
Doc No.: P2691R0

Date: 2022-10-14

Group: JTC 1 / SC 22 / WG 21

Allow referencing inline functions with internal linkage
from outside their defining header unit

Herb Sutter, Gabriel Dos Reis, Stephan T. Lavavej, Michael Spencer

Background and overview
[P2003] made several suggestions regarding modules, most of which were adopted in Prague (wiki notes

are here).

However, this suggestion was not adopted:

The second is that it is ill-formed to use internal linkage entities outside of that header unit. This

is problematic as it is quite common for headers that want to be compatible with C to use

static inline for inline functions, as C’s version of inline works differently.

[…] static inline functions are extremely common today, and a large portion of C headers

would not be usable as header units if they were not allowed to be referenced. As header units

exists purely to support existing code and code that will likely never move to modules (like C

code), it would significantly harm modules adoption to not allow this. The consequences are the

same as using static inline from a textual header today. We’re not introducing any new UB,

just not stopping people from hitting it.

The standard currently says that a header that contains a static inline function can be turned into a

header unit, but referencing the static inline function is an error in some cases (allowed in others,

deprecated in still others).

[P2003] reported that this was an issue for Apple headers.

Subsequent experience has shown the extent of the problem is wider than anticipated in Prague. We

can report that user feedback from field experience with modules has shown that this has become a

significant modules adoption blocker, as [P2003] anticipated.

Proposal

(1) Allow referencing inline functions with internal linkage from outside their defining

header unit
We should fix this problem for header units, by adopting the direction proposed in [P2003]. This paper

re-proposes [P2003]’s proposal that:

https://wg21.link/p2003r0
https://wiki.edg.com/bin/view/Wg21prague/P2003R0-EWG
https://wiki.edg.com/bin/view/Wg21prague/P2003R0-EWG
https://wg21.link/p2003r0
https://wg21.link/p2003r0
https://wg21.link/p2003r0
https://wg21.link/p2003r0

• header units and named modules should support the usage of entities declared as static

inline,

• with the semantics that the translation unit that ODR-uses the entity gets its own “definition”

(same as with an #include header file).

(2) Allow exporting using-declarations that name entities with internal linkage
Today, named modules explicitly prohibit exporting an entity declared with internal linkage.

However, it would be desirable to enable implementations of [P2465R3] like the following to work even

if time is declared static inline:

// in <ctime> when building C++23’s module ‘std’

#include <time.h>

namespace std {

 export using ::time;

}

Certainly, there is evidence that users expect the following program to work:

import std;

int main() { time(0); }

If we extend the fix to this problem to cover using-declarations, then it will be more broadly applicable,

will simplify module std implementation techniques, and will also cover the use case where the

exported using-declaration of something defined and attaching to the global module. Exporting a using-

declaration is a common technique for projecting a modular view over a header. Imagine

module;

#include <unistd.h>

#include <sys/stat.h>

export module OS.Filesystem;

namespace FS {

 export using ::stat; // ::stat might be “static inline”

}

If the function ::stat was defined by the C header <sys/stat.h> as a static inline function,

then the above code won’t compile today because the using-declaration is naming something with

internal linkage and that is not allowed. Note that the declarations being referred to by the using-

declaration are not attached to the named module OS.Filesystem.

However, this would need wordsmithing… the rule that

https://wg21.link/p2465

… E is not a function or function template and D contains an id-expression, type-

specifier, nested-name-specifier, template-name, or concept-name denoting E …

could exclude using-declarations, but that could still restrict using std::time or std::stat in inline

functions (and other potential exposures) in module interface units or module partitions.

Discussion

Why can’t C++ implementers just go fix their headers?
This problem manifests for any header that wants to be consumable from both C and C++, not just

standard headers.

Even for just the standard headers, the C++ implementation vendor is not always able to change the C

headers. Even when they can, it can be a lot of work and still not end up being a general solution. For

example, here is a bug where we could in principle remove static inline from a standard C function,

but it could not be done quickly (because a different team owns the header) and so in the meantime we

had to implement a workaround:

Bug 1163516: Visual Studio can't find time() function using modules and std.core

Current status: For the time family functions specifically, one of us (Lavavej) found a fairly

elaborate workaround without changing the UCRT header itself. However, we believe that the

workaround won’t handle all scenarios because it involves defining another std::time, so

scenarios of the form #include <ctime> followed by import std; won't be able to call

std::time unambiguously. This is the best we can do until the actual header can be changed.

But of course we cannot in general change the affected headers, most of which are not owned by the

C++ implementation. This example is just to illustrate the difficulties that this problem creates.

References
[P2003R0] M. Spencer. “Fixing Internal and External Linkage Entities in Header Units” (WG 21 paper,

January 2020).

[P2465R3] S. Lavavej et al. “Standard Library Modules std and std.compat” (WG 21 paper, March

2022).

https://nam06.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdevdiv.visualstudio.com%2FDevDiv%2F_workitems%2Fedit%2F1163516&data=05%7C01%7Chsutter%40microsoft.com%7Caecc872f95314d9814a108da9a777732%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C637992135141351029%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=bEYTCZc%2FdHtlsWY6%2FCpSRSuOYqd6qlaYpPBgYN1Azjo%3D&reserved=0
https://nam06.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Fmicrosoft%2FSTL%2Fblob%2Fb5465174a872ae950f86af5a91e9ededcf7a4b15%2Fstl%2Finc%2Fctime%23L33-L77&data=05%7C01%7Chsutter%40microsoft.com%7Caecc872f95314d9814a108da9a777732%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C637992135141351029%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=A1pXOtH1F3QAyDcetwSdq7hHuMuVPvR9afaEqqupCvw%3D&reserved=0
https://nam06.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Fmicrosoft%2FSTL%2Fblob%2Fb5465174a872ae950f86af5a91e9ededcf7a4b15%2Fstl%2Finc%2Fctime%23L33-L77&data=05%7C01%7Chsutter%40microsoft.com%7Caecc872f95314d9814a108da9a777732%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C637992135141351029%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=A1pXOtH1F3QAyDcetwSdq7hHuMuVPvR9afaEqqupCvw%3D&reserved=0
https://wg21.link/p2003r0
https://wg21.link/p2465

