
std::simd

Dr. Matthias Kretz

GSI Helmholtz Centre for Heavy Ion Research

WG21 LEWG review | 2023-02-08



Introduction A Data-Parallel Type std::simd

Outline

Introduction

A Data-Parallel Type

std::simd

Matthias Kretz WG21 LEWG review | 2023-02-08 2GSI Helmholtz Centre for Heavy Ion Research



Introduction A Data-Parallel Type std::simd

Vector Unit (SIMD)

multiple operations in one instruction

operation often a C++ operator, e.g. + , - , *

instruction one step of machine code

(basic idea: a CPU core executes instructions serially in the specified order)

SIMD—Single Instruction Multiple Data

+++++++++++++++++++++++++

+++++++++++++++++++++++++

+++++++++++++++++++++++++

+++++++++++++++++++++++++

+++++++++++++++++++++++++

+++++++++++++++++++++++++

+++++++++++++++++++++++++

+++++++++++++++++++++++++

x0 + y0

x1 + y1

x2 + y2

x3 + y3

y

x0

x1

x2

x3

+

+

+

+

y0

y1

y2

y3

Time

Matthias Kretz WG21 LEWG review | 2023-02-08 3GSI Helmholtz Centre for Heavy Ion Research



Introduction A Data-Parallel Type std::simd

Data-Parallelism

Data Parallel

• same code

• different data

• may execute in parallel

Example

for (auto &x : data) {
x = transform(x); // transform is a

// pure function
}

Matthias Kretz WG21 LEWG review | 2023-02-08 4GSI Helmholtz Centre for Heavy Ion Research



Introduction A Data-Parallel Type std::simd

SIMD in the IS

• We have the unseq and par_unseq execution policies.

• Program-defined code executed from parallel algorithms exposes “vector semantics”:

• different from C++’s sequenced-before semantics
• access to globals may have surprising results
• thread synchronization has undefined behavior
• exceptions have undefined behavior
• no I/O (e.g. “printf debugging”)

• Implementations might need all called functions to be inline to actually perform

vectorization

• Control-flow (break , return , …) often inhibits vectorization

• Loop based vectorization provides no intuition or support with data structures.

Matthias Kretz WG21 LEWG review | 2023-02-08 5GSI Helmholtz Centre for Heavy Ion Research



Introduction A Data-Parallel Type std::simd

Data-Parallel Types

One variable stores WT values. (W for “width”)

One operator signifies WT operations (element-wise).

int x = 0;
x += 1;

+++++++++++++++++++++++++0 + 1

vs.

std::simd<int> x = 0;
x += 1;

+++++++++++++++++++++++++

+++++++++++++++++++++++++

+++++++++++++++++++++++++

+++++++++++++++++++++++++

0

0

0

0

+

+

+

+

1

1

1

1

Matthias Kretz WG21 LEWG review | 2023-02-08 6GSI Helmholtz Centre for Heavy Ion Research



Introduction A Data-Parallel Type std::simd

Programming
Language

Computer

Fundamental Type

scalar
Registers &
Instructions

abstracts
abstracts

SIMD
Registers &
Instructions

?

abstracts

Matthias Kretz WG21 LEWG review | 2023-02-08 7GSI Helmholtz Centre for Heavy Ion Research



Introduction A Data-Parallel Type std::simd

Programming
Language

Computer

Fundamental Type

scalar
Registers &
Instructions

abstracts
abstracts

SIMD
Registers &
Instructions

simd<T>

abstracts

Matthias Kretz WG21 LEWG review | 2023-02-08 7GSI Helmholtz Centre for Heavy Ion Research



Introduction A Data-Parallel Type std::simd

• In contrast to SIMT and vector loops, std::simd makes the chunk size a constant

expression.

• Operation on a larger index space than WT requires a loop and/or multiple threads.

• Clear separation of serial, SIMD-parallel, and thread parallel execution.

• No restriction on I/O, exceptions, function calls, and synchronization.

• API & ABI for vectorization across multiple translation units (and library boundaries).

• The std::simd ABI could be the ABI for function calls from unseq loops.

