
Role based parameter passing
Document: P2668R0

Date: 2022-10-14

Project: Programming language C++

Audience: EWG(I)

Reply-to: Bengt Gustafsson, bengt.gustafsson@beamways.com

Role based parameter passing
Introduction
Scope and motivation
Impact on the standard

The type set clause
type set declarations
Usage of a type set

type-set after parameter list of member functions
Examples of more complicated parameter types
Parameter packs declared with a type set

Semantics of a function declaration with type sets
Overloading rules

Rules for function declarations
Rules for function definitions
inline functions

Guaranteed same behaviour
Name mangling
Standard type set templates

in
ref
dual
fwd
mv

Notes on standard type set qualification
When is the using directive introduced

Syntax alternatives considered
Repurpose typedef
A magical class template
A magical variable template

Technical specification
Future extensions (Not proposed)

type sets for variable declarations
type sets for return types
Using in-situ type sets of one to clear up declarations
Implicitly declared type set templates
Secondary type sets
Chaining type sets
Type sets as template parameters and in class- and block scopes

Acknowledgements

af://n0
mailto:bengt.gustafsson@beamways.com
af://n11

Introduction
This proposal introduces a way to get a role based parameter passing style similar to Herb
Sutter's ideas in D0708. The basic idea is to be able to name closed sets of types and use them to
create closed sets of function declarations. Here are some examples introducing the principles.
Step 7 and 8 are the typical uses of the feature.

// 1. Declare three sin functions using a type set.

auto sin(<float, double, const long double&> x) { ... }

// 2. Declare a type_set using a new keyword

type_set floats = <float, double, const long double&>;

// 3. Use it for some functions

auto cos(floats x) { ... }

auto tan(floats x) { ... }

// 4. Declare nine functions at once.

auto floating_multiply(floats a, floats b) { return a * b; }

// 5. Overload floating_multiply for one parameter type combination

double floating_multiply(float a, float b) { return double(a) * b; }

// 6. Declare a type_set template

template<typename T> type_set fwd = <const T&, T&&>;

// 7. Declare a pair of functions that forward a std::string parameter

void set_name(fwd std::string name) { m_name = std::forward<decltype(name)>

(name); }

// 8. Declare a pair of template functions, (not three, i.e. T&& does not

implicitly mean T& too)

template<typename T> void use_value(fwd T value);

void use_value2(fwd auto value); // Shorthand syntax

// 9. Constraining the type with concepts is supported

template<std::regular T> void use_value3(fwd T value);

void use_value4(fwd std::regular auto value); // Shorthand syntax

// 10. A type set of one can be used to disable the universal reference aspect of

templated parameters

template<typename T> void only_rvalue(<T&&> rvalue);

template<typename T> void only_reference(<T&> lvalue);

class Test {

 // 11. A templated type_set can be placed after a non-static member function

declaration, but

 // this requires additional help.

 void give_contents(Taker& taker) fwd {

taker.take(std::forward<decltype(m_contents)>(m_contents)); }

 // 12. Deducing this can now easily avoid CRTP.

 void give_contents2(this fwd Test self, Taker& taker) {

 taker.take(std::forward<decltype(self.m_contents)>(self.m_contents));

af://n11
https://github.com/hsutter/708/blob/main/708.pdf

1. The syntax for a type set when used directly in a declaration uses angle brackets, which is
easily parsed as < can never start an expression or declaration today.

2. A new reserved word (bike-sheddable) is introduced to allow naming sets of types for later
use.

3. When used as a parameter type a type_set must be recognized by the compiler during
parsing, just like a concept-name has to be recognized when parsing a template parameter
list today.

4. When more than one parameter is declared using a type set functions with all combinations
of parameter types are declared.

5. Function declarations with type sets can be overloaded with regular functions.
6. type_set declarations can be templates where the first template parameter must be a type.

The template arguments are substituted into the type set elements.
7. When a templated type_set is used in a function declaration the first template parameter is

taken from the succeeding type, in a similar fashion to how concepts substitute the type to
test into the first template parameter. But note that we are still declaring an overload set, in
this case consisting of set_name(const std::string& name) and set_name(std::string&&

name) . Inside the function body the type of name differs between the overloads which share

the definition, so forwarding is required.
8. When combined with a template parameter a set of template functions is created, which

have the universal reference mechanism disabled for parameters that are specified using
type sets.

