
Document Number: P2581R2
Date: 2022-10-12
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

Specifying the Interoperability of Built
Module Interface Files

Changes
● R2

○ Introduce the “Problem Statement” section to help bridge the gap in
understanding that was present in previous SG15 meetings.

○ Expand the example that existed before in the requirements section and move it
to a new section.

○ Broad rewrite of the sections “Producing a new BMI in the context of another
translation unit” and “Built Module Interface Compatibility Identifiers”.

● R1
○ Change “Binary Module Interface” to “Built Module Interface”.
○ Introduce a new section exploring the outcome of having independent parsing

context between the translation unit importing a module and the translation unit
declaring a module interface.

○ Editorial changes throughout the paper for better readability, including removing
redundancy with the new section.

Abstract
This paper specifies a mechanism to allow build systems to identify if a built module interface
shipped with a pre-built library can be used directly, or if the build system needs to produce its
own version of the built module interface file, as well as instructions on how the build system
should assemble the command line to produce that BMI.

Introduction
Built module interface files are an implementation aspect on how modules are reused across
different invocations of the compiler without the need for a new translation. The format of those
files is implementation-defined. With the exception of MSVC, implementations are defining them
to be only as interoperable as precompiled headers were.

While there is no fundamental problem with that approach, it does create an additional problem
for libraries being shipped as prebuilt artifacts. In some cases, built module interface files in
those artifacts are going to be reusable in a given compiler invocation, and in other cases they
won’t.

1



Document Number: P2581R2
Date: 2022-10-12
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

The purpose of this paper is to establish a mechanism to allow for the clear identification
of whether a given built module interface file will be usable within a given build context
without the need to actually read the BMI files and without the need to invoke the
compiler for each module, as well as establish a mechanism for the build system to
correctly assemble a compiler invocation for the translation of a module interface from a
different project..

Problem Statement
The surface of compatibility of the BMI file, in most implementations, is significantly narrower
than the surface of ABI compatibility. Follows a non-exhaustive list of scenarios that illustrate
that difference:

● It’s possible, and relatively common, for different parts of the same program to be
compiled using different compilers, however, none of the implementations currently
support importing the BMI file of a different compiler.

● Clang and GCC currently have a much narrower compatibility surface for the generated
BMI file, where a change in compiler version is sufficient to generate an incompatible
BMI.

● Even when using the same compiler version, some options may result in a BMI
produced by the same compiler executable to be unusable when being imported in a
different translation unit.

Early implementations of build system support for C++ Modules have mostly focused on
scenarios where all the BMIs involved were compatible through all translation units in the
project. This is reasonably easy to achieve in scenarios where the build of all of the C++ code
happens within a single build system configuration, and where the use of an option that would
create such incompatibility across translation units could be considered an user error.

However, as the scope of the support for C++ modules is expanded, the assumptions that can
be made on a “single build system” context can no longer be considered. The distinctions that
arise when you have multiple build systems collaborating to produce a single program were the
subject of a previous paper1.

Semantics of the import declaration
The C++ standard defines the semantics of the import declaration only in terms of the impact on
the interpretation of the language itself. While module code is still bound by the
One-Definition-Rule, that is far from a concrete direction for implementers. In practice, there are

1Ruoso, Daniel (2021). Requirements for Usage of C++ Modules at Bloomberg.
https://wg21.link/P2409R0

2



Document Number: P2581R2
Date: 2022-10-12
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

no additional restrictions on the implementation of modules than there were for simple source
inclusion.

In principle, there is nothing in the standard that indicates that it would be invalid for an
implementation to always independently and redundantly translate the imported modules
directly from their source code. Even when that would result in multiple independent translations
of the same module code contributing to the final program.

At the same time, one of the biggest motivators for introducing modules was the expectation
that implementations should be able to translate the module interface only once, and reuse that
translation for every import declaration of the same module.

