

1

Document number: P2548R3

Date: 2022-11-11

Project: Programming Language C++
Audience: LEWG

Reply-to: Michael Florian Hava1 <mfh.cpp@gmail.com>

copyable_function
Abstract
This paper proposes a replacement for function in the form of a copyable variant of

move_only_function.

Tony Table
Before Proposed

auto lambda{[&]() /*const*/ { … }};

function<void(void)> func{lambda};
const auto & ref{func};

func();

ref();

auto lambda{[&]() /*const*/ { … }};

copyable_function<void(void)> func0{lambda};
const auto & ref0{func0};

func0();

ref0(); //operator() is NOT const!

copyable_function<void(void) const> func1{lambda};
const auto & ref1{func1};

func1();

ref1(); //operator() is const!
auto lambda{[&]() mutable { … }};

function<void(void)> func{lambda};
const auto & ref{func};

func();

ref(); //operator() is const!

 //this is the infamous constness-bug

auto lambda{[&]() mutable { … }};

copyable_function<void(void)> func{lambda};
const auto & ref{func};

func();

ref(); //operator() is NOT const!

copyable_function<void(void) const> tmp{lambda};

Revisions
R0: Initial version

R1:

• Incorporated the changes proposed for move_only_function in [P2511R2].

• Added wording for conversions from copyable_function to move_only_function.

R2:

• Removed changes adopted from [P2511R2] as that proposal didn’t reach consensus in the

2022-10 LEWG electronic polling.

R3: Updates after LEWG Review on 2022-11-08:

• Fixed requirements on callables in the design section – copy-construct-ability is sufficient.

• Removed open question on the deprecation of function.

• Replaced previously proposed conversion operators to move_only_function.

1 RISC Software GmbH, Softwarepark 32a, 4232 Hagenberg, Austria, michael.hava@risc-software.at

mailto:mfh.cpp@gmail.com
http://wg21.link/P2511R2
http://wg21.link/P2511R2
michael.hava@risc-software.at

2

• Added section on conversions between standard library polymorphic function wrappers.

• Added section on potential allocator support.

Motivation
C++11 added function, a type-erased function wrapper that can represent any copyable callable

matching the function signature R(Args...). Since its introduction, there have been identified several

issues – including the infamous constness-bug – with its design (see [N4159]).

[P0288R9] introduced move_only_function, a move-only type-erased callable wrapper. In addition to

dropping the copyable requirement, move_only_function extends the supported signature to

R(Args...) constop (&|&&)op noexceptop and forwards all qualifiers to its call operator, introduces

a strong non-empty precondition for invocation instead of throwing bad_function_call and drops

the dependency to typeid/RTTI (there is no equivalent to function’s target_type() or target()).

Concurrently, [P0792R10] introduced function_ref, a type-erased non-owning reference to any

callable matching a function signature in the form of R(Args...) constop noexceptop. Like

move_only_function, it forwards the noexcept-qualifier to its call operator. As function_ref acts

like a reference, it does not support ref-qualifiers and does not forward the const-qualifier to its call

operator.

As a result, function is now the only type-erased function wrapper not supporting any form of

qualifiers in its signature. Whilst amending function with support for ref/noexcept-qualifiers would

be a straightforward extension, the same is not true for the const-qualifier due to the long-standing

constness-bug. Without proper support for the const-qualifier, function would still be inconsistent

with its closest relative.

Therefore, this paper proposes to introduce a replacement to function in the form of

copyable_function, a class that closely mirrors the design of move_only_function and adds

copyability as an additional affordance.

Design space
The main goal of this paper is consistency between the move-only and copyable type-erased function

wrappers. Therefore, we follow the design of move_only_function very closely and only introduce

three extensions:

1. Adding a copy constructor

2. Adding a copy assignment operator

3. Requiring callables to be copy-constructible

Conversions between function wrappers
Given the proliferation of proposals for polymorphic function wrappers, LEWG requested an evaluation

of the „conversion story“ of these types.

