
Last use optimization
Document: P2666R0

Date: 2022-10-10

Project: Programming language C++

Audience: EWG(I)

Reply-to: Bengt Gustafsson, bengt.gustafsson@beamways.com

Last use optimization
Introduction
Motivation and scope
Impact on the standard

Side effect difference risks
Dual use risk
Mandatory LUO rule
ABI impact
Compile time impact
Interaction with relocation

Technical specification
Future directions

Increasing the envelope of mandatory demotion
Eliding moves

Acknowledgements

Introduction
In previous C++ standard versions more and more optimizations of return values have been
added, with acronyms like RVO and NRVO. These optimizations reduce the number of copy
constructions and move constructions occurring in return statements by not performing copy and
move operations exactly as it seems from the source code.

This proposal generalizes these rules to any code when the compiler can prove that a value used
as argument of a function call is not going to be used after the function returns regardless of how
control flows. This includes the cases where you today correctly wrote std::forward and

std::move but also the places where you forgot to do so. In summary the values considered are:

Local by-value variables
By-value parameters
Rvalue reference parameters
Local references referring to local variables which contain last-used values.
Dereferenced Local pointers which can be proven to point at local variables which contain
last-used values.
Non-static data members inside rvalue qualified functions.

af://n0
mailto:bengt.gustafsson@beamways.com
af://n8

Last use of the value stored in one of these ways refers to not only to locations where the
compiler can deduce that the variable is not at all used later, but also that the next use is definitely
an assignment of a new value. This covers the important case of modifying a value like in
name = toUpper(name); where the old contents of name is allowed to be moved into toUpper as

the next use of name is it being assigned the result of toUpper.

In addition this proposal includes rules that mandate this optimization in simple cases, to allow
programmers to omit move/forward calls in those cases.

Motivation and scope
Adding std::forward and std::move calls in all places where it is correct can get tedious and
obscures the intent of the code. It is also very easy to forget to add these function calls, and in
some cases when control flow is complicated it can be hard to manually determine if a variable
has possible uses afterwards or not, opening up for bugs related to over-use of forward and
move. Furthermore there is a teaching problem in understanding when to use move and when to
use forward.

We have not done a quantitative analysis of how many percent of moves and forwards are missed
in general code, but we suspect that this is a fairly high ratio, especially in functions whose main
purpose is not to just forward their parameters but where a last use of a variable or parameter is
as an argument to a function which has lvalue and rvalue overloads. Here is an example of a
function where the string row would cause an unnecessary allocation in push_back.

In addition this optimization will be possible in cases where the same variable is used more than
once in the same full expression, where forwarding can't portably be used today due to unknown
order of evaluation. For instance:

In this case the programmer can't reliably move any of the uses of word as it is unknown which

one will be evaluated first. A compiler will know its own order of evaluation of parameter
expressions and can perform a move in the correct position to preserve the semantics.

The rules apply to the implicit object parameter of member functions: If the last use of a
parameter is to call a member function with an rvalue overload, it will be called.

void add_member(const std::string& first, const std::string& last)

{

 auto row = std::format("First name: {}, Last name: {}", first, last);

 members.push_back(row); // Missed move opportunity here!

}

template<typename T1, typename T2> auto concat(T1&& lhs, T2&& rhs) {

 return std::forward<T1>(lhs) + std::forward<T2>(rhs);

}

std::string twice(std::string word)

{

 return concat(word, word);

}

af://n12

Impact on the standard
This proposal affects the standard by allowing demoting copy to move in more places. The
wording involved should match the corresponding wording for return value optimizations, but
involves a writing like "when the compiler can determine that the variable being moved is never
used again, or when its next use is being assigned a new cvalue".

One complicating factor is that the compiler needs more logic to detect suitable sites for LUO
which is less obvious than for RVOs where it is in return expressions only. Further discussion
below.

Side effect difference risks

The main backwards compatibility risk is that the program behaviour can change if user defined
move and copy constructors have (different) side effects. This is exactly the same concerns that
one could raise against RVO and yet RVO in its different varieties were introduced in the language.

Please note that although RVO is mainly about not copying/moving at all it is also allowed to
demote a copy to a move in some situations since C++11, and the number of situations when this
is allowed is increased in C++23.