The disconnect between those two motivations created a gap between the understanding of the
semantics of the language, and the requirements imposed on build systems that haven't been
fully bridged yet.

Pre-compiled headers as prior art
One of the most influential aspects for the work on modules by the GCC and Clang
implementations was the fact that C++ Modules were seen as an extension of a feature that
was previously supported by both, which was the concept of “pre-compiled headers”2.

The difference is that pre-compiled headers were initially implemented entirely as an
optimization to the build process, without any direct impact on the semantics of the languages.
However, it was from that implementation that the support for modules has been extended from.

That approach meant that the BMI files produced by both Clang and GCC are oriented towards
the optimization requirements, reducing as much as possible the amount of duplicated work
between two translation units that import the same module.

That means that different versions of the compiler likely can’t share the same BMI files, it also
means that some specific compiler flags may result in internal changes to the layout of the BMI
file that make it unusable when the compiler receives a different set of arguments.

While the benefits of such optimization are relevant, at the same time it pushes the build
systems in the direction of semantically considering the BMI files as an optimization step that is
subject to pessimization at any point.

Compiler arguments as opaque tokens
While in some codebases it is viable to enforce a strict governance of how much access the
developers have over setting potentially-incompatible flags in order to mitigate the risk of

2 Clang Modules are, to a large extent, a direct extension of the concept of pre-compiled headers.

3



Document Number: P2581R2
Date: 2022-10-12
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

producing BMI files that can’t be used where they’re needed, the reality is that for the industry
as a whole, particularly in the Open Source world, that requirement is a non-starter.

CMake is a widely used build system for C++ code, and a cursory look at various projects in
Github will demonstrate that developers will often configure different targets in the same project
with different compiler arguments.

While there has been significant work in CMake to abstract those expected features and options
into higher-level concepts, it is not realistic to presume that we can encode the features of all
compilers, present and future, in abstract concepts. Build systems, therefore, have to consider
compiler flags as opaque tokens.

What happens when it goes wrong
In the beginning of this section, this paper made the contrast between large projects where it
would be reasonable to assume that any mismanagement of flags that would result in a BMI not
being usable where expected to be “user error”.

In the wider industry, particularly in the Open Source world or more decentralized organizations,
this approach is not viable, as the outcome would be an ever increasing support cost for the
maintenance of C++ projects, which would hinder the reuse of C++.

It is important that the user should be able to communicate with the build system enough
information to allow the build system to understand when a BMI file created in one context is
going to be usable in another context, and when the build system needs to create the plans for
alternative translations of the same module interface.

Mitigating ODR violations in the ecosystem
Another important motivator in the approach to implementing C++ Modules is that they offer us
with mechanisms to mitigate ODR violations. The transition from simple source inclusion to a full
independent translation of the module interface offers an important opportunity to reduce the
amount of confusion that exists on the use of include directories and compiler definitions.

In the source inclusion ecosystem, there is no way to isolate the translation requirements from a
library being consumed from the translation requirements from the code using that library. The
only solution for managing the requirements of transitive dependencies is to concatenate
compiler options, which sometimes leads to issues that are difficult to debug.

With modules, however, we can separate the translation context of the module interface from
the context of the translation unit importing that module. This allows greater control over how a
module interface is translated, and should have a positive effect on the mitigations of ODR
violations in the ecosystem.

4



Document Number: P2581R2
Date: 2022-10-12
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

Balancing independent translation context with compatibility
This, finally, is the crux of the problem. Build systems need to balance the need for the
independent translation context between the module interface unit and the unit importing that
module with the need to produce a BMI for the same interface that can actually be used as input
for the translation of the unit importing that module.

To use CMake as an example, if the build system presumes that the BMI file is “owned” by the
library target that contains the module interface unit, there’s a significant risk that the BMI will
not be compatible with the translation unit importing it, resulting in a build error if it happens that
the user has set compiler arguments that make the BMI unusable in that context.