9. When types are constrained by concepts the argument type is subjected to the concept
check and if it passes all the function specializations generated from the declaration are
viable.

10. The function signatures generated using type sets, even if templated, do not automatically
expand to universal references like regular template parameters. This can be used to avoid
undesired function overloads from being formed.

11. When applied to a function the type of the this pointer is affected, but this code always
copies as members are lvalues in rvalue qualified functions, which means that there is no
way to forward m_contents correctly for both generated function definitions.

12. "Deducing this" comes to the rescue, and the example also shows how to avoid the
"automatic CRTP" problem of deducing this.

Note that with P2666 (last use optimization) the std::forward calls in 7, 11, 12 are unnecessary, as
these are all last uses of their respective parameters:

 }

};

Scope and motivation
The motivation for this proposal is to simplify creating optimal overload sets without having to
think so much about it. P0708 contains an analysis based on the amount of rules and conventions
in style guides and education material devoted to function declarations and function calling. In
contrast with P0708 this proposal contains a general mechanism rather than a fixed set of named
calling conventions. This said, a small set of useful type set templates in the namespace
std::type_set_templates are also included in the proposal.

The reason for choosing a general mechanism is partly that this is the C++ way: Build general
abstractions instead of special purpose features. But also that this actually provides additional
useful functionality such as the <T&> construct.

This proposal works best in concert with P2665 which allows an overload set to contain both T

and const T& , and P2666 which greatly reduces the need for using std::forward and

std::move . Example 7 and 11 in the introduction clearly shows the advantages of P2666.

Impact on the standard
The primary impact on parsing is rules for function parameters, as well as the new type set
declarations. The second large area affected is rules to synthesize the individual declarations and
how overloading works.

The type set clause

Parsing a type-set-clause is similar to parsing a template-argument-list. Such parsing is started
when a < is seen where a type-id is allowed. type-set-clauses are only allowed when a parameter

is declared and when a type-set is defined.

// 7. Declare a pair of functions that forward a std::string parameter

void set_name(fwd std::string name) { m_name = name; }

 class Test {

 // 11. A templated type_set can be placed after a non-static member function

declaration

 void give_contents(Taker& taker) fwd { taker.take(m_contents); }

 // 12. Deducing this can now easily avoid CRTP. This works exactly as 11, but

is more verbose.

 void give_contents2(this fwd Test self, Taker& taker) {

 taker.take(self.m_contents);

 }

};

type-set-clause:

 < type-id-list >

type-id-list:

 type-id

 type-id-list , type-id

af://n12
af://n54
af://n66

type set declarations

The new keyword type_set is used only as a means to create named type sets, with or without
template-introducer. With this proposal it is only valid in namespace scope, like concepts are
today.

In contrast with concepts typeset declarations can be non-templated, although this is not a very
important feature. The absolute majority of cases there will have a single type parameter but in it
seems that it could be useful to allow additional template parameters, in a similar vein as for
concepts. For now no examples of this are in this proposal, this needs further exploration. As
template-declaration consists of a template introducer followed by declaration this is where the
new type-set-declaration production must go.

Usage of a type set

In the grammar excerpt below a new parameter-decl-specifier production has been introduced to
reflect the fact that in addition to the decl-specifier-seq case there are now cases strting with a ts-
name. As a decl-specifier-seq may start with the name of a user defined type the parser must
check the symbol table to see if an identifier denotes a type or a type-set before parsing can
commence. To see if a ts-name starts a type-set or a ts-template clause the parser must again
refer to the symbol table.

type-set-declaration:

 type_set ts-identifier = type-set-clause ;

declaration:

 --- current cases ---

 type-set-declaration

ts-name:

 type-set-name

 nested-name-specifier type-set-name

type-set:

 type-set-clause:

 ts-name

ts-template:

 ts-name

 ts-name < template-argument-list >

parameter-decl-specifier:

 decl-specifier-seq

 type-set

 ts-template decl-specifier-seq

parameter-declaration:

 parameter-decl-specifier declarator

 parameter-decl-specifier declarator = initializer

 parameter-decl-specifier abstract-declarator

 parameter-decl-specifier abstract-declarator = initalizer

af://n72
af://n69

Note: For clarity this grammar does not show the attribute-specifiers, the leading this or that some
elements of parameter-declaration cases are optional.

type-set includes non-templated ts-names only.

ts-template includes ts-names of type set templates with one type parameter and type sets with more
than one template parameter curried to one parameter using a template-argument-list.

