
Down with ”character”
Document #: P2749R0
Date: 2023-01-26
Programming Language C++
Audience: SG-16, CWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Abstract

We propose to replace incorrect and ambiguous use of the term ”character” by the technically
correct term during translation.

Motivation

The term ”character” is often incorrect, imprecise, and often ambiguous. the ”translation set”
and its elements are a C++ invention.

By using terms of art, we hope to make the wording clearer, easier to interpret, and harder to
missinterpret.

This resolves NB comment FR-020-014 5.3.

Changes

In phase 1 of lexing, and when describing constraints on universal-character-name, we use the
term ”Unicode scalar value” which describe the constraints placed on each code point. Every-
where else, we prefer the term ”Unicode code point” as a few people have expressed finding
”scalar value” to be too obscure of a terminology, and both terms being interchangeable once
we established the constraints. All Unicode code points during translation are scalar values.

Uses of the term character are retained when describing specific C++ elements such as
”character literal” or ”character type. Further more, when ”character” refers to a clearly
identified abstract character, such as in the expressions ”new-line character” or ”quotation
character”, we keep the term to avoid unecessary changes.

Neither the library sections, nor the definitions pertaining to library clauses in [intro] are
modified.

Changes in green and red are the addition and removal respectively associated to the replace-
ment of the term ”character”.

Changes in blue and pink are the addition and removal respectively associated to the replace-
ment of the term ”translation character set”.

1

mailto:corentin.jabot@gmail.com
https://github.com/cplusplus/nbballot/issues/422

Changes in purple are some of the changes made in ”Referencing the Unicode Standard”

Wording

�? Separate translation [lex.separate]

The text of the program is kept in units called source files in this document. A source file
together with all the headers[headers] and source files included[cpp.include] via the pre-
processing directive #include, less any source lines skipped by any of the conditional inclu-
sion[cpp.cond] preprocessing directives, is called a translation unit. [Note: A C++ program need
not all be translated at the same time. —end note]

[Note: Previously translated translation units and instantiation units can be preserved individu-
ally or in libraries. The separate translation units of a program communicate[basic.link] by (for
example) calls to functions whose identifiers have external or module linkage, manipulation
of objects whose identifiers have external or module linkage, or manipulation of data files.
Translation units can be separately translated and then later linked to produce an executable
program[basic.link]. —end note]

�? Phases of translation [lex.phases]

The precedence among the syntax rules of translation is specified by the following phases.
[Footnote: Implementations behave as if these separate phases occur, although in practice
different phases can be folded together. —end note]

1. An implementation shall support input files that are a sequence of UTF-8 code units
(UTF-8 files). It may also support an implementation-defined set of other kinds of input
files, and, if so, the kind of an input file is determined in an implementation-defined
manner that includes a means of designating input files as UTF-8 files, independent
of their content. [Note: In other words, recognizing the u+feff byte order mark is not
sufficient. —end note] If an input file is determined to be a UTF-8 file, then it shall
be a well-formed UTF-8 code unit sequence and it is decoded to produce a sequence
of Unicode scalar values that constitutes the sequence of elements of the translation
character set. In the resulting sequence, each pair of characters Unicode scalar values
in the input sequence consisting of u+000d carriage return followed by u+000a line feed,
as well as each u+000d carriage return not immediately followed by a u+000a line feed, is
replaced by a single new-line character.

For any other kind of input file supported by the implementation, abstract characters are
mapped, in an implementation-defined manner, to a sequence of translation character
set elements Unicode scalar values[lex.charset], representing end-of-line indicators as
new-line characters.

2. If the first translation character Unicode code point is u+feff byte ordermark, it is deleted.
Each sequence of a backslash character (\) u+005C backslash immediately followed by

2

zero or more whitespace characters other than new-line followed by a new-line character
is deleted, splicing physical source lines to form logical source lines. Only the last
backslash on any physical source line shall be eligible for being part of such a splice.
Except for splices reverted in a raw string literal, if a splice results in a character Unicode
code point sequence that matches the syntax of a universal-character-name, the behavior
is undefined. A source file that is not empty and that does not end in a new-line character,
or that ends in a splice, shall be processed as if an additional new-line character were
appended to the file.

3. The source file is decomposed into preprocessing tokens[lex.pptoken] and sequences
of whitespace characters (including comments). A source file shall not end in a partial
preprocessing token or in a partial comment. [Footnote: A partial preprocessing token
would arise from a source file ending in the first portion of a multi-character Unicode
code point token that requires a terminating sequence of character Unicode code points,
such as a header-name that is missing the closing " or >. A partial comment would arise
from a source file ending with an unclosed /* comment. —end note] Each comment
is replaced by one space character u+0020 SPACE character. New-line characters are re-
tained. Whether each nonempty sequence of whitespace characters other than new-line
is retained or replaced by one space character u+0020 SPACE character is unspecified.
As characters Unicode code points from the source file are consumed to form the next
preprocessing token (i.e., not being consumed as part of a comment or other forms of
whitespace), except when matching a c-char-sequence, s-char-sequence, r-char-sequence,
h-char-sequence, or q-char-sequence, universal-character-name s are recognized and re-
placed by the designated element of the translation character set Unicode code point.
The process of dividing a source file’s characters code points into preprocessing tokens
is context-dependent. [Example: See the handling of < within a #include preprocessing
directive. —end example]

4. Preprocessing directives are executed, macro invocations are expanded, and _Pragma
unary operator expressions are executed. A #include preprocessing directive causes the
named header or source file to be processed from phase 1 through phase 4, recursively.
All preprocessing directives are then deleted.

5. For a sequence of two or more adjacent string-literal tokens, a common encoding-prefix
is determined as specified in ??. Each such string-literal token is then considered to have
that common encoding-prefix.

6. Adjacent string-literal tokens are concatenated[lex.string].

7. Whitespace characters separating tokens are no longer significant. Each preprocessing
token is converted into a token[lex.token]. The resulting tokens are syntactically and
semantically analyzed and translated as a translation unit. [Note: The process of analyz-
ing and translating the tokens can occasionally result in one token being replaced by
a sequence of other tokens[temp.names]. —end note] It is implementation-defined
whether the sources for module units and header units on which the current transla-
tion unit has an interface dependency[module.unit,module.import] are required to be
available. [Note: Source files, translation units and translated translation units need
not necessarily be stored as files, nor need there be any one-to-one correspondence

3

between these entities and any external representation. The description is conceptual
only, and does not specify any particular implementation. —end note]

8. Translated translation units and instantiation units are combined as follows: [Note:
Some or all of these can be supplied from a library. —end note] Each translated
translation unit is examined to produce a list of required instantiations. [Note: This
can include instantiations which have been explicitly requested[temp.explicit]. —end
note] The definitions of the required templates are located. It is implementation-defined
whether the source of the translation units containing these definitions is required to be
available. [Note: An implementation can choose to encode sufficient information into the
translated translation unit so as to ensure the source is not required here. —end note]
All the required instantiations are performed to produce instantiation units. [Note: These
are similar to translated translation units, but contain no references to uninstantiated
templates and no template definitions. —end note] The program is ill-formed if any
instantiation fails.