And this compounds with the fact that it is common for a CMake project to either build into itself
third-party code, or to import targets produced by a different invocation of CMake, means that
the level of coordination that would be required to ensure the BMI is usable by the importing unit
is not realistic for the industry as a whole.

The result of that reasoning is that the assembling of the compiler arguments for the production
of the BMI for a given module needs to be started in the context of the translation unit declaring
the import, in order to guarantee that the produced BMI will be usable.

On the other hand, if every translation unit doing an import had to do its own translation of the
module interface units, it would result in an exponential increase in the number of translations.
Therefore the build system needs to be able to optimize that away by being able to identify
when BMIs produced in different contexts are usable.

At the same time, if we just use the same compiler arguments from the translation unit declaring
the import when translating an interface, we would lose the isolation of arguments that was set
as a goal to mitigate ODR violations, not to mention that it would significantly reduce the amount
of reusability of the BMI files across different translation units declaring the same import.

Therefore we need to be able to isolate which compiler arguments to carry from the metadata
associated with the module interface unit when producing the BMI in the context of the unit
declaring the import, but we also need to be able to declare which arguments from the
translation unit declaring the import need to be suppressed when producing the BMIs it needs.

Example
This section will illustrate the problem through an example. For the purposes of this illustration,
we will assume the scenario is using GCC 11 on GNU/Linux. In this example, we have three
different translation units, which we should assume would be in different projects and therefore
not with a unified control of all the compiler arguments.

5



Document Number: P2581R2
Date: 2022-10-12
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

Let’s imagine that the first project publishes a module A, then a second project publishes a
module B that imports module A, and finally the third project publishes a module C that imports
both A and B. Follow the source code of the three different modules:

6



Document Number: P2581R2
Date: 2022-10-12
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

Each project will produce a BMI and an object file output for their module, and when doing that,
the control over the arguments sent to the compiler is local to the specific project. In the case of
gcc, the path to the BMI files (both for input and output) is provided through the
-fmodule-mapper=file option.

Therefore on the first compilation, we need an additional file to instruct where the BMI output
should be:

At which point we should be able to invoke gcc to translate a.cpp in the context of project A.

g++ -std=c++20 -fmodules-ts \
-fmodule-mapper=a.module-map \
-fictional-option-1 \
-I/path/to/some_header/ \
-DOPTION_FOR_SOME_HEADER=1 \
-o a.o -c a.cpp

This will produce both a.o and a.gcm, which is meant to be used in other projects.

On project B, however, the module map will need to include the path to the BMIs of both A and
B. The build system will need to assemble a module map to be used in that translation unit,
which would look something like:

At which point, the invocation of the compiler can be assembled from the context of project B.

g++ -std=c++20 -fmodules-ts \
-fmodule-mapper=b.module-map \
-fictional-option-2 \
-I/path/to/other_header/ \
-DOPTION_FOR_OTHER_HEADER=1 \
-o b.o -c b.cpp

7



Document Number: P2581R2
Date: 2022-10-12
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

If the BMI for module A is compatible with this invocation of the compiler, everything should
work. The build system, however, has no way of evaluating whether that is true or not. At this
moment, if they are incompatible, this will just be an error in the translation of b.cpp, because
a.gcm couldn’t be used in this context.

In environments where the choice of compiler and build flags can be centrally managed, we
could conceivably consider such incompatibility to be an user error, and the solution would be to
fix the flags in order for the BMI to become compatible. However, as discussed in the previous
section, this is not a viable approach for decentralized organizations or the Open Source
ecosystem.

For the sake of this illustration, let’s consider that the use of -fictional-option-1
generates a BMI that is incompatible with an invocation where -fictional-option-2 is
used, even though it’s perfectly valid to link objects produced with those options into the same
program.

The first unanswered question here, then, is: How can the build system tell whether
a.gcm is usable in the context of the translation of b.cpp?

