm and Brian Demsky. Outlawing ghosts: Avoiding out-of-thin-air
results. In Proceedings of the Workshop on Memory Systems Performance and
Correctness, MSPC ’14, pages 7:1–7:6, New York, NY, USA, 2014. ACM.

[8] Jeff Bonwick. The slab allocator: An object-caching kernel memory allocator. In
USENIX Summer Technical Conference, pages 87–98, 1994.

[9] Neil Brown. Pathname lookup in Linux. https://lwn.net/Articles/
649115/, June 2015.

[10] Neil Brown. RCU-walk: faster pathname lookup in Linux. https://lwn.
net/Articles/649729/, July 2015.

[11] Jonathan Corbet. The kernel lock validator. Available: https://lwn.net/
Articles/185666/ [Viewed: March 26, 2010], May 2006.

[12] Luke Geeson. A proposal fix for c/c++ relaxed atom-
ics in practice. http://lukegeeson.com/blog/
2023-10-17-A-Proposal-For-Relaxed-Atomics/, November
2023.

[13] David Goldblatt. P1916R0: There might not be an elegant OOTA
fix. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2019/p1916r0.pdf, October 2019.

[14] David Goldblatt. There might not be an elegant OOTA fix. http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/
p1916r0.pdf, October 2019.

[15] Richard Grisenthwaite. Views on relaxed atomics in
C++ from Arm’s technical leadership team. https:
//community.arm.com/arm-community-blogs/b/
architectures-and-processors-blog/posts/
arm-technical-view-on-relaxed-atomics, November 2023.

[16] Maurice Herlihy, Victor Luchangco, and Mark Moir. The repeat offender problem:
A mechanism for supporting dynamic-sized, lock-free data structures. In Proceed-
ings of 16th International Symposium on Distributed Computing, pages 339–353,
October 2002.

25

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2215r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2215r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2215r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2215r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1217r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1217r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1217r2.html
https://lwn.net/Articles/649115/
https://lwn.net/Articles/649115/
https://lwn.net/Articles/649729/
https://lwn.net/Articles/649729/
https://lwn.net/Articles/185666/
https://lwn.net/Articles/185666/
http://lukegeeson.com/blog/2023-10-17-A-Proposal-For-Relaxed-Atomics/
http://lukegeeson.com/blog/2023-10-17-A-Proposal-For-Relaxed-Atomics/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1916r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1916r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1916r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1916r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1916r0.pdf
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-technical-view-on-relaxed-atomics
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-technical-view-on-relaxed-atomics
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-technical-view-on-relaxed-atomics
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-technical-view-on-relaxed-atomics


REFERENCES

[17] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer.
Repairing sequential consistency in C/C++11. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, pages 618–632, New York, NY, USA, 2017. ACM.

[18] Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty, Chung-
Kil Hur, Ori Lahav, and Viktor Vafeiadis. Promising 2.0: Global optimizations
in relaxed memory concurrency. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2020,
page 362–376, New York, NY, USA, 2020. Association for Computing Machinery.

[19] Paul E. McKenney. Proper care and feeding of return values from
rcu_dereference(). https://www.kernel.org/doc/
Documentation/RCU/rcu_dereference.txt, February 2014.

[20] Paul E. McKenney. Is Parallel Programming Hard, And, If So, What Can You Do
About It? (2018.12.08a Release). kernel.org, Corvallis, OR, USA, 2018.

[21] Paul E. McKenney, Alan Jeffrey, Ali Sezgin, and Tony Tye. Out-of-thin-air
execution is vacuous. http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2016/p0422r0.html, July 2016.

[22] Paul E. McKenney and Jack Slingwine. Efficient kernel memory alloca-
tion on shared-memory multiprocessors. In USENIX Conference Proceed-
ings, pages 295–306, Berkeley CA, February 1993. USENIX Association.
Available: http://www.rdrop.com/users/paulmck/scalability/
paper/mpalloc.pdf [Viewed January 30, 2005].

[23] Paul E. McKenney and John D. Slingwine. Read-copy update: Using execution
history to solve concurrency problems. In Parallel and Distributed Computing
and Systems, pages 509–518, Las Vegas, NV, October 1998.

[24] Maged M. Michael. Safe memory reclamation for dynamic lock-free objects using
atomic reads and writes. In Proceedings of the 21st Annual ACM Symposium on
Principles of Distributed Computing, pages 21–30, August 2002.

[25] Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-free
objects. IEEE Transactions on Parallel and Distributed Systems, 15(6):491–504,
June 2004.

[26] Raúl Silvera, Michael Wong, Paul E. McKenney, and Bob Blainey.
N2153: A simple and efficient memory model for weakly-ordered ar-
chitectures. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2007/n2153.pdf, January 2007.

[27] Matthew D. Sinclair, Johnathan Alsop, and Sarita V. Adve. Chasing away RAts:
Semantics and evaluation for relaxed atomics on heterogeneous systems. In Pro-
ceedings of the 44th Annual International Symposium on Computer Architecture,
ISCA ’17, pages 161–174, New York, NY, USA, 2017. ACM.

26

https://www.kernel.org/doc/Documentation/RCU/rcu_dereference.txt
https://www.kernel.org/doc/Documentation/RCU/rcu_dereference.txt
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0422r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0422r0.html
http://www.rdrop.com/users/paulmck/scalability/paper/mpalloc.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/mpalloc.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2153.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2153.pdf

	1 Background
	1.1 Memory Ordering Strength and Expense
	1.2 OOTA and RFUB
	1.3 OOTA Examples
	1.4 Classification of Patterns

	2 Relaxed Design Patterns
	2.1 Non-Racing Accesses
	2.1.1 Initialization and Cleanup
	2.1.2 Lock-Based Critical Sections

	2.2 Single-Location Data Structures
	2.3 Shared Fences
	2.4 Atomic Reference-Count Updates
	2.5 Untrusted Loads
	2.5.1 Pre-Load for Compare and Swap
	2.5.2 Sequence Locking

	2.6 Unidirectional Data Flow
	2.6.1 Independent Input Data
	2.6.2 Independent Output Data
	2.6.3 Statistical Counters
	2.6.4 Software Pipelines
	2.6.5 Owner Field for Re-Entrant Mutex
	2.6.6 One-Way Memory Allocation
	2.6.7 Relaxed Consumption

	2.7 Java-Style Lazy Scalar Initialization
	2.8 Chaotic Relaxation
	2.9 Garbage Collection

	3 Attributes of Relaxed Design Patterns
	4 Marking of Relaxed Design Patterns
	5 Concluding Remarks
	A Allocator Caches
	B History