If a type set has more than one template parameter a template-argument-list containing values
from template parameter 2 and up must be added, just as for concepts.

While parsing after a ts-template continues as usual for a parameter-declaration the resulting
type must not be a reference type or top level cv-qualified, as type-set templates take over the
responsibility to add such qualifications.

type-set after parameter list of member functions

A new case for parameters-and-qualifiers is added to allow type set templates to be used to
qualify the implicit object reference of a non-static member function. This replaces both the cv-
qualifier-seq and ref-cualifier as such qualifications must be inside the type-list elements.

Note that there are restrictions on the type-set elements: They must refer to a cvref qualified type
derived from the class of the member function being declared.

Examples of more complicated parameter types

Here are some examples of how type-set template parameter declarations interact with the
complexities of C++ declarations. Basically the type-set template comes first and then a regular
declararation, except that it can't declare a reference or a top-level const (const closest to the
declared name).

parameters-and-qualifiers:

 --- pre-existing case ---

 (parameter-declaration-clause) cv-qualifier-seq ref-qualifier exception-

specification

 --- new case ---

 (parameter-declaration-clause) ts-template exception-specification

// p2 is ok as the const is not top-level, it just indicates that the pointee is

const.

void ok_ptrs(in int* p1, ref const float* p2);

// These have top level const or references, which is not allowed.

void bad_ptrs(in int*& p1, ref const float* const p2);

// A ref to an array is ok, but you can not assign to it anyway, unless arrays

are made regular.

void ok_arrs(in int[10], ref const float[10]);

// Function pointers

void ok_funcs(in int(*p1)(int, bool), ref const float(*p1)(float, bool));

void bad_funcs(in int(*&p1)(int, bool), ref const float(const* o2)(float,

bool));

af://n264
af://n139

Note: This could be our chance to make arrays regular. The main blocker for this today is that we
can't pass arrays by value anyway. With type-sets, which already modify behaviour of template
parameters, we could normalize array parameters to allow passing arrays by value using the
syntax f(<int[10]> x) . With a predefined type-set template val we could write f(val int

x[10]) . This is not proposed in R0 but can be added within the scope of this proposal, but not
separately. Having a val type set template is probably not needed for other types, as while it does
convey intent "I need a copy of this because I'm going to change it locally" this intent is not
interesting for callers of the function, and programmers can continue using just T in this case. On
the other hand organizations will soon set up rules that all parameters shall use type sets so the
standard needs to offer a complete enough set.

Subnote: The reason for having to write the array size inside the type-set list when declaring it in
situ but after the parameter name in the val case is that as val is a type-set template the type of
the rest of the parameter-declarator is determined and then substituted into the type-set
template. So after this substitution int[10] is in the type-set anyway.

Parameter packs declared with a type set

When a parameter pack is declared with a type set template this works separately for each
argument pack element. This just means that the compiler makes the selection between the
elements of the type set individually for each pack element, much like it selects rvalue or lvalue
individually today when a template parameter is declared T&&...

Note: It would be possible to specify that a non-template type set can be followed by an ellipsis to
declare a pack of equally typed elements, but this is probably best left to a separate proposal.

Semantics of a function declaration with type sets

The easiest way of thinking about function declarations where one or more parameters are
specified using type sets is that it generates a set of function declarations with all combinations
generated when selecting one type-id in the type set of each parameter. If one or more
parameters are of template type (longhand or shorthand) each of the generated function
declarations is a function template declaration. However, even in the template case the
parameter types of these function templates are never universal references.

In the case of function definitions, all of the generated definitions have the same function body,
but the semantics may vary due to the varying parameter cv-qualifiactions and value categories
(or even types).

Overloading rules

Rules for function declarations

As a function declaration with type sets generates multiple individual function we call this a
generating declaration in the following discussion. The individual resulting declarations are called
generated declarations. A function declaration with no type set parameters is called a plain
function declaration.