Matthias Kretz WG21 LEWG review | 2023-02-08 8GSI Helmholtz Centre for Heavy Ion Research



Introduction A Data-Parallel Type std::simd

Example

One multiplication:
float f(float x) {

return x * 2.f;
}

WT multiplications in parallel:
std::simd<float> f(std::simd<float> x) {

return x * 2.f;
}

https://godbolt.org/z/1TY9jbqqj

Matthias Kretz WG21 LEWG review | 2023-02-08 9GSI Helmholtz Centre for Heavy Ion Research

https://godbolt.org/z/1TY9jbqqj


Introduction A Data-Parallel Type std::simd

Data-Parallel Conditionals

Example

One compare and 0 or 1 assignment:
float f(float x) {

if (x > 0.f) { x *= 2.f; }
return x;

}

WT compares and 0–WT assignments in

parallel:
std::simd<float> f(std::simd<float> x) {

x = std::conditional_operator(
x > 0.f, x * 2.f, x);

return x;
}

https://godbolt.org/z/8Ex6obEfx

• Compares yield WT boolean answers

• Return type of compares: std::simd_mask<T, Abi>
• Reduction functions: all_of , any_of , none_of
• simd code typically uses no/few branches, relying on masked assignment instead

Matthias Kretz WG21 LEWG review | 2023-02-08 10GSI Helmholtz Centre for Heavy Ion Research

https://godbolt.org/z/8Ex6obEfx


Introduction A Data-Parallel Type std::simd

Conditional Operator (P2600 and P0917)

Example

TS syntax
template <typename T> T f(T x) {

stdx::where(x > 0.f, x) *= 2.f;
return x;

}
f is “vectorizable” in the sense that it can be

specialized for float and

stdx::simd<float> .

Preferred C++26 syntax
template <typename T> T f(T x) {

return x > 0.f ? x * 2 : x;

}
So much simpler and clearer. Easy to write

simd-compatible code before ever using simd .

Generic code! (My GCC can do it .)

Matthias Kretz WG21 LEWG review | 2023-02-08 11GSI Helmholtz Centre for Heavy Ion Research



Introduction A Data-Parallel Type std::simd

The semantics of data-parallel types

teach developers to design scalable and portable parallelization.

Target-dependent WT

Conversions between scalar and vector objects

Conditional assignment instead of branching

• It becomes clear that data structures are the main challenge

• Translating an inherently data-parallel algorithm to data-parallel types is often trivial
• However, where do simd objects come from, and where can you put them?
• With vector loops and SIMT it is easy ... to write inefficient memory access patterns.

• Using SIMD types makes the design challenges wrt. efficient vectorization obvious

• Subsequent designs can profit from this experience

Matthias Kretz WG21 LEWG review | 2023-02-08 12GSI Helmholtz Centre for Heavy Ion Research



Introduction A Data-Parallel Type std::simd

The semantics of data-parallel types

teach developers to design scalable and portable parallelization.

Target-dependent WT

Conversions between scalar and vector objects

Conditional assignment instead of branching

• It becomes clear that data structures are the main challenge

• Translating an inherently data-parallel algorithm to data-parallel types is often trivial
• However, where do simd objects come from, and where can you put them?
• With vector loops and SIMT it is easy ... to write inefficient memory access patterns.

• Using SIMD types makes the design challenges wrt. efficient vectorization obvious

• Subsequent designs can profit from this experience

Matthias Kretz WG21 LEWG review | 2023-02-08 12GSI Helmholtz Centre for Heavy Ion Research



Introduction A Data-Parallel Type std::simd

The semantics of data-parallel types

teach developers to design scalable and portable parallelization.

Target-dependent WT

Conversions between scalar and vector objects

Conditional assignment instead of branching

• It becomes clear that data structures are the main challenge

• Translating an inherently data-parallel algorithm to data-parallel types is often trivial
• However, where do simd objects come from, and where can you put them?
• With vector loops and SIMT it is easy ... to write inefficient memory access patterns.

• Using SIMD types makes the design challenges wrt. efficient vectorization obvious

• Subsequent designs can profit from this experience

Matthias Kretz WG21 LEWG review | 2023-02-08 12GSI Helmholtz Centre for Heavy Ion Research



Introduction A Data-Parallel Type std::simd

The semantics of data-parallel types

teach developers to design scalable and portable parallelization.

Target-dependent WT

Conversions between scalar and vector objects

Conditional assignment instead of branching

• It becomes clear that data structures are the main challenge

• Translating an inherently data-parallel algorithm to data-parallel types is often trivial
• However, where do simd objects come from, and where can you put them?
• With vector loops and SIMT it is easy ... to write inefficient memory access patterns.

• Using SIMD types makes the design challenges wrt. efficient vectorization obvious

• Subsequent designs can profit from this experience

Matthias Kretz WG21 LEWG review | 2023-02-08 12GSI Helmholtz Centre for Heavy Ion Research



Introduction A Data-Parallel Type std::simd

Abstract

• Conceptually: SIMD types express data-parallelism.