9. All external entity references are resolved. Library components are linked to satisfy
external references to entities not defined in the current translation. All such transla-
tor output is collected into a program image which contains information needed for
execution in its execution environment.

4

�? Character sets [lex.charset]

The translation character set consists of the following elements:

• each character named by ISO/IEC 10646, as identified by its unique UCS scalar value,
and

• a distinct character for each UCS scalar value where no named character is assigned.

[Note: ISO/IEC 10646 code points are integers in the range [0, 10FFFF] (hexadecimal). A
surrogate code point is a value in the range [D800, DFFF] (hexadecimal). A UCS scalar value is
any code point that is not a surrogate code point. —end note]

The basic character set is a subset of the translation Unicode character set, consisting of 96
characters as specified in [lex.charset.basic]. [Note: Unicode short names are given only as a
means to identifying the character code point; the numerical value has no other meaning in
this context. —end note]

The universal-character-name construct provides a way to name other characters Unicode
code points.

n-char: one of
any member of the translation character set Unicode code point except the
u+007d right curly bracket or new-line character

n-char-sequence:
n-char
n-char-sequence n-char

named-universal-character:
\N{ n-char-sequence }

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

simple-hexadecimal-digit-sequence:
hexadecimal-digit
simple-hexadecimal-digit-sequence hexadecimal-digit

universal-character-name:
\u hex-quad
\U hex-quad hex-quad
\u{ simple-hexadecimal-digit-sequence }
named-universal-character

A universal-character-name of the form \u hex-quad, \U hex-quad hex-quad, or \u{simple-
hexadecimal-digit-sequence }designates the character in the translation character setwhose
Unicode scalar value is equal to the hexadecimal number represented by the sequence of
hexadecimal-digit s in the universal-character-name. The program is ill-formed if that number
is not a Unicode scalar value.

A universal-character-name that is a named-universal-character designates the characterUnicode
code point named by its n-char-sequence. A character Unicode code point is so named if the
n-char-sequence is equal to

5

Table 1: Basic character set
character glyph

u+0009 character tabulation
u+000b line tabulation
u+000c form feed
u+0020 space
u+000a line feed new-line
u+0021 exclamation mark !
u+0022 quotation mark "
u+0023 number sign #
u+0025 percent sign %
u+0026 ampersand &
u+0027 apostrophe '
u+0028 left parenthesis (
u+0029 right parenthesis)
u+002a asterisk *
u+002b plus sign +
u+002c comma ,
u+002d hyphen-minus -
u+002e full stop .
u+002f solidus /
u+0030 .. u+0039 digit zero .. nine 0 1 2 3 4 5 6 7 8 9
u+003a colon :
u+003b semicolon ;
u+003c less-than sign <
u+003d equals sign =
u+003e greater-than sign >
u+003f question mark ?
u+0041 .. u+005a latin capital letter a .. z A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z
u+005b left square bracket [
u+005c reverse solidus \
u+005d right square bracket]
u+005e circumflex accent ^
u+005f low line _
u+0061 .. u+007a latin small letter a .. z a b c d e f g h i j k l m

n o p q r s t u v w x y z
u+007b left curly bracket {
u+007c vertical line |
u+007d right curly bracket }
u+007e tilde ~

6

• the associated character name or associated character name alias specified in ISO/IEC
10646 subclause “Code charts and lists of character names” or

• the control code alias given in [lex.charset.ucn]. [Note: The aliases in [lex.charset.ucn] are
provided for control characters which otherwise have no associated character name or
character name alias. These names are derived from the Unicode Character Database’s
NameAliases.txt. For historical reasons, control characters are formally unnamed. —end
note]

[Note: None of the associated character names, associated character name aliases, or control
code aliases have leading or trailing spaces. —end note]

If a universal-character-name outside the c-char-sequence, s-char-sequence, or r-char-sequence
of a character-literal or string-literal (in either case, including within a user-defined-literal)
corresponds to a control character or to a character in the basic character set, the program is
ill-formed. [Note: A sequence of characters code points resembling a universal-character-name
in an r-char-sequence [lex.string] does not form a universal-character-name. —end note]

The basic literal character set consists of all abstract characters of the basic character set, plus
the control characters specified in [lex.charset.literal]. [Note: The alias bell for u+0007 shown
in ISO 10646 is ambiguous with u+1f514 bell. —end note]

A code unit is an integer value of character type[basic.fundamental]. Characters Unicode code
points in a character-literal other than a multicharacter or non-encodable character literal or
in a string-literal are encoded as a sequence of one or more code units, as determined by the
encoding-prefix [lex.ccon,lex.string]; this is termed the respective literal encoding. The ordinary
literal encoding is the encoding applied to an ordinary character or string literal. The wide
literal encoding is the encoding applied to a wide character or string literal.

A literal encoding or a locale-specific encoding of one of the execution character sets[char-
acter.seq] encodes each element of the basic literal character set as a single code unit with
non-negative value, distinct from the code unit for any other such element. [Note: A character
Unicode code point not in the basic literal character set can be encoded with more than one
code unit; the value of such a code unit can be the same as that of a code unit for an element of
the basic literal character set. —end note] The u+0000 null character is encoded as the value 0.
No other element of the translation character set Unicode code point is encoded with a code
unit of value 0. The code unit value of each decimal digit character after the digit 0 (u+0030)
shall be one greater than the value of the previous. The ordinary and wide literal encodings
are otherwise implementation-defined. For a UTF-8, UTF-16, or UTF-32 literal, the UCS scalar
value corresponding to each character of the translation character set each Unicode scalar
value is encoded as specified in ISO/IEC 10646 for the respective UCS encoding form.

