
user-generated static_assertmessages
Document #: D2741R0
Date: 2022-12-09
Programming Language C++
Audience: EWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Abstract

We propose that static_assert should accept user-generated string-like objects as their
diagnostic message.

Revisions

R0

Initial revision

Motivation

We propose that the message of a static_assert could be an arbitrary constant expression
producing a sequence of characters, rather than be limited to string literals. This would allow
libraries doing work at compile time to be able to better diagnose the exact problem. This
could be used, for example, to

• Explain why a formatting string in format is invalid

• Explain why as compile time regex in CTRE is invalid. In general, this would be helpful for
any library that generates code at compile time, such as DSL generators (lexy), Unicode
table generators, unit test frameworks, or any other library or DSLwho needs to diagnose
complex constraints.

• Better explain the constraints of compile-times APIs

• Reduce the reliance on the preprocessor and stringification of identifiers

• Avoid duplication in static assert messages

1

mailto:corentin.jabot@gmail.com
https://github.com/hanickadot/compile-time-regular-expressions
https://github.com/foonathan/lexy

Without this proposal

template <typename T, auto Expected, unsigned long Size = sizeof(T)>
constexpr bool ensure_size() {

static_assert(sizeof(T) == Expected, "Unexpected sizeof");
return true;

}
static_assert(ensure_size<S, 1>());

error: static assertion failed due to requirement 'sizeof(S) == 1':
Unexpected sizeof

static_assert(sizeof(T) == Expected, "Unexpected sizeof");
^ ~~~~~~~~~~~~~~~~~~~~~
note: in instantiation of function template specialization

'ensure_size<S, 1, 4ULL>' requested here
static_assert(ensure_size<S, 1>());
^
note: expression evaluates to '4 == 1'
static_assert(sizeof(T) == Expected, "Unexpected sizeof");

~~~~~~~~~~^~~~~~~~~~~
1 error generated.
Compiler returned: 1

With this proposal

static_assert(sizeof(S) == 1,
std::format("Unexpected sizeof: expected 1, got {}", sizeof(S))); // *

error: static assertion failed due to requirement 'sizeof(S) == 1':
Unexpected sizeof: expected 1, got 4

static_assert(sizeof(S) == 1,
^ ~~~~~~~~~~~~~~
note: expression evaluates to '4 == 1'
static_assert(sizeof(S) == 1,

~~~~~~~~~~^~~~
1 error generated.
Compiler returned: 1

* constexpr std::format is not proposed in this proposal (and very much intentionally so this
is but one building block). We should note however that libfmt has supported constexpr
formatting since version 8.0.0, mid-2021.

This both simplifies the code and makes the diagnostic clearer.

2

https://github.com/fmtlib/fmt/releases

Interaction with reflection

The capabilities presented here would be made more useful by reflection (P1240 [?]), notably
for the ability to use the name of an instantiated template parameters in diagnostic messages,
however, both features are independently useful and do not overlap and there is no need to
tie these features together.

Community use cases

Here is a sampling of discussions of this facility online

• Stackoverflow - How to combine static_assert with sizeof and stringify?

Memory usage is quite critical inmy application. Therefore I have specific
asserts that check for the memory size at compile time and give a static_-
assert if the size is different from what we considered correct before. [..]
The problem is that when this static_assert goes off, it might be quite
difficult to find out what the new size should be. [...] It would be much
handier if I could include the actual size.

People replying suggest instead injecting a template parameter in the function enclosing
the static_assert, which would be outputted by most compilers. The generated error
message is not user-friendly.

In instantiation of ‘void check_size() [with ToCheck = foo; long
unsigned int ExpectedSize = 8ul; long unsigned int RealSize = 16ul’]:

bla.cpp:15:22: required from here
bla.cpp:5:1: error: static assertion failed: Size is off!

• Stackoverflow - Better Message For ‘static_assert‘ on Object Size

Similar use case.

• Display integer at compile time in static_assert()

The user would like to express the following code:

enum First
{

a,
b,
c,
nbElementFirstEnum,

};
enum Second
{

a,

3

https://wg21.link/P1240
https://stackoverflow.com/questions/11526526/how-to-combine-static-assert-with-sizeof-and-stringify
https://stackoverflow.com/questions/11526526/how-to-combine-static-assert-with-sizeof-and-stringify
https://stackoverflow.com/questions/13837668/display-integer-at-compile-time-in-static-assert

b,
c,
nbElementSecondEnum,

};

static_assert(
First::nbElementFirstEnum == Second::nbElementSecondEnum,
"Not the same number of element in the enums." + First::

nbElementFirstEnum + " " + Second::nbElementSecondEnum);

There again, the suggestion is to surface these values as a template parameter, hoping
the compiler would show enough content to surface them.

• Stack overflow - How to pass a not explicitly string literal error message to a static_assert?

In this question, the user would like to reuse the same message in multiple static_assert
and is reluctant to either copy-paste their code or use a macro. Alas, there is no better
solution.

• Many other questions in stack overflow would require reflection to be fully solved: They
are all more or less identical to this one: C++11 static_assert: Parameterized error
messages

• That feature was previously requested and discussed on std-proposals here, and here.

Design

We proposed to allow a constant expression string as the second parameter of static_assert.
That’s it. In particular, we propose no way to construct a string, as these are orthogonal
concerns that can be handled by reflection, making std::format constexpr, or by string inter-
polation (P1819r0 [?]), or simply by concatenating std::strings or using third-party libraries,
or, a combination of some or all of the above. The question we are answering in this paper is:
I have a string, can I use it as my static_assertmessage?