• Wrong mindset: SIMD types are specific SIMD registers.

Which is why I like to call them “data-parallel types”.

Matthias Kretz WG21 LEWG review | 2023-02-08 13GSI Helmholtz Centre for Heavy Ion Research



Introduction A Data-Parallel Type std::simd

There are implementations
…and lots of existing practice

• std::experimental::simd in libstdc++ since GCC 11

• vir::stdx::simd at https://github.com/mattkretz/vir-simd/
• std::(experimental::)simd implementation from Intel in progress

• std::simd prototyping https://github.com/mattkretz/simd-prototyping/

more existing practice

• Agner Fog’s Vector Types

• E.V.E.

• xsimd

• Vc

• …

Matthias Kretz WG21 LEWG review | 2023-02-08 14GSI Helmholtz Centre for Heavy Ion Research

https://github.com/mattkretz/vir-simd/
https://github.com/mattkretz/simd-prototyping/


Introduction A Data-Parallel Type std::simd

Overview

1 template <typename T, typename Abi = ...>
2 class simd;
3

4 template <typename T, typename Abi = ...>
5 class simd_mask;

• T must be a “vectorizable” type (arithmetic except bool)

Note: Daniel Towner wants to add std::complex , I plan to add enums, and with

reflection I’ll look into UDTs.

• simd<T> behaves just like T (as far as is possible)

• simd_mask<T> behaves like bool
In contrast to bool , there are many different mask types:

• storage: bit-masks vs. element-sized masks (and vir-simd uses array of bool),
• SIMD width simd::size

• Abi determines width and ABI (i.e. how parameters are passed to functions)

Matthias Kretz WG21 LEWG review | 2023-02-08 15GSI Helmholtz Centre for Heavy Ion Research



Introduction A Data-Parallel Type std::simd

ABI tag default

• The TS uses the wrong default for the ABI tag (my strong opinion, to be fixed for C++26).

• The TS gives you the lowest common denominator for all possible implementations of

the target architecture.

• So you want to always use stdx::native_simd<T> instead. (This will be

std::simd<T>).
• native_simd sets the ABI tag to the widest efficient WT for your -march= setting. It

also influences the representation of simd_mask (i.e. the sizeof may be very different).

• Note that therefore std::simd ABI depends on -m flags!

Matthias Kretz WG21 LEWG review | 2023-02-08 16GSI Helmholtz Centre for Heavy Ion Research



Introduction A Data-Parallel Type std::simd

Constructors (simplified)

1 template <typename T, typename Abi = ...>
2 class simd {
3 simd() = default;
4 simd(T);
5 simd(contiguous_iterator auto const&, Flags);
6 simd(Generator);
7 }

• The defaulted default constructor allows uninitialized and zero-initialized objects.

• The broadcast constructor initializes all elements with the given value.
• Requires value-preserving conversion (P2509R0)

• The load constructor reads WT elements starting from the given address.
• Flags provides a hint about alignment (and can be extended to do more: in Vc it controls

streaming loads & stores, prefetching; P1928R3 suggests control over conversions)

• The generator constructor initializes each element via the generator function.
• The generator function is called with std::integral_constant<std::size_t, i> ,

where i is the index of the element to be initialized.

Matthias Kretz WG21 LEWG review | 2023-02-08 17GSI Helmholtz Centre for Heavy Ion Research



Introduction A Data-Parallel Type std::simd

Constructor examples

1 stdx::native_simd<int> x0; // uninitialized
2

3 stdx::native_simd<int> x1{}; // zero-initialized
4

5 stdx::native_simd<int> x2 = 1; // all elements are 1
6

7 stdx::native_simd<int> x3(addr, stdx::vector_aligned); // load from aligned address
8

9 stdx::native_simd<int> iota([](int i) { return i; }); // [0, 1, 2, 3, 4, ...]

Matthias Kretz WG21 LEWG review | 2023-02-08 18GSI Helmholtz Centre for Heavy Ion Research



Introduction A Data-Parallel Type std::simd

Loads & stores

You need to interact with the world somehow…

1 void f(std::vector<float>& data) {
2 using V = stdx::native_simd<float>;
3 for (std::size_t i = 0; i < data.size(); i += V::size()) {
4 V v(&data[i], stdx::element_aligned);
5 v = sin(v);
6 v.copy_to(&data[i], stdx::element_aligned);
7 }
8 }

• The member functions copy_from and copy_to allow “conversion” from/to arrays of T .
• The above applies the sine to all values in data .
• Don’t be afraid that this copy costs performance.