// Method pointers

void ok_methods(in int (MyClass::* p1)(int, bool), ref const float(MyClass::*

p2)(float, bool));

void bad_methods(in int (MyClass::*& p1)(int, bool), ref const float(const

MyClass::* p2)(float, bool));

af://n607
af://n627
af://n718
af://n147

With overloaded generating functions partially overlapping sets of generated declarations can be
created. This is not allowed, except that a plain declaration can be identical to a generated
function declaration.

Both generating and plain function declarations can be repeated.

Rules for function definitions

Function definitions are function declarations, so abide by the rules stated above. This ensures
that there is only one function body for each generated function definition, except for the case of
a plain definition which can replace one of the generated function definitions.

To make this work with separate compilation a declaration (or definition) of the plain function
must have been seen when the definition of the generating function is seen. Having seen this
declaration prevents code generation for the generated function it replaces.

If these rules are violated for a non-inline function a compile time or link time error is
encountered, with a few exceptions. The basic problem is that if the definition of a generating
function is encountered it will generate code for the generated function that has been overloaded
by a plain function too, which should never be used. The best case scenario is that the plain
function declaration or definition is encountered later in the same translation unit. This error can
easily be detected.

However, the hard cases relate to separate compilation of these function pairs. As both function
definitions are code generated into separate object modules this error may or may not get
detected by the linker depending on whether one or both are placed in library (Linux: archive or
shared object) files. This can be viewed as a type of ODR violation.

inline functions

For inline function definitions the situation is worse, but inline function declarations should not be
put in implementation files so the only way a problem can occur is that the generating function
and plain function definition are in different headers included by different translation units. This
is very similar to how the wrong function overload can be selected if not all headers containing
overloads of the function are included.

Guaranteed same behaviour

To prevent that there is ambiguity about which function body should be code generated a
modified ODR rule applies. This means that this example will fail as indicated, which is very similar
to how explicitly specializing a template after it has been implicitly specialized is handled:

// Make two definitions which both generate the math(double, double) function

definition.

auto math(floats a, double b) { return a + b; }

auto math(double a, floats b) { return a + b; } // Error!

af://n270
af://n671
af://n728

The same rules apply to template functions. If there are both template and non-template
(generated) functions in the resulting overload set this is resolved using the current rules.Risk
assessment

Name mangling

The rules presented above are needed to make sure that the same name mangling rules that we
have today can be used. The mangled name is the same for plain functions and generated
functions. This is true also for function template specializations.

This means that as long as no generated declarations are removed programmers are free to
rewrite declarations using type sets, without having to recompile all code. So for instance
std::vector::push_back can now be written as one function, and with the help of P2665 and

P2666 it can be defined like this, and get better optimization than today:

This proposal allows one push_back to generate three function definitions, including both
push_back(T) and push_back(const T&) . The compiler selects which of these to call according
to P2665. In the construct call value is passed as an rvalue in the push_back(T) and

push_back(T&&) definitions without any move or forward wrapping thanks to P2666. This is

fortunate as the value category of value is only available in decltype(value) in this type of
shared function definitions.

Note: An alternative would be to mangle named of generated functions differently from plain
functions with the same parameter types. This could solve some of the ODR problems noted
above but the author thinks that the backwards compatibility issues this creates would be
detrimental to the migration of code bases to using type set based parameters.

// Remember floats from the first example:

type_set floats = <float, double, const long double&>;

// Make two definitions which both generate the math(double, double) function

definition.

auto math(floats a, floats b) { return a + b; }

auto x = math(1.0, 2.0); // return 3

auto math(double a, double b) { return a - b; } // Error: math(double, double)

has already been used.

template<typename T> type_set fwd = <T, const T&, T&&>; // P2665: T

overloads with const T&.

void push_back(fwd T value) {

 reserve(size() + 1);

 traits_type::construct(m_end++, value); // P2666: Last use of value

doesn't need move/forward

 m_end++;

}

af://n181

Standard type set templates

This proposal also defines a number of standard type set templates. The proposal is to put these
in a inline namespace in std and use that namespace, so that unless you have redefined a name
you don't have to provide any namespace when using them. As these identifiers will soon be used
in all function declarations their names are kept short and close to what exists in other languages.

Note that out, as specified in P0708, that the argument is constructed in place by the called
function, is not possible to attain without other fairly far reaching changed to the language.

