
index_type & size_type in mdspan 

 

Document number: P2599R2 

Date: 2022-06-23 

Project: Programming Language C++, Library Evolution Working Group 

Reply-to: Nevin “☺” Liber, nliber@anl.gov 

Table of Contents 

Revisions ............................................................................................................................ 1 
R2................................................................................................................................................. 1 

Polls ......................................................................................................................................... 2 
R1................................................................................................................................................. 2 

Polls ......................................................................................................................................... 2 

Introduction ....................................................................................................................... 3 

Motivation and Scope ....................................................................................................... 3 

Impact On the Standard ................................................................................................... 4 

Wording Changes.............................................................................................................. 4 

Acknowledgements ........................................................................................................... 6 

References .......................................................................................................................... 7 
 

Revisions 
 

R2 
• mdspan::size() now returns size_type (it was returning size_t as of 

P0009R17, and it returned the old size_type in P0009R16) 

• Rename the paper, as it covers a bit more than just renaming index_type to 
size_type 

• Rename “Technical Specification” section to “Wording Changes” in this paper. 

• Remove SizeT and OtherSizeT from this paper, as they are no longer in 

P0009R17 

• Replaced SizeTypes -> IndexTypes spelling change with 

OtherSizeTypes -> OtherIndexTypes to match changes in P0009 

 

There was some discussion around changing the return type for 

mapping::required_span_size() & mapping::operator(), but no 

changes are being proposed.   Similar discussions were made around accessors, but no 

changes are being proposed. 

mailto:nevin@cplusplusguy.com
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Polls 
 
__POLL: Modify P2599R1 (`mdspan::size_type` should be `index_type`) such 
that `mdspan::size`s return type is `size_type`, and send the modified paper to 
Library for C++23 classified as B2 - Improvement, to be confirmed with a Library 
Evolution electronic poll.__ 
 
|Strongly Favor|Weakly Favor|Neutral|Weakly Against|Strongly Against| 
|-|-|-|-|-| 
|5|8|0|1|0| 
 
__Attendance:__ 29 
 
__# of Authors:__ 1 
 
__Author Position:__ SF 
 
__Outcome:__ Strong consensus 
 
WA: This is a late change. 
 

 

R1 
 

In order to strengthen consensus, LEWG requested that in addition to the changes 

requested in P2599R0 (change all current references of size_type to index_type), 

we also add a new size_type typedef mapped to the unsigned type corresponding to 

what would now be index_type. 

 

Polls 
 
__POLL: Send P2599R0 (`mdspan:;size_type` should be `index_type`) to Library 
for C++23 classified as an improvement (B2) to be confirmed with a Library 
Evolution electronic poll.__ 
 
|Strongly Favor|Weakly Favor|Neutral|Weakly Against|Strongly Against| 
|-|-|-|-|-| 
|2|7|2|2|1| 
 
__Attendance:__ 21 
 
__# of Authors:__ 1  
 
__Author Position:__ SF 



 
__Outcome:__ Weak consensus in favor. 
 
 
SA: It's already a conscious choice by the user to use a signed type.  So I don't 
think it will be surprising.  The consistency of having it be called `size_type` is 
more important. 
 
 
__POLL: Rename `mdspan` and friend's `size_type` member to `index_type` and 
have a `size_type` member be present only if `index_type` is unsigned.__ 
 
Author note:  not polled, as the poll below had consensus. 
 
 
__POLL: `mdspan`, `extents`, and layouts should have both an `index_type` 
(which is whatever the user provides for the first template parameter to `extents`) 
and a `size_type` (which is `make_unsigned_t<index_type>`).__ 
 
|Strongly Favor|Weakly Favor|Neutral|Weakly Against|Strongly Against| 
|-|-|-|-|-| 
|3|9|1|1|0| 
 
__Attendance:__ 19 
 
__# of Authors:__ 1 
 
__Author Position:__ SF 
 
__Outcome:__ Consensus in favor, and stronger consensus that the paper as 
written. 
 
WA: It's additional complexity. 

Introduction 
With the adoption of P2553R1, mdspan::size_type may now be a signed type.  

size_type is no longer an appropriate name for this type and it should be changed to 

index_type. 

 

Motivation and Scope 
Throughout the C++ standard, size_type stands for an unsigned type.  mdspan and 

its related class templates should be consistent with this. 

 

https://wg21.link/P2553R1


When P2553R0 was proposed, extents::size_type was going to be constrained to 

unsigned_integral.  At the request of LEWG, that constraint was removed in 

P2553R1 and adopted via electronic polling. 

 

Now that it can be a signed type, size_type is no longer the correct name for this.  It 

should revert back to index_type, which was used in mdspan until P0009R11 when 

the following change was made: 

 

Change all the sizes 

from ptrdiff_t to size_t and index_type to size_type, for consistency 

with span and the rest of the standard library 

 

In addition to extents, there are other class templates which take Extents as a 

template parameter and adopt the size_type typedef from Extents into their 

interface.  Those class templates should also have their size_type typedefs changed to 

index_type.  

