
index_type & size_type in mdspan

Document number: P2599R2

Date: 2022-06-23

Project: Programming Language C++, Library Evolution Working Group

Reply-to: Nevin “☺” Liber, nliber@anl.gov

Table of Contents

Revisions .. 1
R2... 1

Polls ... 2
R1... 2

Polls ... 2

Introduction ... 3

Motivation and Scope ... 3

Impact On the Standard ... 4

Wording Changes.. 4

Acknowledgements ... 6

References .. 7

Revisions

R2
• mdspan::size() now returns size_type (it was returning size_t as of

P0009R17, and it returned the old size_type in P0009R16)

• Rename the paper, as it covers a bit more than just renaming index_type to
size_type

• Rename “Technical Specification” section to “Wording Changes” in this paper.

• Remove SizeT and OtherSizeT from this paper, as they are no longer in

P0009R17

• Replaced SizeTypes -> IndexTypes spelling change with

OtherSizeTypes -> OtherIndexTypes to match changes in P0009

There was some discussion around changing the return type for

mapping::required_span_size() & mapping::operator(), but no

changes are being proposed. Similar discussions were made around accessors, but no

changes are being proposed.

mailto:nevin@cplusplusguy.com
https://wg21.link/P0009R17
https://wg21.link/P0009R16
https://wg21.link/P0009R17
https://wg21.link/P0009

Polls

__POLL: Modify P2599R1 (`mdspan::size_type` should be `index_type`) such
that `mdspan::size`s return type is `size_type`, and send the modified paper to
Library for C++23 classified as B2 - Improvement, to be confirmed with a Library
Evolution electronic poll.__

Strongly Favor	Weakly Favor	Neutral	Weakly Against	Strongly Against
5	8	0	1	0

__Attendance:__ 29

__# of Authors:__ 1

__Author Position:__ SF

__Outcome:__ Strong consensus

WA: This is a late change.

R1

In order to strengthen consensus, LEWG requested that in addition to the changes

requested in P2599R0 (change all current references of size_type to index_type),

we also add a new size_type typedef mapped to the unsigned type corresponding to

what would now be index_type.

Polls

__POLL: Send P2599R0 (`mdspan:;size_type` should be `index_type`) to Library
for C++23 classified as an improvement (B2) to be confirmed with a Library
Evolution electronic poll.__

Strongly Favor	Weakly Favor	Neutral	Weakly Against	Strongly Against
2	7	2	2	1

__Attendance:__ 21

__# of Authors:__ 1

__Author Position:__ SF

__Outcome:__ Weak consensus in favor.

SA: It's already a conscious choice by the user to use a signed type. So I don't
think it will be surprising. The consistency of having it be called `size_type` is
more important.

__POLL: Rename `mdspan` and friend's `size_type` member to `index_type` and
have a `size_type` member be present only if `index_type` is unsigned.__

Author note: not polled, as the poll below had consensus.

__POLL: `mdspan`, `extents`, and layouts should have both an `index_type`
(which is whatever the user provides for the first template parameter to `extents`)
and a `size_type` (which is `make_unsigned_t<index_type>`).__

Strongly Favor	Weakly Favor	Neutral	Weakly Against	Strongly Against
3	9	1	1	0

__Attendance:__ 19

__# of Authors:__ 1

__Author Position:__ SF

__Outcome:__ Consensus in favor, and stronger consensus that the paper as
written.

WA: It's additional complexity.

Introduction
With the adoption of P2553R1, mdspan::size_type may now be a signed type.

size_type is no longer an appropriate name for this type and it should be changed to

index_type.

Motivation and Scope
Throughout the C++ standard, size_type stands for an unsigned type. mdspan and

its related class templates should be consistent with this.

https://wg21.link/P2553R1

When P2553R0 was proposed, extents::size_type was going to be constrained to

unsigned_integral. At the request of LEWG, that constraint was removed in

P2553R1 and adopted via electronic polling.

Now that it can be a signed type, size_type is no longer the correct name for this. It

should revert back to index_type, which was used in mdspan until P0009R11 when

the following change was made:

Change all the sizes

from ptrdiff_t to size_t and index_type to size_type, for consistency

with span and the rest of the standard library

In addition to extents, there are other class templates which take Extents as a

template parameter and adopt the size_type typedef from Extents into their

interface. Those class templates should also have their size_type typedefs changed to

index_type.

LEWG requested that a new size_type that corresponds to the unsigned version of

index_type also be added to these class templates.

Specifically, the following class templates should replace their usage of size_type

with index_type and then add a new size_type:

• extents

• layout_left::mapping

• layout_right::mapping

• layout_stride::mapping

• mdspan

As part of P2553R1, mdspan::size() was changed to return size_t to continue to

return an unsigned type. During the review of P2599R1, LEWG requested that it returns

the size_type proposed here instead.