7

Table 2: Control code aliases
u+0000 null
u+0001 start of heading
u+0002 start of text
u+0003 end of text
u+0004 end of transmission
u+0005 enquiry
u+0006 acknowledge
u+0007 alert
u+0008 backspace
u+0009 character tabulation
u+0009 horizontal tabulation
u+000a line feed
u+000a new line
u+000a end of line
u+000b line tabulation
u+000b vertical tabulation
u+000c form feed
u+000d carriage return
u+000e shift out
u+000e locking-shift one
u+000f shift in
u+000f locking-shift zero
u+0010 data link escape
u+0011 device control one
u+0012 device control two
u+0013 device control three
u+0014 device control four
u+0015 negative acknowledge
u+0016 synchronous idle
u+0017 end of transmission block
u+0018 cancel
u+0019 end of medium
u+001a substitute
u+001b escape
u+001c information separator four
u+001c file separator
u+001d information separator three
u+001d group separator
u+001e information separator two
u+001e record separator
u+001f information separator one
u+001f unit separator

u+007f delete
u+0082 break permitted here
u+0083 no break here
u+0084 index
u+0085 next line
u+0086 start of selected area
u+0087 end of selected area
u+0088 character tabulation set
u+0088 horizontal tabulation set
u+0089 character tabulation with justification
u+0089 horizontal tabulation with justification
u+008a line tabulation set
u+008a vertical tabulation set
u+008b partial line forward
u+008b partial line down
u+008c partial line backward
u+008c partial line up
u+008d reverse line feed
u+008d reverse index
u+008e single shift two
u+008e single-shift-2
u+008f single shift three
u+008f single-shift-3
u+0090 device control string
u+0091 private use one
u+0091 private use-1
u+0092 private use two
u+0092 private use-2
u+0093 set transmit state
u+0094 cancel character
u+0095 message waiting
u+0096 start of guarded area
u+0096 start of protected area
u+0097 end of guarded area
u+0097 end of protected area
u+0098 start of string
u+009a single character introducer
u+009b control sequence introducer
u+009c string terminator
u+009d operating system command
u+009e privacy message
u+009f application program command

8

Table 3: Additional control characters in the basic literal character set
character Unicode code point

u+0000 null
u+0007 alert
u+0008 backspace
u+000d carriage return

�? Preprocessing tokens [lex.pptoken]

preprocessing-token:
header-name
import-keyword
module-keyword
export-keyword
identifier
pp-number
character-literal
user-defined-character-literal
string-literal
user-defined-string-literal
preprocessing-op-or-punc
each non-whitespace character Unicode code point that cannot be one of the
above

Each preprocessing token that is converted to a token[lex.token] shall have the lexical form of
a keyword, an identifier, a literal, or an operator or punctuator.

A preprocessing token is the minimal lexical element of the language in translation phases
3 through 6. In this document, glyphs are used to identify elements of the basic character
set[lex.charset]. The categories of preprocessing token are: header names, placeholder tokens
produced by preprocessing import and module directives (import-keyword, module-keyword,
and export-keyword), identifiers, preprocessing numbers, character literals (including user-
defined character literals), string literals (including user-defined string literals), preprocessing
operators and punctuators, and single non-whitespace characters Unicode code points that
do not lexically match the other preprocessing token categories. If a u+0027 apostrophe or a
u+0022 quotation mark character matches the last category, the behavior is undefined. If any
characters Unicode code point not in the basic character set matches the last category, the
program is ill-formed. Preprocessing tokens can be separated by whitespace; this consists of
comments[lex.comment], or whitespace characters (u+0020 space, u+0009 character tabulation,
new-line, u+000b line tabulation, and u+000c form feed), or both. As described in ??, in certain
circumstances during translation phase 4, whitespace (or the absence thereof) serves as more
than preprocessing token separation. Whitespace can appear within a preprocessing token
only as part of a header name or between the quotation characters in a character literal or
string literal.

If the input streamhas been parsed into preprocessing tokens up to a given character Unicode
code point:

9

• If the next character Unicode code point begins a sequence of characters Unicode code
points that could be the prefix and initial double quote of a raw string literal, such
as R", the next preprocessing token shall be a raw string literal. Between the initial
and final double quote characters of the raw string, any transformations performed in
phase 2 (line splicing) are reverted; this reversion shall apply before any d-char, r-char,
or delimiting parenthesis is identified. The raw string literal is defined as the short-
est sequence of characters Unicode code points that matches the raw-string pattern

encoding-prefixopt R raw-string

• Otherwise, if the next three characters are <:: and the subsequent character Unicode
code point is neither : nor >, the < is treated as a preprocessing token by itself and not
as the first character of the alternative token <:.

• Otherwise, the next preprocessing token is the longest sequence of characters Unicode
code points that could constitute a preprocessing token, even if that would cause further
lexical analysis to fail, except that a header-name [lex.header] is only formed

– after the include or import preprocessing token in an #include[cpp.include] or
import[cpp.import] directive, or

– within a has-include-expression.

[Example:

#define R "x"
const char* s = R"y"; // ill-formed raw string, not "x" "y"

—end example]

The import-keyword is produced by processing an import directive[cpp.import], themodule-
keyword is produced by preprocessing a module directive[cpp.module], and the export-keyword
is produced by preprocessing either of the previous two directives. [Note: None has any
observable spelling. —end note]

[Example: The program fragment 0xe+foo is parsed as a preprocessing number token (one
that is not a valid integer-literal or floating-point-literal token), even though a parse as three
preprocessing tokens 0xe, +, and foo can produce a valid expression (for example, if foo is
a macro defined as 1). Similarly, the program fragment 1E1 is parsed as a preprocessing
number (one that is a valid floating-point-literal token), whether or not E is a macro name.
—end example]

[Example: The program fragment x+++++y is parsed as x ++ ++ + y, which, if x and y have
integral types, violates a constraint on increment operators, even though the parse x ++ + ++
y can yield a correct expression. —end example]

�? Alternative tokens [lex.digraph]

Alternative token representations are provided for someoperators and punctuators. [Footnote:
These include “digraphs” and additional reserved words. The term “digraph” (token consisting

10

of two characters Unicode code points) is not perfectly descriptive, since one of the alternative
preprocessing-token s is %:%: and of course several primary tokens contain two characters
Unicode code points. Nonetheless, those alternative tokens that aren’t lexical keywords are
colloquially known as “digraphs”. —end note]

In all respects of the language, each alternative token behaves the same, respectively, as its
primary token, except for its spelling. [Footnote: Thus the “stringized” values[cpp.stringize] of
[and <: will be different, maintaining the source spelling, but the tokens can otherwise be
freely interchanged. —end note] The set of alternative tokens is defined in [lex.digraph].

Table 4: Alternative tokens
Alternative Primary Alternative Primary Alternative Primary

<% { and && and_eq &=

%> } bitor | or_eq |=

<: [or || xor_eq ^=

:>] xor ^ not !