This set of calling conventions covers almost all parameter passing needs. For completeness an
obs = <const T&> could be added, but this is actually superfluous as const T& is not a

universal reference for templates anyway. Here is a rundown of the uses of each of these
standard calling conventions:

in

The in convention allows the compiler to select whether to call the function with a by value or by
const reference parameter (given P2665). As the compiler may select to call using const T& there

is no way for the function body to know if it can modify the parameter value, so the by value
alternative is const T , enforcing that the parameter value can never be modified.

ref

ref parameters typically refer to objects like containers which are modified by the function. The
advantage of using ref rather than T& is that for templated parameters the function is not
callable with const data, avoiding the deeply nested errors we se, at the point of mutation today, if
the function template called with a const argument.

dual

dual is usable when the return type of a function depends on its input. Often this is combined
with deducing this to prevent automatic CRTP from happening:

namespace std

inline namespace type_set_templates {

template<typename T> type_set in = <const T, const T&>;

template<typename T> type_set ref = <T&>;

template<typename T> type_set dual = <const T&, T&>;

template<typename T> type_set fwd = <T, const T&, T&&>;

template<typename T> type_set mv = <T, T&&>;

}

// This allows the use of the declard names except if hidden by other

declarations, in which case they are instead reachable as std::fwd etc.

using namespace std::type_set_templates;

class Base {

public:

 // C++20

 auto& get20() const { return s; }

af://n380
af://n384
af://n386
af://n388

There are other use cases for dual but they are not that common.

I had a hard time coming up with a name that is short and conveys the "pair of const and non-
const" nature of this. dual only conveys that there are two types in the set, which is not the
primary feature of dual. Maybe the best would be to come up with a ridiculous abbreviation like
canc for "const and non-const", but better ideas are appreciated.

fwd

The fwd calling convention is useful mainly for non-templates as T&& works for templates.
However, even for templates the inclusion of T in the type set offers the compiler to pass the

parameter by value and if the type is easy to copy this is likely going to be selected regardless of if
the argument is a lvalue or rvalue, reducing the number of specializations.

mv

The mv calling convention is useful for templates where T&& does not work as a move only

parameter. This helps avoiding bugs of this kind:

The problem is that the T of addToGlobal is bound to T& by the call site, and then std::move
happily converts that to T&& and push_back steals the value. The bug is that std::move should

have been std::forward .

 auto& get20() { return s; }

 // With deducing this you can write this, but beware if a subclass has its

own s member!

 template<typename T> auto& get23(T&& this self) { return self.s; }

 // With this proposal we're back to safety and gained some characters.

 auto& get26(this dual Base self) { return self.s; }

 // We can also bypass deducing this and get this simpler definition

 auto& get26() dual { return s; }

 std::string s;

};

template<typename T> std::vector<T> dataVectors;

template<typename T> void addToGlobal(T&& data)

{

 dataVectors<T>::push_back(std::move(data));

}

MyType lvalue;

addToGlobal(lvalue);

// Oops: lvalue now in a moved from state!

af://n392
af://n394

Notes on standard type set qualification

Placing the standard type set templates in a inline nested namespace inside std seems like the
best possible solution to issues regarding name clashes and reachability of both the standard
type set templates themselves and other uses of their names.

The using namespace std::type_set_templates; directive brings these names into the root
namespace thus making like-named entities in the root namespace ambiguous with them.
Fortunately, as they are actually declared in an inline namespace in std they can still be reached
as std::fwd etc. At the same time the global name they clashed with are available as ::fwd and as
the ambiguity is signalled by the compiler it is fairly easy to fix.

If a standard type set template name clashes with a name inside a namespace it is instead
shadowed by that name. This means that to use the standard type set template you have to
qualify them with std:: while to use the other conflicting name you don't have to do anything. The
problem with this is that if the clashing name is a type there will be surprises when you start
declaring functions with unnamed parameters, as their signature are transformed to a
declaration of a named parameter, which works unless the original parameter type is a primitive
type.

One problem that seems hard to avoid is when a parameter has the same name as a standard
type set template. This will probably happen relatively often for the in name. So when migrating
code to start using standard type set templates in declarations some clashes with parameter
names will occur. These clashes will all be loud, as the newly declared parameter name is never a
type that could be legally the type of the next parameter:

Here the first parameter declaration introduces a parameter name which the second parameter
tries to use as the standard type set template. This fails of course, but can be disambiguated with
std::in .