 To

Fr
o

m

 function move_only_function copyable_function function_ref

function
move_only_function
copyable_function
function_ref

http://wg21.link/N4159
https://wg21.link/P0288R9
http://wg21.link/P0792R10

3

It is recommended that implementors do not perform additional allocations when converting from a

copyable_function instantiation to a compatible move_only_function instantiation, but this is left

as quality-of-implementation.

Concerning allocator support
After having reviewed R2, LEWG requested a statement about potential allocator support. As this

proposal aims for feature parity with move_only_function (apart from the extensions mentioned

above) and considering the somewhat recent removal of allocator support from function [P0302], we

refrain from adding allocator support to copyable_function. We welcome an independent paper

introducing said support to both classes.

Impact on the Standard
This proposal is a pure library addition. It introduces a new class template and adds an optimization

requirement to an existing class template.

Implementation Experience
The proposed design has been implemented at https://github.com/MFHava/P2548.

Proposed Wording
Wording is relative to [N4910]. Additions are presented like this, removals like this.

[version.syn]
In [version.syn], add:

#define __cpp_lib_copyable_function YYYYMML //also in <functional>

Adjust the placeholder value as needed to denote this proposal’s date of adoption.

[functional.syn]
In [functional.syn], in the synopsis, add the proposed class template:

// 22.10.17.4, move only wrapper
template<class... S> class move_only_function; // not defined
template<class R, class... ArgTypes>
 class move_only_function<R(ArgTypes...) cv ref noexcept(noex)>; // see below

// 22.10.17.5, copyable wrapper
template<class... S> class copyable_function; // not defined
template<class R, class... ArgTypes>
 class copyable_function<R(ArgTypes...) cv ref noexcept(noex)>; // see below

// 22.10.18, searchers
template<class ForwardIterator, class BinaryPredicate = equal_to<>>
class default_searcher;

[func.wrap]
In [func.wrap], insert the following section at the end of Polymorphic function wrappers:

 22.10.17.5 Copyable wrapper [func.wrap.copy]
22.10.17.5.1 General [func.wrap.copy.general]

1 The header provides partial specializations of copyable_function for each combination of the possible replacements of the
placeholders cv, ref, and noex where

(1.1) — cv is either const or empty,
(1.2) — ref is either &, &&, or empty, and
(1.3) — noex is either true or false.

2 For each of the possible combinations of the placeholders mentioned above, there is a placeholder inv-quals defined as follows:
(2.1) — If ref is empty, let inv-quals be cv&,
(2.2) — otherwise, let inv-quals be cv ref.

http://wg21.link/P0302
https://github.com/MFHava/P2548
http://wg21.link/N4910

4

 22.10.17.5.2 Class template copyable_function [func.wrap.copy.class]
 namespace std {

 template<class... S> class copyable_function; // not defined

 template<class R, class... ArgTypes>
 class copyable_function<R(ArgTypes...) cv ref noexcept(noex)> {
 public:
 using result_type = R;

 // 22.10.17.5.3, constructors, assignments, and destructors
 copyable_function() noexcept;
 copyable_function(nullptr_t) noexcept;
 copyable_function(const copyable_function&);
 copyable_function(copyable_function&&) noexcept;
 template<class F> copyable_function(F&&);
 template<class T, class... Args>
 explicit copyable_function(in_place_type_t<T>, Args&&...);
 template<class T, class U, class... Args>
 explicit copyable_function(in_place_type_t<T>, initializer_list<U>, Args&&...);

 copyable_function& operator=(const copyable_function&);
 copyable_function& operator=(copyable_function&&);
 copyable_function& operator=(nullptr_t) noexcept;
 template<class F> copyable_function& operator=(F&&);

 ~copyable_function();

 // 22.10.17.5.4, invocation
 explicit operator bool() const noexcept;
 R operator()(ArgTypes...) cv ref noexcept(noex);

 // 22.10.17.5.5, utility
 void swap(copyable_function&) noexcept;
 friend void swap(copyable_function&, copyable_function&) noexcept;
 friend bool operator==(const copyable_function&, nullptr_t) noexcept;

 private:
 template<class VT>
 static constexpr bool is-callable-from = see below; //exposition only
 };
}

1 The copyable_function class template provides polymorphic wrappers that generalize the notion of a callable object (22.10.3).
These wrappers can store, copy, move, and call arbitrary callable objects, given a call signature. Within this subclause, call-args
is an argument pack with elements that have types ArgTypes&&... respectively.