What is a string?

We do not think this core-language feature should be tied to a specific type or header like
std::string_view. Indeedmany user-defined types can be used to form and store a diagnostic
message, and relying on details of the standard libraries are likely to be more complicated
than note for implementers and users alike. Instead, we propose a definition of a string-like
type that allows the support of string and string_view, as well as similar user-defined types.
A compatible string-like type is a type that:

• Has a size()method that produces an integer

• Has a data()method that produces a pointer of character type such that

• The elements in the range [data(), data()+size()) are valid.

4

https://stackoverflow.com/questions/57501016/how-to-pass-a-not-explicitly-string-literal-error-message-to-a-static-assert
https://stackoverflow.com/questions/11050511/c11-static-assert-parameterized-error-messages
https://stackoverflow.com/questions/11050511/c11-static-assert-parameterized-error-messages
https://lists.isocpp.org/std-proposals/2019/07/0155.php
https://groups.google.com/a/isocpp.org/g/std-proposals/c/eKNlsA4Vd-M
https://wg21.link/P1819r0

This is consistent with how structured bindings and range for loops work.

Encodings

Constant evaluation deals with literal encoding, which may not be UTF-8. As such, static_-
assert should allow both char and char8_t as messages and will need to convert both to the
encoding of diagnostic messages. This is different from string literals in static assert which are
not evaluated and converted directly from Unicode (likely UTF-8) to the encoding of diagnostic
messages.

Support for wchar_t, char16_t, char32_t is not proposed, but would not be an issue.

Note however that, if an implementation did not have the ability to convert from the literal
encoding to the diagnostic encoding, properly rendering non-basic characters in a sequence
of char might be the most involved part of this proposal. same if we were to support wchar_t.
Supporting any of the UTF encodings is however a non-issue.

What about null-terminated strings?

Null-terminated strings are mostly useful to communicate with C libraries and systems and
are rarely useful at compile time. While it would not be a huge effort to support them, we
think it’s best to keep the design simple.

Alternatives

In the status quo, depending on the specific use case, macros can be used to stringify some
arguments, or the static_assert can be lifted in a function template such that most compilers
should print the value of this template parameters as part of the diagnostic message.

Neither of these solutions is really satisfying or complete.

Previous work

A similar capability was previously proposed in 2014 by N4433 [1]. At the time, the consensus
was that it required too many pieces that did not exist then. As string and string_view are
constexpr, std::format could be made constexpr (and the fmt lib already can create messages
at compile times), and reflection is upon us, we think this feature could be immediately useful.

Future work

As static_assert is constantly evaluated, it cannot be used to diagnose, for example, unsat-
isfied preconditions on parameters and local variables. For that, we will need an additional
facility composed of consteval functions, as proposed by P0596R1 [2].

5

https://wg21.link/N4433
https://wg21.link/P0596R1

Implementation

This feature was implemented in Circle and prototyped in Clang, with no difficulties.

Wording

[Editor’s note: This wording assumes P2361R5 has been applied to the working draft] .

�? Preamble [dcl.pre]

simple-declaration:
decl-specifier-seq init-declarator-listopt ;
attribute-specifier-seq decl-specifier-seq init-declarator-list ;
attribute-specifier-seqopt decl-specifier-seq ref-qualifieropt [identifier-list] initializer
;

static_assert-declaration:
static_assert (constant-expression) ;
static_assert (constant-expression , unevaluated-string) ;
static_assert (constant-expression , constant-expression) ;

empty-declaration:
;

attribute-declaration:
attribute-specifier-seq ;

In a static_assert-declaration, the first constant-expression E is contextually converted to bool
and the converted expression shall be a constant expression.

If a second constant-expression Msg is provided:

• Msg.size() shall be a well-formed integral constant expression,

• Msg.data() shall be a well-formed constant expression whose type is cv char* or cv
char8_t*, and

• [Msg.data(), Msg.data() + E.size()) shall denote a valid range.

If the value of the expression E when so converted is true, the declaration has no effect.
Otherwise, the program is ill-formed and the resulting diagnostic message should include
the text of the string-literal, if one is supplied.

• the text formed by the sequence [Msg.data(), Msg.data() + E.size()) if Msg is su-
plied, or

• the text of the string-literal, if one is supplied.

[Example:

static_assert(sizeof(int) == sizeof(void*), "wrong pointer size");
static_assert(sizeof(int[2])); // OK, narrowing allowed

6

—end example]

Feature test macro

[Editor’s note: In [tab:cpp.predefined.ft], bump the value of__cpp_static_assert to the date
of adoption] .

References

[1] Michael Price. N4433: Flexible static_assert messages. https://wg21.link/n4433, 4 2015.

[2] Daveed Vandevoorde. P0596R1: Side-effects in constant evaluation: Output and consteval
variables. https://wg21.link/p0596r1, 10 2019.

[N4892] Thomas Köppe Working Draft, Standard for Programming Language C++
https://wg21.link/N4892

7

https://wg21.link/n4433
https://wg21.link/p0596r1
https://wg21.link/N4892

	1 Abstract
	2 Revisions
	2.1 R0
	2.2 Motivation
	2.3 Without this proposal
	2.4 With this proposal
	2.5 Interaction with reflection
	2.6 Community use cases

	3 Design
	3.1 What is a string?
	3.2 Encodings
	3.3 What about null-terminated strings?
	3.4 Alternatives
	3.5 Previous work
	3.6 Future work

	4 Implementation
	5 Wording
	6 Preamble
	6.1 Feature test macro

	7 References