Now, let’s pretend that the build system had that problem solved, and knew that a.gcm was
incompatible, and for that reason it knows that it needs to produce a new version of it that could
be used in the context of the translation of b.cpp.

Since the build system has to treat the compiler arguments as opaque tokens, it can’t really try
to infer why the BMI was incompatible and try to correct those inconsistencies from the
invocation used to produce the original a.gcm.

However, if it just uses the arguments from the translation of b.cpp, it will at the same time be
missing the preprocessor arguments that are necessary to translate a.cpp and incorrectly
exposing the preprocessor arguments from b.cpp to that translation unit.

The second unanswered question: How can the build system decide the compiler
arguments required to produce a version of a.gcm that is usable in the context of the
translation of b.cpp?

The final step, then, will happen with the translation of c.cpp. For the sake of illustration, let’s
imagine it uses -fictional-option-3, which would make all other previous BMIs
referenced in this example unusable in this context, even if they’re all still ABI-compatible and
could be linked into a single program.

The end result is that we have three different module maps, resulting in three different versions
of a.gcm, and two different versions of b.gcm, and they all contribute to the final program.

8



Document Number: P2581R2
Date: 2022-10-12
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

In this particular illustration, it generated the worst of all scenarios, where we had to translate
every module interface once for each translation unit that imported them. And it’s likely that in
very decentralized organizations, the amount of reuse of BMIs across projects will in fact be
substantially smaller than in organizations where flags are centrally managed.

However, there is a wide range of possibilities, and therefore it should be possible to optimize
the reuse of the BMIs by governance on the use of flags even if that won’t strictly apply to the
entire codebase. Any amount of reuse is a significant optimization.

Producing a new BMI in the context of another
translation unit
In the previous section we worked through an example that demonstrated that we need to be
able to reason about which flags need to be used coherently, and which flags are allowed to be
different. This paper introduces the following categories to organize those arguments:

● Basic Toolchain Configuration Arguments: The coherency on the toolchain configuration
is not a new requirement. This is the same set of arguments that need to be coherent
when two independent translation units in the same program include the same header
today. This needs to account for the “benign ODR violations” that are common practice
today.

● BMI-Sensitive Arguments: Current implementations, particularly clang and gcc, currently
have a BMI output that is sensitive to changes that would otherwise not cause an
incoherency on the basic toolchain configuration. For instance: libstdc++ supports
translation units using different language standard versions to communicate within the
same program (with documented limitations), however it is not valid to use a BMI
translated with a different language standard version than the unit importing it.

● Local Preprocessor Arguments: Preprocessor arguments used when translating the
module interface, but that would otherwise not be needed in the translation of the unit
importing that module, also arguments needed in the translation unit importing a module
but that are not needed when translating the module interface being imported.

● Other Arguments: Those are arguments that do not affect the preprocessor, and are also
not relevant either for ABI coherency or the BMI compatibility. They do not substantially
change how the translation is made and therefore this paper will not cover their usage.

9



Document Number: P2581R2
Date: 2022-10-12
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

Those categories, however, represent higher-level semantics. It is not the case that the build
system can introspect the command line used to produce a BMI on another project and decide
which arguments fall on which of the categories. They need to be authored by the engineer
maintaining the build system.

On the other hand, we don’t need to materialize the distinction between the Basic Toolchain
Configuration arguments and the BMI-Sensitive arguments or the Other Arguments. The
coherency between Basic Toolchain Configuration arguments across different translation units is
a problem that maintainers of build systems and package managers need to solve today,
regardless of modules.

The only category of arguments that we need to be concerned with in this context is actually the
Local Preprocessor Arguments, in the modules ecosystem we will need the users to specify
which of the arguments given to the compiler are in that category.

This paper proposes that build systems should offer a mechanism to identify which of
the options used in a translation unit are a Local Preprocessor Argument.

This paper proposes that in order to assemble the compiler invocation for a BMI
compatible with the translation unit importing a module, you start with the invocation of
the translation unit declaring the import, remove the Local Preprocessor Arguments from
that invocation and then append the Local Preprocessor Arguments from the invocation
originally used in the module interface unit.