#include <vector>

#include <type_sets> // I want to use standard type sets

namespace my_namespace {

 class other{};

 void f1(fwd other); // unnamed parameter of type other

 void f3(fwd other x); // parameter of type other, named x

 void f4(fwd int); // unnamed parameter of type int

 class fwd{};

 void f4(fwd other); // parameter named other of type my_namespace::fwd

 void f5(fwd other x); // Error: Junk after parameter name

 void f6(fwd int); // Error: tried to name a parameter int

}

void my_two_input_function(in float in, in float extra);

af://n398

Note that shadowing type set template names by local variables is no problem as type set
template names are not useful inside function bodies anyway. As local variable names tend to be
short while externally visible names tend to be longer most name clashes will probably be with
local variables, and thus inconsequential.

When is the using directive introduced

Assuming that standard library implementers wants to start using the standard type set
templates when needed inside the standard headers a header file containing them will have to be
by all standard headers. The name of this header is not standardized, only that the standard type
set names are available qualified by std:: if any standard header is included.

A special header containing only an include of the non-standardized header and a namespace
std::type_set_templates; declaration is standardized, with the name <type_sets> .

This special header adds clarity and by being an opt-in feature simplifies migrating libraries to
using them. However, as soon as a header includes <type_sets> all files including that header

file are affected. The author still think this is a nice and clean approach.

Syntax alternatives considered

Repurpose typedef

One rather appealing syntax alternative for type-set-declaration is to recirculate the typedef
keyword which is currently hopelessly out of vouge. Unfortunately it is still allowed in its previous
capacity, but it would probably be possible to differentiate anyway:

This seems possible, but does typedef carry the right connotations? What if people starts talking of
type_sets as typedefs, while listeners (of age) think that a type alias is being referred to?

A magical class template

Specifying a magical std::type_set template was considered:

Note that fwd inherits the magic of std::type_set to allow use in parameter declarations.

The in situ type lists would have to be written:

typedef int* intp; // C style typedef.

// Should be possible: Even if floats is a type name in an outer scope the equals

sign gives

// this away as a type_set declaration

typedef floats = <float, double, const long double&>;

// We have no typedef templates, so this can't be a problem.

template<typename T> typedef fwd = <const T&, T&&>;

using floats = std::type_set<float, double, const long double&>;

template<typename T> using fwd = std::type_set<const T&, T&&>;

auto sin(std::type_set<float, double, const long double&> x)-

>std::remove_reference_t<decltype(x)>;

af://n426
af://n739
af://n251
af://n342

While ugly and misleading this is maybe acceptable as it will be seldom used.

The main drawback with this is that if a future direction is taken to allow named type sets in class
scope these could end up being dependent, and while you can then disambiguate them using
typename there is no way to tell the compiler that it is an instance of the magical std::type_set
template unless a new keyword is introduced anyway. Example:

A magical variable template

A magical variable template works just about the same as a magical class template, but
syntactically it is more like a typedef.

The main probem is the same, but maybe worse. As the dependent name is conceptually a value
it does not need to be disambiguated, which makes a method declaration look like a method call.

Technical specification
No more formal specification than above has been started yet.

Future extensions (Not proposed)
There are more uses of type sets and type set templates that have not been fully explored, and
are thus not proposed now. There are some other extensions to keep UTPs universal and allow all
scopes, not proposed.

type sets for variable declarations

This proposal is limited to function parameters but it would be possible to extend to variable
declarations, much in the same way that concepts can be used as a means of checking that
function return types model the concept. Variables would then be declared to have one of a
closed set of types. Which one is selected is determined by the conversion rules for the function
return type.

If the type_set is templated remove_cvref of the function return type is substituted into the
type_set and the best match is selected. As all variables have names it is possible to allow eliding
the auto which makes it possible to declare let and mut as type_sets to provide convenient ways

to declare variables:

template<typename T> MyClass {

 using MyTypeSet = typename T::the_type_set;

 template<typename T> using MyTplTypeset = T:template the_tpl_typeset<T>;

 void method(MyTypeSet x); // Compiler does not know if

MyTypeSet is a type or a type set.

 void otherMethod(MyTplTypeset int y); // Compiler must guess that

MyTplTypeset is a type set template.