%: # compl ~ not_eq !=

%:%: ## bitand &

�? Tokens [lex.token]

token:
identifier
keyword
literal
operator-or-punctuator

There are five kinds of tokens: identifiers, keywords, literals,[Footnote: Literals include strings
and character and numeric literals. —end note] operators, and other separators. Blanks,
horizontal and vertical tabs, newlines, formfeeds, and comments (collectively, “whitespace”),
as described below, are ignored except as they serve to separate tokens. [Note: Some
whitespace is required to separate otherwise adjacent identifiers, keywords, numeric literals,
and alternative tokens containing alphabetic characters. —end note]

�? Comments [lex.comment]

The characters /* start a comment, which terminates with the characters */. These comments
do not nest. The characters // start a comment, which terminates immediately before the
next new-line character. If there is a form-feed or a vertical-tab character in such a comment,
only whitespace characters shall appear between it and the new-line that terminates the
comment; no diagnostic is required. [Note: The comment characters //, /*, and */ have
no special meaning within a // comment and are treated just like other characters Unicode
code points. Similarly, the comment characters // and /* have no special meaning within a /*
comment. —end note]

11

�? Header names [lex.header]

header-name:
< h-char-sequence >
" q-char-sequence "

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
anymember of the translation character set Unicode code point except new-line
and u+003e greater-than sign

q-char-sequence:
q-char
q-char-sequence q-char

q-char:
anymember of the translation character set Unicode code point except new-line
and u+0022 quotation mark

[Note: Header name preprocessing tokens only appear within a #include preprocessing
directive, a __has_include preprocessing expression, or after certain occurrences of an import
token (see ??). —end note] The sequences in both forms of header-names are mapped in
an implementation-defined manner to headers or to external source file names as specified
in ??.

The appearance of either of the characters ' or \ or of either of the character sequences /* or
// in a q-char-sequence or an h-char-sequence is conditionally-supported with implementation-
defined semantics, as is the appearance of the character " in an h-char-sequence. [Footnote:
Thus, a sequence of characters Unicode code points that resembles an escape sequence can
result in an error, be interpreted as the character Unicode code point corresponding to the
escape sequence, or have a completely different meaning, depending on the implementation.
—end note]

�? Preprocessing numbers [lex.ppnumber]

pp-number:
digit
. digit
pp-number identifier-continue
pp-number ' digit
pp-number ' nondigit
pp-number e sign
pp-number E sign
pp-number p sign
pp-number P sign
pp-number .

Preprocessing number tokens lexically include all integer-literal tokens[lex.icon] and all floating-
point-literal tokens[lex.fcon].

12

A preprocessing number does not have a type or a value; it acquires both after a successful
conversion to an integer-literal token or a floating-point-literal token.

�? Identifiers [lex.name]

identifier:
identifier-start
identifier identifier-continue

identifier-start:
nondigit
an element of the translation character set of class a Unicode code point with
the Unicode property XID_Start

identifier-continue:
digit
nondigit
an element of the translation character set of class a Unicode code point with
the Unicode property XID_Continue

nondigit: one of
a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z _

digit: one of
0 1 2 3 4 5 6 7 8 9

The character classes XID_Start and XID_Continue are Derived Core Properties as described
by UAX44. [Footnote: On systems in which linkers cannot accept extended characters, an
encoding of the universal-character-name can be used in forming valid external identifiers.
For example, some otherwise unused character or sequence of characters can be used to
encode the \u in a universal-character-name. Extended characters can produce a long external
identifier, but C++ does not place a translation limit on significant characters for external
identifiers. —end note]

The program is ill-formed if an identifier does not conform to Normalization FormC as specified
in ISO/IEC 10646. [Note: Identifiers are case-sensitive. —end note] [Note: In translation
phase 4, identifier also includes those preprocessing-token s[lex.pptoken] differentiated as
keywords[lex.key] in the later translation phase 7[lex.token]. —end note]

The identifiers in [lex.name.special] have a special meaning when appearing in a certain
context. When referred to in the grammar, these identifiers are used explicitly rather than
using the identifier grammar production. Unless otherwise specified, any ambiguity as to
whether a given identifier has a special meaning is resolved to interpret the token as a regular
identifier.

Table 5: Identifiers with special meaning
final import module override

13

In addition, some identifiers are reserved for use by C++ implementations and shall not be
used otherwise; no diagnostic is required.

• Each identifier that contains a double underscore __ or begins with an underscore fol-
lowed by an uppercase letter in the basic character set is reserved to the implementation
for any use.

[Editor’s note: ”letter” here is very confusing, but existing implementations and the
history of the wording strongly imply the intent]

• Each identifier that begins with an underscore is reserved to the implementation for use
as a name in the global namespace.

�? Keywords [lex.key]

keyword:
any identifier listed in [lex.key]
import-keyword
module-keyword
export-keyword

The identifiers shown in [lex.key] are reserved for use as keywords (that is, they are uncondi-
tionally treated as keywords in phase 7) except in an attribute-token [dcl.attr.grammar]. [Note:
The register keyword is unused but is reserved for future use. —end note]

Table 6: Keywords
alignas
alignof
asm
auto
bool
break
case
catch
char
char8_t
char16_t
char32_t
class
concept
const
consteval
constexpr

constinit
const_cast
continue
co_await
co_return
co_yield
decltype
default
delete
do
double
dynamic_cast
else
enum
explicit
export
extern

false
float
for
friend
goto
if
inline
int
long
mutable
namespace
new
noexcept
nullptr
operator
private
protected

public
register
reinterpret_cast
requires
return
short
signed
sizeof
static
static_assert
static_cast
struct
switch
template
this
thread_local
throw

true
try
typedef
typeid
typename
union
unsigned
using
virtual
void
volatile
wchar_t
while

Furthermore, the alternative representations shown in [lex.key.digraph] for certain operators
and punctuators[lex.digraph] are reserved and shall not be used otherwise.

14

Table 7: Alternative representations
and and_eq bitand bitor compl not
not_eq or or_eq xor xor_eq

�? Operators and punctuators [lex.operators]

The lexical representation of C++ programs includes a number of preprocessing tokens that
are used in the syntax of the preprocessor or are converted into tokens for operators and
punctuators:

preprocessing-op-or-punc:
preprocessing-operator
operator-or-punctuator

preprocessing-operator: one of
%: %:%:

operator-or-punctuator: one of
{ } [] ()
<: :> <% %> ; : ...
? :: . .* -> ->* ~
! + - * / % ^ & |
= += -= *= /= %= ^= &=
|=
== != < > <= >= <=> &&
||
<< >> <<= >>= ++ -- ,
and or xor not bitand bitor compl
and_eq or_eq xor_eq not_eq

Each operator-or-punctuator is converted to a single token in translation phase 7[lex.phases].