2 Recommended practice: Implementations should avoid the use of dynamically allocated memory for a small contained value.
[Note 1: Such small-object optimization can only be applied to a type T for which is_nothrow_constructible_v<T> is true. — end note]

 22.10.17.5.3 Constructors, assignment, and destructor [func.wrap.copy.ctor]
 template<class VT>

 static constexpr bool is-callable-from = see below;
1 If noex is true, is-callable-from<VT> is equal to:

 is_nothrow_invocable_r_v<R, VT cv ref, ArgTypes...> &&
 is_nothrow_invocable_r_v<R, VT inv-quals, ArgTypes...>

Otherwise, is-callable-from<VT> is equal to:
 is_invocable_r_v<R, VT cv ref, ArgTypes...> &&
 is_invocable_r_v<R, VT inv-quals, ArgTypes...>

 copyable_function() noexcept;
copyable_function(nullptr_t) noexcept;

2 Postconditions: *this has no target object.

 copyable_function(const copyable_function& f)
3 Postconditions: *this has no target object if f had no target object

Otherwise, the target object of *this is a copy of the target object of f.
4 Throws: Any exception thrown by the initialization of the target object. May throw bad_alloc.

 copyable_function(copyable_function&& f) noexcept;

5 Postconditions: The target object of *this is the target object f had before construction, and f is in a valid state with an
unspecified value.

 template<class F> copyable_function(F&& f);
6 Let VT be decay_t<F>.
7 Constraints:

(7.1) — remove_cvref_t<F> is not the same as copyable_function, and
(7.2) — remove_cvref_t<F> is not a specialization of in_place_type_t, and
(7.3) — is-callable-from<VT> is true.

8 Mandates:
(8.1) — is_constructible_v<VT, F> is true, and
(8.2) — is_copy_constructible_v<VT> is true.

9 Preconditions: VT meets the Cpp17Destructible requirements, and if is_move_constructible_v<VT> is true, VT meets the
Cpp17MoveConstructible requirements.

5

10 Postconditions: *this has no target object if any of the following hold:
(10.1) — f is a null function pointer value, or
(10.2) — f is a null member function pointer value, or
(10.3) — remove_cvref_t<F> is a specialization of the copyable_function class template, and f has no target object.

Otherwise, *this has a target object of type VT direct-non-list-initialized with std::forward<F>(f).
11 Throws: Any exception thrown by the initialization of the target object. May throw bad_alloc unless VT is a function pointer

or a specialization of reference_wrapper.

 template<class T, class... Args>
 explicit copyable_function(in_place_type_t<T>, Args&&... args);

12 Let VT be decay_t<T>.
13 Constraints:

(13.1) — is_constructible_v<VT, Args...> is true, and
(13.2) — is-callable-from<VT> is true.

14 Mandates:
(14.1) — VT is the same type as T, and
(14.2) — is_copy_constructible_v<VT> is true.

15 Preconditions: VT meets the Cpp17Destructible requirements, and if is_move_constructible_v<VT> is true, VT meets the
Cpp17MoveConstructible requirements.

16 Postconditions: *this has a target object d of type VT direct-non-list-initialized with std::forward<Args>(args)....
17 Throws: Any exception thrown by the initialization of the target object. May throw bad_alloc unless VT is a pointer or a

specialization of reference_wrapper.

 template<class T, class U, class... Args>
 explicit copyable_function(in_place_type_t<T>, initializer_list<U> ilist, Args&&... args);

18 Let VT be decay_t<T>.
19 Constraints:

(19.1) — is_constructible_v<VT, initializer_list<U>&, Args…> is true, and
(19.2) — is-callable-from<VT> is true.