};

template<typename T> std::type_set<const T&, T&&> fwd;

template<typename T> type_set let = <const T, const T&>;

template<typename T> type_set mut = <T, T&>;

af://n358
af://n250
af://n325
af://n327

The best rules for functions returning references and type_sets containing references are still not
well understood, so this is not proposed at this point. The potential seems real though.

type sets for return types

What about return types? Do type sets have a place there too?

Using in-situ type sets of one to clear up declarations

Declaring references to arrays of function pointers is not trivial in C++. Using angle brackets as
parentheses may clear up this a bit.

To achieve this we must be more clever about where in the grammar the type-set-clause is
introduced, or the nesting won't work.

Implicitly declared type set templates

What about allowing func(<auto, const auto&> c); that is, create a type set template on the

spot.

Secondary type sets

It would be possible to allow creating type sets by binding some or all of the template parameters.
This could prove useful but seems maybe not that useful as it should be as easy to start from
scratch. A possible syntax would be:

float some_func();

float& ref_func();

const float& cref_func();

let a = some_func(); // auto elided

let auto b = some_func(); // Same as a

let int c = some_func();

let d = ref_func();

let int e = ref_func(); // Error? Or is e a const int by value?

mut f = some_func();

mut int g = some_func(); // int initiated from the float

mut h = ref_func();

mut i = cref_Func(); // Error? float by value?

mut int i = ref_func(); // Error? int by value?

void f(<<<int(float, bool)>*>[10]>& x);

// Today we can do this:

using ftype = int(float, bool);

using pftype = ftype*;

using apftype = pftype[10];

void f(apftype& x);

template<typename T> type_set in = <const T&, T>;

typeset in_int = in<int>;

af://n332
af://n754
af://n759
af://n336

Chaining type sets

It seems possible to allow using multiple type sets in a chained fashion to separate concerns, for
instance between the calling convention and a closed set of types. All type sets except the last
must be templates. This can be expanded to a Cobol like syntax with single element type sets
adding pointers, making arrays etc. At this point we don't think this adds enough value to be
proposed, but here is an example anyway:

At first blush there seems to be no big issues, except that the committee will be drowned in more
or less exotic proposals of additions to the standard type sets.

Type sets as template parameters and in class- and block
scopes

It should be possible to allow declaring type sets in class and block scope, and as template
parameters. Allowing type sets in class scope opens up for dependent names that need to be
disambiguated as type sets. If type sets is a kind that can be carried by UTPs it is hard to
differentiate between disambiguation using a prefix type_set identifier and declaring a new
type_set of the same name as the UTP. But if an equals sign follows I guess it must be a new
type_set being declared as there is no syntax to just name an existing type_set followed by = (as

variables are always named).

Acknowledgements
Thanks to my employer ContextVision AB for supporting the author attending standardization
meetings.

type_set widgets = <Canvas, Entry, Toolbar>;

void placeWidget(fwd widgets x); // Two chained type sets, the first is a

template. 6 functions.

template<typename T> type_set pointer_to = <T*>;

void setInt(in pointer_to int p) { *p = 3; }

// Hello Cobol-land!

template<typename T, size_t N> type_set array_of = <T[N]>;

template<typename T, typename... Ps> type_set function_taking = <T(Ps...)>;

void f(mv array_of<10> function_taking<int, float> int x); // int(*(&&x)[10])

(int, float), give or take

af://n339
af://n593
af://n634

	Role based parameter passing
	Introduction
	Scope and motivation
	Impact on the standard
	The type set clause
	type set declarations
	Usage of a type set
	type-set after parameter list of member functions
	Examples of more complicated parameter types
	Parameter packs declared with a type set

	Semantics of a function declaration with type sets
	Overloading rules
	Rules for function declarations
	Rules for function definitions
	inline functions

	Guaranteed same behaviour
	Name mangling
	Standard type set templates
	in
	ref
	dual
	fwd
	mv

	Notes on standard type set qualification
	When is the using directive introduced

	Syntax alternatives considered
	Repurpose typedef
	A magical class template
	A magical variable template

	Technical specification
	Future extensions (Not proposed)
	type sets for variable declarations
	type sets for return types
	Using in-situ type sets of one to clear up declarations
	Implicitly declared type set templates
	Secondary type sets
	Chaining type sets
	Type sets as template parameters and in class- and block scopes

	Acknowledgements