�? Literals [lex.literal]

�? Kinds of literals [lex.literal.kinds]

There are several kinds of literals.

literal:
integer-literal
character-literal
floating-point-literal
string-literal
boolean-literal
pointer-literal
user-defined-literal

[Note: When

appearing as an expression, a literal has a type and a value category[expr.prim.literal]. —end
note]

15

�? Integer literals [lex.icon]

integer-literal:
binary-literal integer-suffixopt
octal-literal integer-suffixopt
decimal-literal integer-suffixopt
hexadecimal-literal integer-suffixopt

binary-literal:
0b binary-digit
0B binary-digit
binary-literal 'opt binary-digit

octal-literal:
0
octal-literal 'opt octal-digit

decimal-literal:
nonzero-digit
decimal-literal 'opt digit

hexadecimal-literal:
hexadecimal-prefix hexadecimal-digit-sequence

binary-digit: one of
0 1

octal-digit: one of
0 1 2 3 4 5 6 7

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

hexadecimal-prefix: one of
0x 0X

hexadecimal-digit-sequence:
hexadecimal-digit
hexadecimal-digit-sequence 'opt hexadecimal-digit

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffixopt
unsigned-suffix long-long-suffixopt
unsigned-suffix size-suffixopt
long-suffix unsigned-suffixopt
long-long-suffix unsigned-suffixopt
size-suffix unsigned-suffixopt

unsigned-suffix: one of
u U

long-suffix: one of
l L

16

long-long-suffix: one of
ll LL

size-suffix: one of
z Z

In an integer-literal, the sequence of binary-digit s, octal-digit s, digit s, or hexadecimal-digit s is
interpreted as a base N integer as shown in table [lex.icon.base]; the lexically first digit of
the sequence of digits is the most significant. [Note: The prefix and any optional separating
single quotes are ignored when determining the value. —end note]

Table 8: Base of integer-literals
Kind of integer-literal base N

binary-literal 2
octal-literal 8
decimal-literal 10
hexadecimal-literal 16

The hexadecimal-digit s a through f and A through F have decimal values ten through fifteen.
[Example: The number twelve can bewritten 12, 014, 0XC, or 0b1100. The integer-literal s 1048576,
1'048'576, 0X100000, 0x10'0000, and 0'004'000'000 all have the same value. —end example]

The type of an integer-literal is the first type in the list in [lex.icon.type] corresponding to its
optional integer-suffix in which its value can be represented.

If an integer-literal cannot be represented by any type in its list and an extended integer
type[basic.fundamental] can represent its value, it may have that extended integer type. If
all of the types in the list for the integer-literal are signed, the extended integer type shall be
signed. If all of the types in the list for the integer-literal are unsigned, the extended integer
type shall be unsigned. If the list contains both signed and unsigned types, the extended
integer type may be signed or unsigned. A program is ill-formed if one of its translation units
contains an integer-literal that cannot be represented by any of the allowed types.

�? Character literals [lex.ccon]

character-literal:
encoding-prefixopt ' c-char-sequence '

encoding-prefix: one of
u8 u U L

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
basic-c-char
escape-sequence
universal-character-name

17

Table 9: Types of integer-literal s

integer-suffix decimal-literal integer-literal other than decimal-literal

none int int
long int unsigned int
long long int long int

unsigned long int
long long int
unsigned long long int

u or U unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int unsigned long long int

l or L long int long int
long long int unsigned long int

long long int
unsigned long long int

Both u or U unsigned long int unsigned long int
and l or L unsigned long long int unsigned long long int

ll or LL long long int long long int
unsigned long long int

Both u or U unsigned long long int unsigned long long int
and ll or LL

z or Z the signed integer type corresponding the signed integer type
to std::size_t[support.types.layout] corresponding to std::size_t

std::size_t

Both u or U std::size_t std::size_t
and z or Z

18

basic-c-char:
any member of the translation character set Unicode code point except the
u+0027 apostrophe,

u+005c reverse solidus, or new-line character

escape-sequence:
simple-escape-sequence
numeric-escape-sequence
conditional-escape-sequence

simple-escape-sequence:
\ simple-escape-sequence-char

simple-escape-sequence-char: one of
' " ? \ a b f n r t v

numeric-escape-sequence:
octal-escape-sequence
hexadecimal-escape-sequence

simple-octal-digit-sequence:
octal-digit
simple-octal-digit-sequence octal-digit

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit
\o{ simple-octal-digit-sequence }

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit
\x{ simple-hexadecimal-digit-sequence }

conditional-escape-sequence:
\ conditional-escape-sequence-char

conditional-escape-sequence-char:
any member of the basic character set that is not an octal-digit, a simple-escape-
sequence-char, or the characters N, o, u, U, or x

A non-encodable character literal is a character-literal whose c-char-sequence consists of a single
c-char that is not a numeric-escape-sequence and that specifies a character Unicode code point
that either lacks representation in the literal’s associated character encoding or that cannot
be encoded as a single code unit. A multicharacter literal is a character-literal whose c-char-
sequence consists of more than one c-char. The encoding-prefix of a non-encodable character
literal or a multicharacter literal shall be absent. Such character-literal s are conditionally-
supported.

The kind of a character-literal, its type, and its associated character encoding[lex.charset] are
determined by its encoding-prefix and its c-char-sequence as defined by [lex.ccon.literal]. The
special cases for non-encodable character literals and multicharacter literals take precedence
over the base kind. [Note: The associated character encoding for ordinary character liter-
als determines encodability, but does not determine the value of non-encodable ordinary

19

character literals or ordinary multicharacter literals. The examples in [lex.ccon.literal] for
non-encodable ordinary character literals assume that the specified character Unicode code
point lacks representation in the ordinary literal encoding or that encoding the character
would require more than one code unit. —end note]

Table 10: Character literals

Encoding Kind Type Associated char- Example
prefix acter encoding

none ordinary character literal char ordinary 'v'
non-encodable ordinary character literal int literal '\U0001F525'
ordinary multicharacter literal int encoding 'abcd'

L wide character literal wchar_t wide literal L'w'
encoding

u8 UTF-8 character literal char8_t UTF-8 u8'x'

u UTF-16 character literal char16_t UTF-16 u'y'

U UTF-32 character literal char32_t UTF-32 U'z'

In translation phase 4, the value of a character-literal is determined using the range of repre-
sentable values of the character-literal’s type in translation phase 7. A non-encodable character
literal or a multicharacter literal has an implementation-defined value. The value of any other
kind of character-literal is determined as follows:

• A character-literal with a c-char-sequence consisting of a single basic-c-char, simple-escape-
sequence, or universal-character-name is the code unit value of the specified character
Unicode code point as encoded in the literal’s associated character encoding. [Note: If
the specified character Unicode code point lacks representation in the literal’s associated
character encoding or if it cannot be encoded as a single code unit, then the literal is a
non-encodable character literal. —end note]

• A character-literal with a c-char-sequence consisting of a single numeric-escape-sequence
has a value as follows:

– Let v be the integer value represented by the octal number comprising the sequence
of octal-digits in an octal-escape-sequence or by the hexadecimal number comprising
the sequence of hexadecimal-digits in a hexadecimal-escape-sequence.

