
Trailing Commas in Base-clauses and Ctor-initializers
Document number: P0562R2
Date: 2024-04-15
Audience: Evolution Working Group, Core Working Group
Reply to: Alan Talbot
 cpp@alantalbot.com

Abstract and Tony Table
One of the requirements of writing solid C++ is the maintenance of member initializer lists in
constructors. These lists must match the declarations in the class body both in content and order.
Neither is enforced by the compiler, and yet the hazards of omitting an entry or getting them out
of order are serious and well known.1 Initializers in the class body eliminate the problem in some
situations, but not in the most common case where the initializers are dependent on constructor
arguments.

Unfortunately, maintaining these lists is made more difficult by a small irregularity in the
language. Unlike all the other initialization productions, member initializer lists do not allow a
terminating comma. This proposal adds that (redundant) trailing comma.

The same issue exists for base class lists, so for similar reasons and for consistency, it also adds a
trailing comma to these lists.

These small changes may not seem very exciting, and they don’t change the functional
capabilities of the language. But I believe they will save the millions of programmers who use C++
a noticeable amount of time and energy, and even more importantly help prevent a very insidious
source of bugs (see Motivation).

C++23 Proposed

foo::foo(int x, int y, int z) :
 a(x),
 b(y),
 c(z)
{...}

foo::foo(int x, int y, int z) :
 a(x),
 b(y),
 c(z),
{...}

class bar :
 public base,
 public mixin
{};

class bar :
 public base,
 public mixin,
{};

P0562R2

2

History
R0

The first version of this paper was reviewed by EWG in Kona in 2017. It received a mixed response
(6|9|7|6|2), and we agreed that there was not sufficient support to continue with it at that time.

R1

So why bring it back now? I believe there are two good reasons:
• In C++20 we have added yet another feature which wisely recognizes that allowing trailing

commas makes code maintenance easier, namely designated initializers.
• We have expressed a renewed focus on the 5-7 million C++ programmers who are not

language experts, and who are trying to understand and use a very complicated language.

This version is largely rewritten with greatly expanded motivation and better wording.

R2

Added trailing commas to base class lists based on strong support from EWG. Removed
redundant Annex A wording. Changed the paper name per CWG request.

Motivation
Most initialization contexts accept commas as terminators (rather than the more restrictive
delimiters). This convenience is welcome and valuable in my opinion, and I strongly doubt that
anyone would wish it gone. Here is a review of the contexts where this question arises:

Enums

Enums have always allowed each entry to be terminated by a comma. The importance of
maintaining the correct order of enums depends on whether the numbers are meaningful and/or
persistent.

Array Initializers

Array initializers have always allowed each entry to be terminated by a comma (and examples of
this can be found in the Standard). The importance of maintaining the correct order of array
initializers is usually high.

Initializer Lists

Initializer lists have always allowed each entry to be terminated by a comma. The importance of
maintaining the correct order in an initializer list is usually high.

Designated Initializers

Designated initializers also allow each entry to be terminated by a comma. It is necessary to
maintain the correct order of designated initializers (the language requires them to match the
declaration order) but getting it wrong cannot cause a bug because it won’t compile.

Member Initializer Lists

Member initializer lists do not allow a final terminating comma. This makes formatting them for
maximum readability and maintainability something of a quandary. I have tried several different

P0562R2

3

formats and have discovered no perfect answer. The best format I have found (except for very
trivial cases) is the one shown above.

The problem is the last line. Every time an order change involves the last line, a comma must be
added and another one deleted. This may not seem like much work, but it adds up over time and
it’s easy to forget, which means a compile-time error that wastes even more time.

However, the real concern is that because it’s a bit fussy and annoying to rearrange the list,
people won’t do it. Getting the initializer order wrong does not cause a compile-time error, but
easily could cause a quiet and subtle bug, which makes this maintenance extremely important.
(The bugs caused by the order problems mentioned above are usually not quiet or subtle.)

Base Class Lists

The list of base classes in a class definition does not allow a final terminating comma. While this
is not an initialization context, it poses a similar maintenance task for those who use base classes
liberally. For this reason, and for consistency, this paper also proposes allowing commas at the
end of base class lists.

Function and Template Parameters

Function and template parameters do not allow a final terminating comma, but these do not
trouble me in practice. (Arguably any function or template with enough parameters to be much
of a maintenance issue seems like it is ripe for refactoring.) This paper does not propose changing
function or template parameters.

Notes
1. For example (and please note the date):

Scott Meyers. Effective C++, p. 41-42. Addison-Wesley Publishing Company, 1992.

Acknowledgements
Thanks to Daveed Vandevoorde for confirming that the syntax is possible and for suggesting that
base class lists are also a case worth addressing.

P0562R2

4

Proposed Wording

11.7.1 General [class.derived.general]
1 A list of base classes can be specified in a class definition using the notation:

base-clause:
 : base-specifier-list ,opt

base-specifier-list:
 base-specifier . . . opt
 base-specifier-list , base-specifier . . . opt

[…]

11.9.3 Initializing bases and members [class.base.init]
1 In the definition of a constructor for a class, initializers for direct and virtual base subobjects and

non-static data members can be specified by a ctor-initializer, which has the form

ctor-initializer:
 : mem-initializer-list ,opt

mem-initializer-list:
 mem-initializer . . . opt
 mem-initializer-list , mem-initializer . . . opt

[…]

	Abstract and Tony Table
	History
	R0
	R1
	R2

	Motivation
	Enums
	Array Initializers
	Initializer Lists
	Designated Initializers
	Member Initializer Lists
	Base Class Lists
	Function and Template Parameters

	Notes
	Acknowledgements
	Proposed Wording