 

LEWG requested that a new size_type that corresponds to the unsigned version of 

index_type also be added to these class templates. 

 

Specifically, the following class templates should replace their usage of size_type 

with index_type and then add a new size_type: 

• extents 

• layout_left::mapping 

• layout_right::mapping 

• layout_stride::mapping 

• mdspan 

 

As part of P2553R1, mdspan::size() was changed to return size_t to continue to 

return an unsigned type.  During the review of P2599R1, LEWG requested that it returns 

the size_type proposed here instead. 

Impact On the Standard 
Given that mdspan and its related classes are new class templates for C++23, the impact 

should be minimal.  Also, no feature test macro should be necessary. 

Wording Changes 
 

The renaming changes proposed here are: 

• Normatively change the spelling of size_type to index_type 

• Editorially change the spelling of template parameter SizeType to IndexType 

https://wg21.link/P2553R0
https://wg21.link/P2553R1
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• Editorially change the spelling of template parameter OtherSizeType to 
OtherIndexType 

• Editorially change the spelling of template parameter pack OtherSizeTypes 

to OtherIndexTypes 

 

Then apply the following additions / changes (summarized here, followed by diffs against 

P0009R17): 

• To extents, normatively add the public definition using size_type = 
make_unsigned_t<index_type>;  

• To layout_left::mapping, layout_right::mapping, 

layout::stride::mapping and mdspan, add the public definition using 
size_type = typename extents_type::size_type; 

• To extents, normatively add the public definition using size_type = 
make_unsigned_t<index_type>;  

• To mdspan, change the return type of size() to size_type   
 

Specifically, the new additions / changes relative to P0009R17 after applying the 

renaming changes are: 

 

In 24.7.X.1 [mdspan.extents.overview], in the synopsis change: 

 
template<class IndexType, size_t... Extents> 

class extents { 

public: 

  using index_type = IndexType; 

  using size_type = make_unsigned_t<index_type>; 

  using rank_type = size_t; 

 

In 24.7.X.5.1 [mdspan.layoutleft.overview], in the synopsis change: 

 
template<class Extents> 

class layout_left::mapping { 

  public: 

    using extents_type = Extents; 

    using index_type = typename extents_type::index_type; 

    using size_type = typename extents_type::size_type; 

    using rank_type = typename extents_type::rank_type; 

 

In 24.7.X.6.1 [mdspan.layoutright.overview], in the synopsis change: 

 
template<class Extents> 

class layout_left::mapping { 

  public: 

    using extents_type = Extents; 

    using index_type = typename extents_type::index_type; 

    using size_type = typename extents_type::size_type; 

    using rank_type = typename extents_type::rank_type; 

 

In 24.7.X.7.1 [mdspan.layoutstride.overview], in the synopsis change: 

 
template<class Extents> 

class layout_left::mapping { 

  public: 

    using extents_type = Extents; 

https://wg21.link/P0009R17
https://wg21.link/P0009R17


    using index_type = typename extents_type::index_type; 

    using size_type = typename extents_type::size_type; 

    using rank_type = typename extents_type::rank_type; 

 

In 24.7.X.1 [mdspan.mdspan.overview], in the synopsis change: 

 
template<class ElementType, class Extents, class LayoutPolicy, class AccessorPolicy> 

class mdspan { 

public: 

  using extents_type = Extents; 

  using layout_type = LayoutPolicy; 

  using accessor_type = AccessorPolicy; 

  using mapping_type = typename layout_type::template mapping<extents_type>; 

  using element_type = ElementType; 

  using value_type = remove_cv_t<element_type>; 

  using index_type = typename extents_type::index_type; 

  using size_type = typename extents_type::size_type; 

  using rank_type = typename extents_type::rank_type; 

  using pointer = typename accessor_type::pointer; 

  using reference = typename accessor_type::reference; 

 

and 

 
  template<class... OtherSizeTypes> 

    constexpr reference operator[](OtherSizeTypes... indices) const; 

  template<class OtherSizeType> 

    constexpr reference operator[](span<OtherSizeType, rank()> indices) const; 

  template<class OtherSizeType> 

    constexpr reference operator[](const array<OtherSizeType, rank()>& indices) const; 

 

  constexpr size_type size() const noexcept; 

 

  friend constexpr void swap(mdspan& x, mdspan& y) noexcept; 

 

In 24.7.X.3 [mdspan.mdspan.members], change: 

 
constexpr size_type size() const noexcept; 

Precondition: The size of the multidimensional index space extents() is representable 

as a value of type size_type ([basic.fundamental]). 

Returns: extents().fwd-prod-of-extents(rank()). 
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