– If v does not exceed the range of representable values of the character-literal’s type,
then the value is v.

– Otherwise, if the character-literal’s encoding-prefix is absent or L, and v does not
exceed the range of representable values of the corresponding unsigned type for
the underlying type of the character-literal’s type, then the value is the unique value
of the character-literal’s type T that is congruent to v modulo 2N , where N is the
width of T.

– Otherwise, the character-literal is ill-formed.

20

• A character-literalwith a c-char-sequence consisting of a single conditional-escape-sequence
is conditionally-supported and has an implementation-defined value.

The characterUnicode codepoint specifiedby a simple-escape-sequence is specified in [lex.ccon.esc].
[Note: Using an escape sequence for a question mark is supported for compatibility with ISO
C++ 2014 and ISO C. —end note]

Table 11: Simple escape sequences
character Unicode code point simple-escape-sequence

u+000a line feed \n
u+0009 character tabulation \t
u+000b line tabulation \v
u+0008 backspace \b
u+000d carriage return \r
u+000c form feed \f
u+0007 alert \a
u+005c reverse solidus \\
u+003f question mark \?
u+0027 apostrophe \'
u+0022 quotation mark \"

�? Floating-point literals [lex.fcon]

floating-point-literal:
decimal-floating-point-literal
hexadecimal-floating-point-literal

decimal-floating-point-literal:
fractional-constant exponent-partopt floating-point-suffixopt
digit-sequence exponent-part floating-point-suffixopt

hexadecimal-floating-point-literal:
hexadecimal-prefix hexadecimal-fractional-constant binary-exponent-part floating-
point-suffixopt
hexadecimal-prefix hexadecimal-digit-sequence binary-exponent-part floating-point-
suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence .

hexadecimal-fractional-constant:
hexadecimal-digit-sequenceopt . hexadecimal-digit-sequence
hexadecimal-digit-sequence .

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

21

binary-exponent-part:
p signopt digit-sequence
P signopt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence 'opt digit

floating-point-suffix: one of
f l f16 f32 f64 f128 bf16 F L F16 F32 F64 F128 BF16

The type of a floating-point-literal [basic.fundamental,basic.extended.fp] is determined by
its floating-point-suffix as specified in [lex.fcon.type]. [Note: The floating-point suffixes f16,
f32, f64, f128, bf16, F16, F32, F64, F128, and BF16 are conditionally-supported. See ??. —end
note]

Table 12: Types of floating-point-literals
floating-point-suffix type

none double
f or F float
l or L long double
f16 or F16 std::float16_t
f32 or F32 std::float32_t
f64 or F64 std::float64_t
f128 or F128 std::float128_t
bf16 or BF16 std::bfloat16_t

The significand of a floating-point-literal is the fractional-constant or digit-sequence of a decimal-
floating-point-literal or the hexadecimal-fractional-constant or hexadecimal-digit-sequence of a
hexadecimal-floating-point-literal. In the significand, the sequence of digit s or hexadecimal-
digit s and optional period are interpreted as a base N real number s, where N is 10 for a
decimal-floating-point-literal and 16 for a hexadecimal-floating-point-literal. [Note: Any optional
separating single quotes are ignored when determining the value. —end note] If an exponent-
part or binary-exponent-part is present, the exponent e of the floating-point-literal is the result of
interpreting the sequence of an optional sign and the digit s as a base 10 integer. Otherwise,
the exponent e is 0. The scaled value of the literal is s × 10e for a decimal-floating-point-
literal and s × 2e for a hexadecimal-floating-point-literal. [Example: The floating-point-literals
49.625 and 0xC.68p+2 have the same value. The floating-point-literals 1.602'176'565e-19 and
1.602176565e-19 have the same value. —end example]

If the scaled value is not in the range of representable values for its type, the program
is ill-formed. Otherwise, the value of a floating-point-literal is the scaled value if repre-
sentable, else the larger or smaller representable value nearest the scaled value, chosen in
an implementation-defined manner.

22

�? String literals [lex.string]

string-literal:
encoding-prefixopt " s-char-sequenceopt "
encoding-prefixopt R raw-string

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
basic-s-char
escape-sequence
universal-character-name

basic-s-char:
any member of the translation character set Unicode code point except the
u+0022 quotation mark,

u+005c reverse solidus, or new-line character

raw-string:
" d-char-sequenceopt (r-char-sequenceopt) d-char-sequenceopt "

r-char-sequence:
r-char
r-char-sequence r-char

r-char:
anymember of the translation character set Unicode code point, except a u+0029
right parenthesis followed by

the initial d-char-sequence (which may be empty) followed by a u+0022 quo-
tation mark

d-char-sequence:
d-char
d-char-sequence d-char

d-char:
any member of the basic character set except:

u+0020 space, u+0028 left parenthesis, u+0029 right parenthesis, u+005c reverse
solidus,

u+0009 character tabulation, u+000b line tabulation, u+000c form feed, and
new-line

The kind of a string-literal, its type, and its associated character encoding[lex.charset] are deter-
mined by its encoding prefix and sequence of s-char s or r-char s as defined by [lex.string.literal]
where n is the number of encoded code units as described below.

A string-literal that has an R in the prefix is a raw string literal. The d-char-sequence serves as a
delimiter. The terminating d-char-sequence of a raw-string is the same sequence of characters
Unicode code points as the initial d-char-sequence. A d-char-sequence shall consist of at most
16 characters Unicode code points.