• Consider loading from memory into a register / storing from register into memory.
• This is a necessary cost that always happens anyway.

• There’s a bug, though…

Matthias Kretz WG21 LEWG review | 2023-02-08 19GSI Helmholtz Centre for Heavy Ion Research



Introduction A Data-Parallel Type std::simd

Loads & stores

You need to interact with the world somehow…

1 void f(std::vector<float>& data) {
2 using V = stdx::native_simd<float>;
3 for (std::size_t i = 0; i < data.size(); i += V::size()) {
4 V v(&data[i], stdx::element_aligned);
5 v = sin(v);
6 v.copy_to(&data[i], stdx::element_aligned);
7 }
8 }

• The member functions copy_from and copy_to allow “conversion” from/to arrays of T .
• The above applies the sine to all values in data .
• Don’t be afraid that this copy costs performance.

• Consider loading from memory into a register / storing from register into memory.
• This is a necessary cost that always happens anyway.

• There’s a bug, though…

Matthias Kretz WG21 LEWG review | 2023-02-08 19GSI Helmholtz Centre for Heavy Ion Research



Introduction A Data-Parallel Type std::simd

Loads & stores (fixed)

You often need an “epilogue”:

1 void f(std::vector<float>& data) {
2 using V = stdx::native_simd<float>;
3 std::size_t i = 0
4 for (; i + V::size() <= data.size(); i += V::size()) {
5 V v(&data[i], stdx::element_aligned);
6 v = sin(v);
7 v.copy_to(&data[i], stdx::element_aligned);
8 }
9 for (; i < data.size(); ++i) {

10 data[i] = std::sin(data[i]);
11 }
12 }

• Having to write the epilogue every time is error prone.

• The TS does not come with supporting code, but P0350 proposes useful higher-level

API.

Matthias Kretz WG21 LEWG review | 2023-02-08 20GSI Helmholtz Centre for Heavy Ion Research



Introduction A Data-Parallel Type std::simd

Subscripting

Loads & stores are great, but sometimes you just want to access it like an array.

1 void f(stdx::native_simd<float> x) {
2 for (std::size_t i = 0; i < x.size(); ++i) {
3 x[i] = foo(x[i]);
4 auto ref = x[i];
5 ref = foo(x[i]); // ERROR doesn’t compile
6 x[i] = float(ref); // OK
7 }
8 }

• non-const subscripting returns a simd::reference

• this type implements all non-const operators, i.e. (compound) assignment, increment and decrement, and

also swap .

• all of the above functions are rvalue-ref qualified, i.e. are only allowed on temporaries

• What we all actually expect would be a decay of the reference proxy to the element type. Another paper I

still have to write and defend in the committee.

• the conversion operator is not ref qualified

Matthias Kretz WG21 LEWG review | 2023-02-08 21GSI Helmholtz Centre for Heavy Ion Research



Introduction A Data-Parallel Type std::simd

Arithmetic & math

This is what you all came for, I guess

1 void f(stdx::native_simd<float> x, stdx::native_simd<float> y) {
2 x += y; // Wfloat additions
3 x = sqrt(x); // Wfloat square roots
4 ... // etc. all operators and <cmath>
5 }

• Operations act element-wise

• Speed-up is often a factor of WT , but may be less, depending on hardware details.

Matthias Kretz WG21 LEWG review | 2023-02-08 22GSI Helmholtz Centre for Heavy Ion Research



Introduction A Data-Parallel Type std::simd

Same for compares

1 void f(stdx::native_simd<float> x, stdx::native_simd<float> y) {
2 if (x < y) {} // nonono, you don’t write ’if (truefalsetruetrue)’ either
3 where(x < y, x) = y; // x = y but only for the elements where x < y
4 if (all_of(x < y)) {} // this makes sense, yes
5 }

• Comparisons return a simd_mask .
• simd_mask is not convertible to bool .
• simd_mask can be reduced to bool via all_of , any_of , or none_of .
• The SIMT model does not expose the nature of its if statements in code. It seems like

branching but it isn’t really.With std::simd it is explicit.

Matthias Kretz WG21 LEWG review | 2023-02-08 23GSI Helmholtz Centre for Heavy Ion Research


	Introduction
	

	A Data-Parallel Type
	std::simd
	


