
Document: P2034R3
Author: Ryan McDougall <mcdougall.ryan@gmail.com>

Nestor Subiron Montoro <nsubiron@gmail.com>
Audience: EWG-I
Project: ISO/IEC JTC1/SC22/WG21 14882: Programming Language — C++

Partially Mutable Lambda Captures
Or

A More Uniform Const for Lambdas

Revision History

Changes from R2:
● Update author email addresses.
● Rename any_invocable to move_only_function.

Changes from R1:
● Add discussion of const captures on move construction and assignment.
● Add vocabulary type `as_mutable`.
● Add alternative implementation strategy for const members.
● Selective move feature in top section.

Changes from R0: Concerns from EWG-I
● Interactions with this pointer.
● Interactions with init-capture packs.
● Clarify const as it applies to pointers.
● Add const-reference use case.
● Expanded prose.

Background
Lambdas were introduced in N2550, and while previous drafts considered mutable capture
by value, the original wording left captures entirely const. N2658 salvaged mutable for all
captures by allowing the mutable keyword to modify the call.

P0288 (move_only_function) was approved by LEWG, and a central improvement is that it
respects the const modifier on function types (ie. move_only_function<void(int)
const>). This means an move_only_function with a const modifier on its call type will
only bind to lambdas that are not marked mutable.

mailto:mcdougall.ryan@gmail.com
mailto:nsubiron@gmail.com
http://wiki.edg.com/bin/view/Wg21prague/P2034R0SG17
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2550.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2529.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2658.pdf
https://wg21.link/P0288

A type that is “logically const” is a type that has some mutable members that do not
fundamentally change the invariants of the object, even when it is const. This means
move_only_function, and any other const-correct library, cannot work with logically
const lambdas.

Motivation
Type erased callables like std::move_only_function are the backbone of most
asynchronous systems. Users of such systems close their operations in lambdas and place
them in a concurrent queue to be processed elsewhere. Performance is often key in such
systems, and such operations may want its own local reusable scratch memory. Or perhaps
an accumulator for hysteresis over multiple calls.

struct MyRealtimeHandler {
Callback callback_;
State state_;
mutable Buffer accumulator_;

void operator()(Timestamp t) const {
callback_(state_, accumulator_, t);

}
};

concurrent::queue<move_only_function<void(Timestamp) const> queue;
queue.push(MyRealtimeHandler{f, s});

Moreover, a classic use for mutable members in bespoke classes is std::mutex.

struct MyThreadedAnalyzer {
State state_;
mutable std::mutex mtx_;

void operator()(Slice slice) const {
std::lock_guard<std::mutex> lock{mtx_};
analyze(state_, slice);

}
};

concurrent::queue<move_only_function<void(Slice) const> queue;
queue.push(MyThreadedAnalyzer{s});

Lambdas in such cases require work-arounds, such as abandoning logical const
correctness, or using intermediary types (such as std::ref) that do not propagate
constness.

https://isocpp.org/wiki/faq/const-correctness#mutable-data-members

Proposal

Mutable Capture By Value
Allow lambda capture initialization to be mutable qualified, as below. This would have the
effect of declaring the captured variable to be mutable.

auto a = [mutable x, y]() {};

// equivalent to:

struct A {
mutable X x;
Y y;
void operator()() const {}

};

Before After

struct A {
const State state;
mutable Buffer buf;
void operator()() const {
// ...

}
};

// manual bespoke type
move_only_function<void() const> f = A{s,
b};

move_only_function<void() const> f =
[s, mutable b] {
// ...

};

template <typename T>
class as_mutable {
mutable T value;
public:
T& ref() const {
return value;

}
};

// one-off vocabulary type
move_only_function<void()> f =
[s, b = as_mutable<Buffer>{}]() {
auto& buffer = b.ref();
// ...

};

move_only_function<void() const> f =
[s, mutable b] {
// ...

};

// loss of const correctness
move_only_function<void()> f =
[s, b]() mutable {
// ...

move_only_function<void() const> f =
[s, mutable b] {
// ...

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3610.html

}; };

// loss of regular value type
move_only_function<void()> f =
[s, buf_ptr = &b]() mutable {
// ...