Impact On the Standard
Given that mdspan and its related classes are new class templates for C++23, the impact

should be minimal. Also, no feature test macro should be necessary.

Wording Changes

The renaming changes proposed here are:

• Normatively change the spelling of size_type to index_type

• Editorially change the spelling of template parameter SizeType to IndexType

https://wg21.link/P2553R0
https://wg21.link/P2553R1
https://wg21.link/P0009R11
https://wg21.link/P2553R1
https://wg21.link/P2599R1

• Editorially change the spelling of template parameter OtherSizeType to
OtherIndexType

• Editorially change the spelling of template parameter pack OtherSizeTypes

to OtherIndexTypes

Then apply the following additions / changes (summarized here, followed by diffs against

P0009R17):

• To extents, normatively add the public definition using size_type =
make_unsigned_t<index_type>;

• To layout_left::mapping, layout_right::mapping,

layout::stride::mapping and mdspan, add the public definition using
size_type = typename extents_type::size_type;

• To extents, normatively add the public definition using size_type =
make_unsigned_t<index_type>;

• To mdspan, change the return type of size() to size_type

Specifically, the new additions / changes relative to P0009R17 after applying the

renaming changes are:

In 24.7.X.1 [mdspan.extents.overview], in the synopsis change:

template<class IndexType, size_t... Extents>

class extents {

public:

 using index_type = IndexType;

 using size_type = make_unsigned_t<index_type>;

 using rank_type = size_t;

In 24.7.X.5.1 [mdspan.layoutleft.overview], in the synopsis change:

template<class Extents>

class layout_left::mapping {

 public:

 using extents_type = Extents;

 using index_type = typename extents_type::index_type;

 using size_type = typename extents_type::size_type;

 using rank_type = typename extents_type::rank_type;

In 24.7.X.6.1 [mdspan.layoutright.overview], in the synopsis change:

template<class Extents>

class layout_left::mapping {

 public:

 using extents_type = Extents;

 using index_type = typename extents_type::index_type;

 using size_type = typename extents_type::size_type;

 using rank_type = typename extents_type::rank_type;

In 24.7.X.7.1 [mdspan.layoutstride.overview], in the synopsis change:

template<class Extents>

class layout_left::mapping {

 public:

 using extents_type = Extents;

https://wg21.link/P0009R17
https://wg21.link/P0009R17

 using index_type = typename extents_type::index_type;

 using size_type = typename extents_type::size_type;

 using rank_type = typename extents_type::rank_type;

In 24.7.X.1 [mdspan.mdspan.overview], in the synopsis change:

template<class ElementType, class Extents, class LayoutPolicy, class AccessorPolicy>

class mdspan {

public:

 using extents_type = Extents;

 using layout_type = LayoutPolicy;

 using accessor_type = AccessorPolicy;

 using mapping_type = typename layout_type::template mapping<extents_type>;

 using element_type = ElementType;

 using value_type = remove_cv_t<element_type>;

 using index_type = typename extents_type::index_type;

 using size_type = typename extents_type::size_type;

 using rank_type = typename extents_type::rank_type;

 using pointer = typename accessor_type::pointer;

 using reference = typename accessor_type::reference;

and

 template<class... OtherSizeTypes>

 constexpr reference operator[](OtherSizeTypes... indices) const;

 template<class OtherSizeType>

 constexpr reference operator[](span<OtherSizeType, rank()> indices) const;

 template<class OtherSizeType>

 constexpr reference operator[](const array<OtherSizeType, rank()>& indices) const;

 constexpr size_type size() const noexcept;

 friend constexpr void swap(mdspan& x, mdspan& y) noexcept;

In 24.7.X.3 [mdspan.mdspan.members], change:

constexpr size_type size() const noexcept;

Precondition: The size of the multidimensional index space extents() is representable

as a value of type size_type ([basic.fundamental]).

Returns: extents().fwd-prod-of-extents(rank()).

Acknowledgements

This was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative

effort of two U.S. Department of Energy organizations (Office of Science and the

National Nuclear Security Administration) responsible for the planning and preparation

of a capable exascale ecosystem, including software, applications, hardware, advanced

system engineering, and early testbed platforms, in support of the nation’s exascale

computing imperative. Additionally, this research used resources of the Argonne

Leadership Computing Facility, which is a DOE Office of Science User Facility

supported under Contract DE-AC02-06CH11357.

References
P0009 mdspan, Christian Trott et al.

P2553 Make mdspan size_type controllable, Christian Trott et al.

https://wg21.link/P0009
https://wg21.link/P2553

	Revisions
	R2
	Polls

	R1
	Polls

	Introduction
	Motivation and Scope
	Impact On the Standard
	Wording Changes
	Acknowledgements
	References

