
P0876R12: fiber_context: fibers without scheduler
Issaquah 2023-02-09 LEWG

Nat Goodspeed



What’s in a name?
• fiber_context can be used to build coroutines (e.g. 

Boost.Coroutine2), userspace threads (e.g. Boost.Fiber)...
• WG21 decided years ago that “coroutine” means stackless 

(co_await), “fiber” means stackful
• fiber_context is the low-level context switching (term of art), 

leaving “fiber” for a higher-level userspace thread library



Target API level
• This paper does not propose higher-level libraries, which can be 

built in portable C++ once we have fiber_context
• fiber_context requires runtime implementation magic, hence 

important to standardize
• fiber_context API is designed for minimal overhead rather than 

convenience
– e.g. avoids requiring underlying thread-locals



Why fiber_context?
• If thread concurrency was enough, would be no async I/O
• Async I/O gets us more concurrency than threads
• Code written in an async I/O environment already avoids any 

operation that blocks the entire thread
• Fibers let you write async code as if blocking

– Easier to code
– More readable and maintainable
– Therefore more robust



Why fiber_context, given co_await?
• If any function in a library, at any level of abstraction, uses 

co_await, every caller must also use co_await
• Viral: changing one caller requires changing all its callers, etc.
• Many existing libraries and library algorithms accept caller-

specified functors
• To use any such library with a functor that suspends using 

co_await, the library must be duplicated, modified and rebuilt
• fiber_context permits using existing builds of existing libraries
• More information:

– Using Boost.Coroutine to untangle a state machine
– Coroutines, Fibers and Threads, Oh My
– The Fiber Library
– Pulling Visitors
– Elegant Asynchronous Code

https://youtube.com/watch?v=JDcip-SRgVE
https://youtube.com/watch?v=S6JpbmeuzNg
https://youtube.com/watch?v=gcNphOWuUb0
https://youtube.com/watch?v=3SvkWY7JSeY
https://youtube.com/watch?v=e-NUmyBou8Q


Fiber
• “fiber” is a weakly parallel thread of execution
• Implemented as a new, separate function call stack
• Multiple fibers coexist within an operating-system thread
• A fiber may not migrate from one thread to another
• The thread’s OS stack can be regarded as “default fiber”



fiber_context concepts
• Running fiber suspends by calling resume() or resume_with() on 

some fiber_context instance
• Resuming a fiber_context empties it

– fiber_context stores SP of suspended stack: dangerously 
inapplicable once resumed

• Every context switch synthesizes a new fiber_context instance 
representing newly-suspended fiber, passing it to newly-resumed 
fiber

– On initial entry, previous fiber_context is passed into entry 
function

– On resumption from suspension (return from resume() or 
resume_with()), previous fiber_context is returned

• To terminate the fiber, the entry function returns fiber_context of 
fiber to resume



Header
#include <fiber_context>

#define __cpp_lib_fiber_context 202302



Launching a fiber
• template <typename F>

fiber_context(F&& entry);
• Entry function signature fiber_context(fiber_context&&)
• Sets up new fiber’s stack
• New fiber_context, when resumed, will call entry function
• New fiber’s resources destroyed on return from entry function



fiber_context(F&& entry, span<byte, N> stack)
Constructor accepting explicit stack addresses use cases:
• control over size
• environments avoiding heap storage
• special allocation (e.g. guard page)
• consumer objects sharing same block of memory
• caller is responsible for stack cleanup on fiber exit

Using Allocator doesn’t quite fit:
• consumer of the Allocator specifies the size
• Allocator is intended to allocate multiple objects



fiber_context resume() &&
• Must be same thread
• Suspends caller
• Synthesizes fiber_context instance representing caller
• Switches context to designated fiber
• Passes caller fiber_context to designated fiber:

– First resumption: passes caller fiber_context to entry 
function

– Subsequent: returns caller fiber_context from resumed 
fiber’s resume() or resume_with() call



fiber_context resume_with(Fn&& fn) &&
• Fn signature fiber_context(fiber_context&&)
• Same as resume(), except on switching to newly-resumed fiber:

– Call fn(caller fiber_context)
– Pass fiber_context returned by fn to resumed fiber, as for 

resume()



resume_with() rationale
• Important for communication between fibers
• Example in P0876: wrapper class that continually updates its 

stored fiber_context to persistently represent same fiber



bool empty() const noexcept
• Default-constructed fiber_context is empty
• Moved-from fiber_context is empty
• Previously-resumed fiber_context is empty
• Exactly one fiber_context represents each suspended fiber
• No fiber_context represents running fiber



explicit operator bool() const noexcept
• Returns (! empty())



bool can_resume() noexcept
• [SG1 request]
• false if fiber_context empty()
• false if referenced fiber previously resumed on other thread



void swap(fiber_context&) noexcept
• As expected



The Checklist
• Examples?

– Yes, simple examples
• Field experience?

– Implementation experience?
• Boost.Context implements a previous revision

– Usage experience? / Deployment experience?
• The paper cites ten different existing libraries based on 

Boost.Context
• Performance considerations?

– Paper has some timing data
– Avoiding OS context switching is a win



The Checklist
• Discussion of prior art?

– ucontext, Pth library
• Changes Library Evolution previously requested?

– N/A
• Wording?

– yes
• Breaking changes?

– N/A
• Feature test macro?

– yes



The Checklist
• Freestanding?

– Possible but not sought
• Format and/or iostream support?

– N/A: not meaningful to stream a fiber_context
• std::hash?

– N/A: fiber_context values are transient, unsuited for 
container keys



Questions and Bike-Shedding
•


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