20 Mandates:
(20.1) — VT is the same type as T, and
(20.2) — is_copy_constructible_v<VT> is true.

21 Preconditions: VT meets the Cpp17Destructible requirements, and if is_move_constructible_v<VT> is true, VT meets the
Cpp17MoveConstructible requirements.

22 Postconditions: *this has a target object d of type VT direct-non-list-initialized with ilist, std::forward<Args>(args)....
23 Throws: Any exception thrown by the initialization of the target object. May throw bad_alloc unless VT is a pointer or a

specialization of reference_wrapper.

 copyable_function& operator=(const copyable_function& f);
24 Effects: Equivalent to: copyable_function(f).swap(*this);
25 Returns: *this.

 copyable_function& operator=(copyable_function&& f);

26 Effects: Equivalent to: copyable_function(std::move(f)).swap(*this);
27 Returns: *this.

 copyable_function& operator=(nullptr_t) noexcept;

28 Effects: Destroys the target object of *this, if any.
29 Returns: *this.

 template<class F> copyable_function& operator=(F&& f);

30 Effects: Equivalent to: copyable_function(std::forward<F>(f)).swap(*this);
31 Returns: *this.

 ~copyable_function();

32 Effects: Destroys the target object of *this, if any.

 22.10.17.5.4 Invocation [func.wrap.copy.inv]
 explicit operator bool() const noexcept;

1 Returns: true if *this has a target object, otherwise false.

 R operator()(ArgTypes... args) cv ref noexcept(noex);
2 Preconditions: *this has a target object.
3 Effects: Equivalent to:

 return INVOKE<R>(static_cast<F inv-quals>(f), std::forward<ArgTypes>(args)...);

where f is an lvalue designating the target object of *this and F is the type of f.

 22.10.17.5.5 Utility [func.wrap.copy.util]
 void swap(copyable_function& other) noexcept;

1 Effects: Exchanges the target objects of *this and other.

 friend void swap(copyable_function& f1, copyable_function& f2) noexcept;
2 Effects: Equivalent to f1.swap(f2).

 friend bool operator==(const copyable_function& f, nullptr_t) noexcept;

6

3 Returns: true if f has no target object, otherwise false.

[func.wrap.move.ctor]
In [func.wrap.move.ctor], insert the following:

 template<class F> move_only_function(F&& f);
4 Let VT be decay_t<F>.
5 Constraints:

(5.1) — remove_cvref_t<F> is not the same as move_only_function, and
(5.2) — remove_cvref_t<F> is not a specialization of in_place_type_t, and
(5.3) — is-callable-from<VT> is true.

6 Mandates: is_constructible_v<VT, F> is true.
7 Preconditions: VT meets the Cpp17Destructible requirements, and if is_move_constructible_v<VT> is true, VT meets the

Cpp17MoveConstructible requirements.
8 Postconditions: *this has no target object if any of the following hold:

(8.1) — f is a null function pointer value, or
(8.2) — f is a null member function pointer value, or
(8.3) — remove_cvref_t<F> is a specialization of the move_only_function class template, and f has no target object.

Otherwise, *this has a target object of type VT direct-non-list-initialized with std::forward<F>(f).
9 Throws: Any exception thrown by the initialization of the target object. May throw bad_alloc unless VT is a function pointer

or a specialization of reference_wrapper, or F is copyable_function<R(Args...) cv ref noexcept(noex)>.

Acknowledgements
Thanks to RISC Software GmbH for supporting this work. Thanks to Peter Kulczycki for proof reading

and discussions. Thanks to Matt Calabrese for helping to get conversions to move_only_function to

work.

https://www.risc-software.at/

	Abstract
	Tony Table
	Revisions
	Motivation
	Design space
	Conversions between function wrappers
	Concerning allocator support

	Impact on the Standard
	Implementation Experience
	Proposed Wording
	[version.syn]
	[functional.syn]
	[func.wrap]
	[func.wrap.move.ctor]

	Acknowledgements