In the example used in the previous section, the user would document the intent that the
arguments -I/path/to/some_header/ -DOPTION_FOR_SOME_HEADER=1 are the Local
Preprocessor Arguments for a.cpp, and this is the only part of that invocation that we need to
take.

Likewise, for the translation of b.cpp, the user would document that the intent that the
arguments -I/path/to/other_header/ -DOPTION_FOR_OTHER_HEADER=1 are the
Local Preprocessor Arguments for b.cpp, which is what we need to filter out from the compiler
invocation.

Therefore the compiler invocation for the version of a.gcm that would be usable in the context of
the translation of b.cpp would look like this:

g++ -std=c++20 -fmodules-ts \
-fmodule-mapper=b-compatible/a.module-map \
-fictional-option-2 \
-I/path/to/some_header/ \
-DOPTION_FOR_SOME_HEADER=1 \
-fmodule-only -c a.cpp

10



Document Number: P2581R2
Date: 2022-10-12
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

The assumption is that those two invocations will not generate ODR violations, but that
assumption is the same that we already have in the context of source inclusion today, so they
are not a new requirement.

Built Module Interface Compatibility Identifiers
The previous section established a way to produce a BMI when an usable one cannot be found.
In this section we will propose a mechanism to identify whether an existing BMI is compatible
with the current context.

The proposal here is that every built module interface file will have an identifier for the
compatibility of the file. The module metadata shipped with a pre-built library will advertise the
list of BMI files that were made available with the binaries. That list will include the compatibility
identifier of the BMI alongside the location of the file itself. Any consumer of the library will
obtain the identifier for their own build context, and if a matching identifier is found, the build
system will know that the BMI can be reused.

Defining the Compatibility Identifier
The scope of compatibility for consuming an existing built module interface file is defined by the
union of the Basic Toolchain Configuration Arguments and the BMI-Sensitive arguments. And it
should explicitly exclude Local Preprocessor Arguments. Those arguments are the ones that
should be used to define the compatibility identifier.

The compiler should offer an interface (e.g.: command line option) that will produce to
the standard output the identifier as the first line. That command line should accept the
regular compiler arguments as if parsing a module interface unit (although without
specifying a translation unit). Arguments that are irrelevant to the compatibility of the
built module interface output should be ignored.

The build system should take the compiler invocation for a translation unit, remove the
Local Preprocessor Arguments and the reference to the specific translation unit and
invoke the compiler in that mode in order to obtain the compatibility identifier for BMIs
produced and consumed by that translation unit.

A build system would, therefore, only need to invoke the compiler once for each set of
arguments to get the identifier that would be used for all translation units using the same
arguments, and then search the module metadata shipped with the pre-built library for a BMI
with that particular identifier.

If a BMI with that identifier is found, the build system doesn’t need to emit instructions on how to
build that BMI again, however if a BMI is not found, then those arguments are concatenated

11



Document Number: P2581R2
Date: 2022-10-12
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

with the Local Preprocessor Arguments advertised by the module in order to produce a local
BMI.

When generating install instructions, the build system would use that same identifier when
producing the metadata for the modules that are part of the library being distributed.

Compilers that support multiple inputs
While the author of this paper is not aware of any implementation that supports a number of
importing BMIs of different compatibility profiles concurrently, this is a significant optimization,
and the author considers that it is justifiable to specify it ahead of time.

A compiler that supports multiple compatibility for the same context should return the
additional identifiers on the same output, following the first line. In other words, the first
line returned specifies the compatibility identifier of the BMI that will be produced, the
following lines specify alternative BMIs that can be consumed.

One hypothetical use case for this would be if clang produces its own BMI when parsing the
interface module units, but is also capable of parsing module files in the IFC format published by
Microsoft.

12

https://github.com/microsoft/ifc-spec