};

move_only_function<void() const> f =
[s, mutable buf = b] {
// ...

};

Selective Moves with init-capture Packs

Following the direction set out in P2095, using the example in P0780, we are able to move
arguments from caller, to lambda, to callee -- without having to stop at the lambda:

template <class... Args>
auto delay_invoke_foo(Args... args, State s) {

return [s, mutable ...args=std::move(args)] { // <-- new
return foo(s, std::move(args)...); // <-- improved

};
}

Possible Extensions
Note: these are proposed as optional, and have demonstrated some user interest.

Extensions are motivated by use cases, and listed in order of perceived usefulness --
however it should be noted that they also introduce increasing consistency and symmetry,
which the authors believe is a justification in its own right.

1. Const Capture on Mutable Call Operator
If lambda capture initialization can be modified by mutable and lambda closure call can be
modified by mutable, then lambda closure calls modified by mutable should be able to
declare some of their captures const – an inversion of this paper’s core proposal.

Value
If most of the values captured are mutable, but one should be const, then this variation
would be shorter and more readable.

Implementation

auto b = [x, const y]() mutable {};

// equivalent to:

struct B {

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2095r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0780r2.html

X x;
const Y y;
void operator()() {}

};

A const member would make the lambda closure assignment operators deleted, but
lambda closures with captures already delete the copy assignment operator, and arguably
closure assignment is lesser used.

A const member would also cause the move constructor to be implemented via copy,
potentially causing it non-noexcept, depending on the copy constructor of the const member.

We can avoid these problems with another implementation strategy:

// equivalent to:

struct B {
X x;
Y _y;
void operator()() {

const Y& y = _y;
}

};

However this has the wrinkle that decltype(y) would be visibly different from what might
be expected.

We could also invoke compiler magic using “as-if”

// equivalent to:

struct B {
X x;
Y y;
void operator()() {

// as-if y was declared const
}

};

Before After

struct A {
const float *iter;
const float *const end;
void operator()() {
for(; iter != end; ++iter) {
// end never modified...

move_only_function<void()> f = [
iter = a.cbegin(),
const end = a.cend()
] () mutable {
for(; iter != end; ++iter) {
// end never modified...

https://eel.is/c++draft/expr#prim.lambda.closure-13

}
}

};

// manual bespoke type
move_only_function<void()> f = A{
a.cbegin(), a.cend()

};

}
};

// extraneous mutable copy
move_only_function<void()> f = [

iter = a.cbegin(),
end = a.cend()
] () {
auto copy = iter;
for(; copy != end; ++copy) {
// end never modified...

}
};

move_only_function<void()> f = [
iter = a.cbegin(),
const end = a.cend()
] () mutable {
for(; iter != end; ++iter) {
// end never modified...

}
};

2. Const Capture by Reference
Capture by reference is not implicitly const, as capture by value is. However there are
situations where it would be useful to capture by const reference, such as when a read-only
object is too large to copy, or as a novel means to create a read-only code block.

Value
Enforce const on objects captured reference.

Implementation
auto b = [&x, const &y]() {};

// equivalent to:

struct B {
X &x;
const Y &y;
void operator()() const {}

};

We could also invoke compiler magic using “as-if”

// equivalent to:

struct B {
X &x;
Y &y;
void operator()() {

// as-if y was declared const Y&
}

};

Before After

struct A {
const Huge &huge;
void operator()() const {
// huge.mutate(); is error

}
};

// manual bespoke type
move_only_function<void() const> f =
A{huge};

move_only_function<void() const> f =
[const &huge] {
// huge.mutate(); is error

};

// extraneous cast
move_only_function<void() const> f = [
&huge = static_cast<const Huge&>(huge)] {
// huge.mutate(); is error

};

move_only_function<void() const> f =
[const &huge] {
// huge.mutate(); is error

};

X a, b, c;
a = foo();
b = bar();
c = baz();
{
// manual redeclaration and assignment
const X& const_a = a;
const X& const_b = b;
const X& const_c = c;
// ... enter const context

}

X a, b, c;
a = foo();
b = bar();
c = baz();

[const &] {
// ... const context

}();

3. Const Call Operator
For symmetry with the call operator of bespoke types, declaring the lambda const should not
be an error.

auto c = [x]() const {};

// equivalent to:

struct C {
X x;
void operator()() const {}

};

4. Const Capture on Const Call Operator
For symmetry and principle of least surprise, declaring a const capture of a const lambda
should not be an error.

auto c = [const x]() {};

See Const Capture on Mutable Call Operator.