We think that with RVO as precedent these risks are possible to accept. In real life the most
common case will probably be that the move constructor is buggy but by chance it was never
used before this optimization was introduced. This is the same situation as for RVO and in
particular the increased number of situations being introduced in C++23.

Here are a couple of examples where the behaviour would change:

struct A {

 void f() const & { std::cout << "lvalue f"; }

 void f() const && { std::cout << "rvalue f"; }

};

void g(A&& a) {

 a.f(); // LUO applies here

}

class A {

 A() : m(42);

 A(const A& src) : m(src.m) { std::cout << "copy" << std::endl; }

 A(A&& src) { std::cout << "buggy move" << std::endl; }

 HeavyType m;

}:

void f(A&&) { std::cout << " rvalue f" << std::endl; }

void f(const A&) { std::cout << " lvalue f" << std::endl; }

A g(A a, A b, A&& c, A&& d) {

 A e = a; // Before/after LUO: "copy"/"buggy move"

 f(b); // Before/after LUO: "lvalue f"/"rvalue f"

 f(c); // Before/after LUO: "lvalue f"/"rvalue f"

af://n19
af://n22

Here the optimization allows the construction of e to call the move constructor and the calls of f
to call the rvalue overload. In C++20, due to the lack of explicit std::move calls, e is copy-

constructed from a and the const A& overload of f is called.

The optimization triggers the latent bug that the member m is not handled by the move
constructor, which is an example of the risks with this proposal.

However, these types of risks were considered when P1825 was accepted for C++20, as
exemplified by the return d which after C++20 started forgetting to set m member of the
returned object.

Dual use risk

Going back to the concat example we notice another kind of risk.

Here the previously explained rule would treat the last evaluated word instance as a rvalue. This
works for concatenations of strings thanks to the careful design of the different overloads. But
maybe the implementers of concat didn't think about the prospect of being called with two

references to the same string. In C++20 this works thanks to the undefined evaluation order,
which disallows programmers from moving any of the uses of word.

Now the claim is that thanks to the compiler knowing the evaluation order it can treat whichever
parameter that gets evaluated last as an rvalue as it is the last use. This changes which overload
of concat that gets called and may break code that previously worked. To clarify, here is a concat

for strings that does not work:

In C++20 #4 is guaranteed to call the first concat overload which works. No careful programmer
would dare write #5 or #6 given the unspecified evaluation order so #2 and #3 go untested for
the same parameter case. With this new optimization overload #2 or #3 will get called, depending
on the parameter evaluation order chosen by the compiler and if they fail to handle that both
parameters are the same the code siltently breaks.

 return d; // Before/after P1825R0: "copy"/buggy move"

}

std::string twice(std::string word)

{

 return concat(word, word);

}

MyString concat(const MyString& lhs, const MyString& rhs); // #1

MyString concat(const MyString& lhs, MyString&& rhs); // #2

MyString concat(MyString&& lhs, const MyString& rhs); // #3

MyString w1 = "W1";

auto ww = concat(w1, w1); // #4

auto ww1 = concat(w1, std::move(w1)); // #5

MyString w2 = "W2";

auto ww2 = concat(std::move(w2), w2); // #6

af://n33

One way of avoiding this risk is to only allow converting the last use of a variable in an expression
where it is used more than once if there is only one by reference parameter referring to the
variable. Thus in this case, as there are two by reference parameters no optimization can be
done.

Mandatory LUO rule

To allow programmers to wittingly omit std::forward and std::move in their code and rely on

the compiler to handle it for them there must be a minimum requirement on compilers to detect
the last use of a variable in simple cases that portable code can rely on. An appropriate level of
mandatory analysis must be standardized, with the trade off being between the ease of
implementation in compilers and the code complexity where programmers can trust the compiler
to find the last uses. However, pushing this too far may be counter-productive as programmers
would get a hard time figuring out if they have to write a std::forward or std::move themselves
and may put too high hopes on the compiler doing it for them.