[Note: The characters '(' and ')' are permitted in a raw-string. Thus, R"delimiter((a|b))delimiter"
is equivalent to "(a|b)". —end note]

23

Table 13: String literals

Encoding Kind Type Associated Examples
prefix character

encoding

none ordinary string literal array of n
const char

ordinary
literal encod-
ing

"ordinary string"
R"(ordinary raw string)"

L wide string literal array of n
const wchar_t

wide literal
encoding

L"wide string"
LR"w(wide raw string)w"

u8 UTF-8 string literal array of n
const char8_t

UTF-8 u8"UTF-8 string"
u8R"x(UTF-8 raw
string)x"

u UTF-16 string literal array of n
const char16_-
t

UTF-16 u"UTF-16 string"
uR"y(UTF-16 raw
string)y"

U UTF-32 string literal array of n
const char32_-
t

UTF-32 U"UTF-32 string"
UR"z(UTF-32 raw
string)z"

[Note: A source-file new-line in a raw string literal results in a new-line in the resulting execution
string literal. Assuming no whitespace at the beginning of lines in the following example, the
assert will succeed:

const char* p = R"(a\
b
c)";
assert(std::strcmp(p, "a\\\nb\nc") == 0);

—end note]

[Example: The raw string

R"a(
)\
a"
)a"

is equivalent to "\n)\\\na\"\n". The raw string

R"(x = "\"y\"")"

is equivalent to "x = \"\\\"y\\\"\"". —end example]

Ordinary string literals and UTF-8 string literals are also referred to as narrow string literals.

24

The common encoding-prefix for a sequence of adjacent string-literal s is determined pairwise
as follows: If two string-literals have the same encoding-prefix, the common encoding-prefix is
that encoding-prefix. If one string-literal has no encoding-prefix, the common encoding-prefix is
that of the other string-literal. Any other combinations are ill-formed. [Note: A string-literal’s
rawness has no effect on the determination of the common encoding-prefix. —end note]

In translation phase 6[lex.phases], adjacent string-literal s are concatenated. The lexical struc-
ture and grouping of the contents of the individual string-literal s is retained. [Example:

"\xA" "B"

represents the code unit '\xA' and the character 'B' after concatenation (and not the single
code unit '\xAB'). Similarly,

R"(\u00)" "41"

represents six characters, starting with a backslash and ending with the digit 1 (and not the
single character 'A' specified by a universal-character-name).

[lex.string.concat] has some examples of valid concatenations. —end example]

Table 14: String literal concatenations
Source Means Source Means Source Means

u"a" u"b" u"ab" U"a" U"b" U"ab" L"a" L"b" L"ab"
u"a" "b" u"ab" U"a" "b" U"ab" L"a" "b" L"ab"
"a" u"b" u"ab" "a" U"b" U"ab" "a" L"b" L"ab"

Evaluating a string-literal results in a string literal object with static storage duration[basic.stc].
Whether all string-literal s are distinct (that is, are stored in nonoverlapping objects) and
whether successive evaluations of a string-literal yield the same or a different object is un-
specified. [Note: The effect of attempting to modify a string literal object is undefined. —end
note]

String literal objects are initialized with the sequence of code unit values corresponding to
the string-literal’s sequence of s-char s (originally from non-raw string literals) and r-char s
(originally from raw string literals), plus a terminating u+0000 null character, in order as follows:

• The sequence of characters Unicode code points denoted by each contiguous sequence
of basic-s-char s, r-char s, simple-escape-sequence s[lex.ccon], and universal-character-name
s[lex.charset] is encoded to a code unit sequence using the string-literal’s associated
character encoding. If a character Unicode code point lacks representation in the as-
sociated character encoding, then the string-literal is conditionally-supported and an
implementation-defined code unit sequence is encoded. [Note: No character Unicode
code point lacks representation in any of the UCS encoding forms. —end note] When
encoding a stateful character encoding, implementations should encode the first such
sequence beginning with the initial encoding state and encode subsequent sequences
beginning with the final encoding state of the prior sequence. [Note: The encoded code

25

unit sequence can differ from the sequence of code units that would be obtained by
encoding each character Unicode code point independently. —end note]

• Each numeric-escape-sequence [lex.ccon] contributes a single code unit with a value as
follows:

– Let v be the integer value represented by the octal number comprising the sequence
of octal-digits in an octal-escape-sequence or by the hexadecimal number comprising
the sequence of hexadecimal-digits in a hexadecimal-escape-sequence.

– If v does not exceed the range of representable values of the string-literal’s array
element type, then the value is v.

– Otherwise, if the string-literal’s encoding-prefix is absent or L, and v does not exceed
the range of representable values of the corresponding unsigned type for the
underlying type of the string-literal’s array element type, then the value is the unique
value of the string-literal’s array element type T that is congruent to v modulo 2N ,
where N is the width of T.

– Otherwise, the string-literal is ill-formed.

When encoding a stateful character encoding, these sequences should have no effect
on encoding state.

• Each conditional-escape-sequence [lex.ccon] contributes an implementation-defined code
unit sequence. When encoding a stateful character encoding, it is implementation-
defined what effect these sequences have on encoding state.

�? Boolean literals [lex.bool]

boolean-literal:
false
true

The Boolean literals are the keywords false and true. Such literals have type bool.

�? Pointer literals [lex.nullptr]

pointer-literal:
nullptr

The pointer literal is the keyword nullptr. It has type std::nullptr_t. [Note: std::nullptr_t
is a distinct type that is neither a pointer type nor a pointer-to-member type; rather, a prvalue
of this type is a null pointer constant and can be converted to a null pointer value or null
member pointer value. See ?? and ??. —end note]

26

�? User-defined literals [lex.ext]

user-defined-literal:
user-defined-integer-literal
user-defined-floating-point-literal
user-defined-string-literal
user-defined-character-literal

user-defined-integer-literal:
decimal-literal ud-suffix
octal-literal ud-suffix
hexadecimal-literal ud-suffix
binary-literal ud-suffix

user-defined-floating-point-literal:
fractional-constant exponent-partopt ud-suffix
digit-sequence exponent-part ud-suffix
hexadecimal-prefix hexadecimal-fractional-constant binary-exponent-part ud-suffix
hexadecimal-prefix hexadecimal-digit-sequence binary-exponent-part ud-suffix

user-defined-string-literal:
string-literal ud-suffix

user-defined-character-literal:
character-literal ud-suffix

ud-suffix:
identifier

If a token matches both user-defined-literal and another literal kind, it is treated as the latter.
[Example: 123_km is a user-defined-literal, but 12LL is an integer-literal. —end example] The
syntactic non-terminal preceding the ud-suffix in a user-defined-literal is taken to be the longest
sequence of characters Unicode code points that could match that non-terminal.

A user-defined-literal is treated as a call to a literal operator or literal operator template[over.lit-
eral]. To determine the form of this call for a given user-defined-literal L with ud-suffix X, first
let S be the set of declarations found by unqualified lookup for the literal-operator-id whose
literal suffix identifier is X[basic.lookup.unqual]. S shall not be empty.

If L is a user-defined-integer-literal, let n be the literal without its ud-suffix. If S contains a
literal operator with parameter type unsigned long long, the literal L is treated as a call of the
form

operator "" X(nULL)

Otherwise, S shall contain a raw literal operator or a numeric literal operator template[over.lit-
eral] but not both. If S contains a raw literal operator, the literal L is treated as a call of the
form

operator "" X("n")

Otherwise (S contains a numeric literal operator template), L is treated as a call of the form

operator "" X<'c1', 'c2', ... 'ck'>()

27

where n is the source character code point sequence c1c2...ck. [Note: The sequence c1c2...ck

can only contain characters code points from the basic character set. —end note]

If L is a user-defined-floating-point-literal, let f be the literal without its ud-suffix. If S contains a
literal operator with parameter type long double, the literal L is treated as a call of the form

operator "" X(fL)

Otherwise, S shall contain a raw literal operator or a numeric literal operator template[over.lit-
eral] but not both. If S contains a raw literal operator, the literal L is treated as a call of the
form

operator "" X("f")

Otherwise (S contains a numeric literal operator template), L is treated as a call of the form

operator "" X<'c1', 'c2', ... 'ck'>()

where f is the source character code point sequence c1c2...ck. [Note: The sequence c1c2...ck

can only contain characters code points from the basic character set. —end note]

If L is a user-defined-string-literal, let str be the literal without its ud-suffix and let len be the
number of code units in str (i.e., its length excluding the terminating null character). If S
contains a literal operator template with a non-type template parameter for which str is a
well-formed template-argument, the literal L is treated as a call of the form

operator "" X<str>()

Otherwise, the literal L is treated as a call of the form

operator "" X(str, len)

If L is a user-defined-character-literal, let ch be the literal without its ud-suffix. S shall contain
a literal operator[over.literal] whose only parameter has the type of ch and the literal L is
treated as a call of the form

operator "" X(ch)

[Example:

long double operator "" _w(long double);
std::string operator "" _w(const char16_t*, std::size_t);
unsigned operator "" _w(const char*);
int main() {

1.2_w; // calls operator "" _w(1.2L)
u"one"_w; // calls operator "" _w(u"one", 3)
12_w; // calls operator "" _w("12")
"two"_w; // error: no applicable literal operator

}

—end example]

28

In translation phase 6[lex.phases], adjacent string-literal s are concatenated and user-defined-
string-literals are considered string-literal s for that purpose. During concatenation, ud-suffixes
are removed and ignored and the concatenation process occurs as described in ??. At the end
of phase 6, if a string-literal is the result of a concatenation involving at least one user-defined-
string-literal, all the participating user-defined-string-literals shall have the same ud-suffix and
that suffix is applied to the result of the concatenation.

[Example:

int main() {
L"A" "B" "C"_x; // OK, same as L"ABC"_x
"P"_x "Q" "R"_y; // error: two different ud-suffixes

}

—end example]

�? Basics [basic]

�? Preamble [basic.pre]

Two names are the same if

• they are identifiers composed of the same character Unicode code point sequence, or

• they are operator-function-ids formed with the same operator, or

• they are conversion-function-ids formed with equivalent[temp.over.link] types, or

• they are literal-operator-ids[over.literal] formed with the same literal suffix identifier.

�? Preprocessing directives [cpp]

�? Preamble [cpp.pre]

[...]

A preprocessing directive consists of a sequence of preprocessing tokens that satisfies the
following constraints: At the start of translation phase 4, the first token in the sequence,
referred to as a directive-introducing token, begins with the first character Unicode code point
in the source file (optionally after whitespace containing no new-line characters) or follows
whitespace containing at least one new-line character, and is [...].

�? Source file inclusion [cpp.include]

[...]

29

The implementation shall provide unique mappings for sequences consisting of one or more
nondigits or digits[lex.name] followed by a period (.) and a single nondigit. The first character
Unicode code point shall not be a digit. The implementation may ignore distinctions of
alphabetical case.

[Editor’s note: ”case” is mentioned by Unicode. Lets not consider how an implementation can
ignore casing in this paper :).]

�? Pragma operator [cpp.pragma.op]

Aunary operator expression of the form: _Pragma (string-literal)

is processed as follows: The string-literal is destringized by deleting the L prefix, if present,
deleting the leading and trailing double-quotes, replacing each escape sequence \" by a
double-quote, and replacing each escape sequence \\ by a single backslash. The resulting
sequence of characters Unicode code points is processed through translation phase 3 to pro-
duce preprocessing tokens that are executed as if theywere the pp-tokens in a pragmadirective.
The original four preprocessing tokens in the unary operator expression are removed.

�? Annex B (normative) Implementation quantities[implimits]

The limits may constrain quantities that include those described below or others. The brack-
eted number following each quantity is recommended as the minimum for that quantity.
However, these quantities are only guidelines and do not determine compliance.

• Nesting levels of parenthesized expressions[expr.prim.paren] within a full-expression
[256].

• Number of characters Unicode code points in an internal identifier[lex.name] or macro
name[cpp.replace] [1 024].

• Number of characters Unicode code points in an external identifier[lex.name,basic.link]
[1 024].

• External identifiers[basic.link] in one translation unit [65 536].

• Identifiers with block scope declared in one block[basic.scope.block] [1 024].

�? C++ and ISO C++ 2014 [diff.cpp14]

�? ??: lexical conventions [diff.cpp14.lex]

Change: Removal of trigraph support as a required feature.
Rationale: Prevents accidental uses of trigraphs in non-raw string literals and comments.
Effect on original feature: Valid C++ 2014 code that uses trigraphs may not be valid or may
have different semantics in this revision of C++. Implementations may choose to translate

30

trigraphs as specified in C++ 2014 if they appear outside of a raw string literal, as part of
the implementation-defined mapping from input source file characters to the translation
character set Unicode.

References

[N4892] Thomas Köppe Working Draft, Standard for Programming Language C++
https://wg21.link/N4892

31

https://wg21.link/N4892

	1 Abstract
	2 Motivation
	3 Changes
	4 Wording
	5 Separate translation
	6 Phases of translation
	7 Character sets
	8 Preprocessing tokens
	9 Alternative tokens
	10 Tokens
	11 Comments
	12 Header names
	13 Preprocessing numbers
	14 Identifiers
	15 Keywords
	16 Operators and punctuators
	17 Literals
	17.1 Kinds of literals
	17.2 Integer literals
	17.3 Character literals
	17.4 Floating-point literals
	17.5 String literals
	17.6 Boolean literals
	17.7 Pointer literals
	17.8 User-defined literals

	18 Basics
	19 Preamble
	20 Preprocessing directives
	21 Preamble
	22 Source file inclusion
	23 Pragma operator
	24 Annex B (normative) Implementation quantities
	25 C++ and ISO C++ 2014
	25.1 ??: lexical conventions

	26 References