5. Mutable Capture on Mutable Call Operator
For symmetry and principle of least surprise, declaring a mutable capture of a mutable
lambda should not be an error.

auto c = [mutable x]() mutable {};

// equivalent to:

struct C {
mutable X x;
void operator()() {}

};

Benefits of Consistency and Symmetry
The core benefits of extensions 3, 4 and 5 is lower cognitive load for programmers learning
C++, and principle of least surprise. We can teach why lambdas default the way they do, but
lambdas should have consistent and symmetric vocabulary for teaching how lambdas
transform into callable types under the hood.

Experienced users will also benefit from additional self-documentation, especially in critical
reliability contexts where verbosity and redundancy are preferred. Users would declare the
lambda mutable or const according to ideal or majority semantics, and some minority of
capture initialization would be the opposite, as an exception.

Concerns

1. Move construction with const captures
Const members cannot be moved from effectively, and lambdas with const captures would
silently inhibit the (potentially noexcept) move constructors of what it captures by value, in
favor of their copy constructors. This is more than just a pessimization, it may turn a
non-throwing move operation into a potentially throwing copy.

struct A {
std::string s;

};
static_assert(std::is_move_constructible_v<A>);
static_assert(std::is_nothrow_move_constructible_v<A>);

struct B {
const std::string s;

};
static_assert(std::is_move_constructible_v);
static_assert(!std::is_nothrow_move_constructible_v);

While users can do this today with classes, the concern is this would be making it easier to
do unwittingly via lambdas.

Whether the improved symmetry and teachability of const capture lambdas is worth the
possible footgun, remains an open question.

2. Assignment operations with const captures
Const members cannot be assigned to, and lambdas with const captures would be creatable
but not assignable. In practise it is rare to assign a lambda, and wrappers like
std::function use assignment to replace the object.

3. East v. West Const
In both East or West-const, the const always appears before the identifier. This proposal
does not change that.

4. Pointer to Const v. Const Pointer
Current lambda behavior mandates bitwise const, which is const-pointer (not pointer to
const). This proposal seeks to continue and not to modify that rule.

auto c = [const x = ptr]() {
*x = {}; // ok
x = nullptr; // error

};

5. Interactions with this

The keyword this is a prvalue expression, and is special cased with regard to lambda
captures. As such, the meaning of mutable this and const this doesn’t have obvious
semantics -- or if we defined them may be hard to teach. We recommend these two
combinations be disallowed until further experience is accrued.

Students will likely expect the following to compile (it would not):

struct A {
void mutate() {}
void test() const {

[mutable this] {
this->mutate();

}();
}

};

Whereas the following would compile and work:
struct B {

void mutate() {}
};

void test(B* that) {
[mutable that] {

that->mutate();
that = nullptr;

}();
}

Recall const pointer lambda capture is bitwise const, which affects if the pointer itself can be
modified. The this pointer can never be modified and so mutable this or const this
would either be meaningless if bitwise const, or inconsistent if logically const.

The meaning of mutable *this and const *this is much clearer, but for the sake of
consistency when teaching “this is special”, we recommend dis-allowing this form as well.

6. These extensions seem like a lot. Could traps be lurking?
Everything being proposed has a direct and consistent transformation into callable types that
are already allowed. Consistency and symmetry improve the teachability of lambdas, and
the defaults chosen for C++11 lambdas can be easily explained.

That said, this proposal is easily separable.

Thanks
Thanks Patrick McMichael for suggesting the idea. Thanks to Nevin Liber, Matt Calabrese
for offering important corrections. Thanks to Nevin Liber, Davis Herring, and Barry Revzin for
examples and suggestions. Thanks to Nestor Subiron Montoro for becoming second author.