We recommend a mandatory LUO rule where the compiler must find all last uses outside of
loops, when the function does not contain goto statements. This means that not only the lexically
last use must be found but also uses which are in side by side if-else constructs or switch cases as
long as there is no surrounding loop which would allow control flow to reach the same site again.
Furthermore last uses of non-static data members are found using the same rules for rvalue-
qualified functions. The mandatory rule does not include any indirect use of a variable via a
references or dereferenced pointers, or cases when the next use is unambiguously an assignment
to the variable.

This example reuses the A class and f functions from the previous example.

void g()

{

 A a, b, c, d, e;

 f(a);

 if (condition...) {

 f(c);

 f(b);

 }

 else

 f(b);

 while (true) {

 A n;

 f(d);

 if (phase_of_moon() == New) {

 f(e);

 return;

 }

 f(n);

 break;

 }

}

af://n42

Here the calls with a, b, c and n would all be mandatory LUO while the use of d and e is not
mandatory. A smart compiler would notice that d and e are also last uses, and that in the case of
e this would be the case even if the last break was removed. The reason that n is mandatory
although it is inside a loop is that it is both declared and last used inside the loop, i.e. a new
instance of n is created in each loop turn.

If this level of control flow analysis is considered too complex to require from all compliant
compilers a lower level would be to only mandate LUO outside of all control structures in the
scope of the variable being used. This still finds most uses and should be nearly trivial to
implement. In the example this would mean that only a and n would invoke mandatory LUO.

ABI impact

We don't think that this proposal has any impact on ABI as it only changes which function is
called, not how the selected function is called. The only exception would be a pre-compiled library
with a header file that claims that a copy constructor is present, but where there is no
implementation available.

Compile time impact

As this feature potentially applies to all call sites it is important to analyse what impact introducing
this feature may have on compile times. This could affect on the decision regarding the
mandatory LUO rule selected. While modern compilers do advanced data flow analysis this is
done mainly in release builds and may be done at a stage after overload resolution. There are
levels that are definitely lightweight such as only considering the lexical position in the scope of
declaration when determining which use is last (excluding cases where the last use is in any form
of loop).

Interaction with relocation

This proposal interfers constructively with relocation proposals in that the possible sites for
relocations are the move sites. If the compiler can find more potential move sites it can also
demote these further, to relocations, if allowed. This requires further exploration, for instance a
next assignment after a move turned relocation would have to be changed from assignment to
placement new.

Technical specification
Before any wording attempt we need direction for the mandatory LUO rule. For the other parts
we think that text relating to RVO can be reused to some extent, complemented by text relating to
the compiler detecting that a use is a last use of a variable and implicitly converting the variable
from lvalue to rvalue before overload resolution of the function call takes place.

Future directions

Increasing the envelope of mandatory demotion

As for RVO it is possible to introduce this feature piece-meal with less and less restrictions,
increasing the complexity of code where programmers can rely on the compiler doing the
forwarding for them. This increase of scope can occur along two axes:

Increasing the complexity of code where the compiler is oblighed to find move opportunities.

af://n50
af://n52
af://n293
af://n54
af://n56
af://n305

Increasing the number of constructs which are eligible, such as local references,
dereferenced pointers and variables that are reassigned.

Eliding moves

One future direction that has not yet been fully understood is the possibilities for eliding moves
altogether. If and when this is possible for function calling depends to a large extent on the ABI
calling conventions.

We think that the move eliding possibilities are unrelated to whether the ABI is caller-destroy or
callee-destroy. In the latter case the compiler would however have to keep track of the fact that
the local variable pointed to has already been destroyed when the called function returns. This
would disrupt the reverse order of destruction.

We therefore think that eliding moves should be a separate proposal, where the possible impact
of the out of order destruction is thoroughly analysed.

Acknowledgements
Thanks to my employer ContextVision AB for supporting the author attending standardization
meetings.

Thanks to Björn Andersson and David Friberg of the Swedish national body for valuable feedback
and new and improved examples.

af://n59
af://n63

	Last use optimization
	Introduction
	Motivation and scope
	Impact on the standard
	Side effect difference risks
	Dual use risk
	Mandatory LUO rule
	ABI impact
	Compile time impact
	Interaction with relocation

	Technical specification
	Future directions
	Increasing the envelope of mandatory demotion
	Eliding moves

	Acknowledgements

