Document number: = P2548R3

Date: 2022-11-11

Project: Programming Language C++

Audience: LEWG

Reply-to: Michael Florian Hava® <mfh.cpp@gmail.com>

copyable_function
Abstract

This paper proposes a replacement for function in the form of a copyable variant of
move_only function.

Tony Table
Before Proposed
auto lambda{[&]() /*const*/ { .. }}; auto lambda{[&]() /*const*/ { .. }};
ifunction<void(void)> func{lambda}; & |copyable function<void(void)> func@{lambda}; %4
const auto & ref{func}; const auto & refe{funce};
func(); « [funce(); <
ref(); « |refo(); //operator() is NOT const! p~4
copyable_function<void(void) const> funcil{lambda}; V4
const auto & refl{funcl};
funcl(); 4
refl(); //operator() is const! 4
auto lambda{[&]() mutable { .. }}; auto lambda{[&]() mutable { .. }};
ifunction<void(void)> func{lambda}; & |copyable_function<void(void)> func{lambda}; 4
const auto & ref{func}; const auto & ref{func};
func(); & [func(); 4
ref(); //operator() is const! I?V ref(); //operator() is NOT const! X
//this is the infamous constness-bug
copyable function<void(void) const> tmp{lambda}; X

Revisions

RO: Initial version
R1:

e Incorporated the changes proposed for move_only functionin [P2511R2].

e Added wording for conversions from copyable function to move only function.
R2:
e Removed changes adopted from [P2511R2] as that proposal didn’t reach consensus in the

2022-10 LEWG electronic polling.
R3: Updates after LEWG Review on 2022-11-08:

e Fixed requirements on callables in the design section — copy-construct-ability is sufficient.
e Removed open question on the deprecation of function.
e Replaced previously proposed conversion operators to move_only function.

1 RISC Software GmbH, Softwarepark 32a, 4232 Hagenberg, Austria, michael.hava@risc-software.at

1

mailto:mfh.cpp@gmail.com
http://wg21.link/P2511R2
http://wg21.link/P2511R2
michael.hava@risc-software.at

e Added section on conversions between standard library polymorphic function wrappers.
e Added section on potential allocator support.

Motivation

C++11 added function, a type-erased function wrapper that can represent any copyable callable
matching the function signature R(Args. ..). Since its introduction, there have been identified several
issues — including the infamous constness-bug — with its design (see [N4159]).

[PO288R9] introduced move _only function, a move-only type-erased callable wrapper. In addition to
dropping the copyable requirement, move_only function extends the supported signature to
R(Args...) consto (&|8&%)op Noexceptop and forwards all qualifiers to its call operator, introduces
a strong non-empty precondition for invocation instead of throwing bad_function_call and drops
the dependency to typeid/RTTI (there is no equivalent to function’s target_type() or target()).

Concurrently, [P0792R10] introduced function_ref, a type-erased non-owning reference to any
callable matching a function signature in the form of R(Args...) consto noexceptop. Like
move_only function, it forwards the noexcept-qualifier to its call operator. As function_ref acts
like a reference, it does not support ref-qualifiers and does not forward the const-qualifier to its call
operator.

As a result, function is now the only type-erased function wrapper not supporting any form of
qualifiers in its signature. Whilst amending function with support for ref/noexcept-qualifiers would
be a straightforward extension, the same is not true for the const-qualifier due to the long-standing
constness-bug. Without proper support for the const-qualifier, function would still be inconsistent
with its closest relative.

Therefore, this paper proposes to introduce a replacement to function in the form of
copyable_function, a class that closely mirrors the design of move _only function and adds
copyability as an additional affordance.

Design space

The main goal of this paper is consistency between the move-only and copyable type-erased function
wrappers. Therefore, we follow the design of move_only function very closely and only introduce
three extensions:

1. Adding a copy constructor
2. Adding a copy assignment operator
3. Requiring callables to be copy-constructible

Conversions between function wrappers
Given the proliferation of proposals for polymorphic function wrappers, LEWG requested an evaluation
of the ,,conversion story” of these types.

To

function | move_only_function | copyable_function | function_ref
function
move_only_function x x
copyable_function
function_ref

From

http://wg21.link/N4159
https://wg21.link/P0288R9
http://wg21.link/P0792R10

It is recommended that implementors do not perform additional allocations when converting from a
copyable_function instantiation to a compatible move_only_function instantiation, but this is left
as quality-of-implementation.

Concerning allocator support

After having reviewed R2, LEWG requested a statement about potential allocator support. As this
proposal aims for feature parity with move_only function (apart from the extensions mentioned
above) and considering the somewhat recent removal of allocator support from function [P0302], we
refrain from adding allocator support to copyable function. We welcome an independent paper
introducing said support to both classes.

Impact on the Standard

This proposal is a pure library addition. It introduces a new class template and adds an optimization
requirement to an existing class template.

Implementation Experience
The proposed design has been implemented at https://github.com/MFHava/P2548.

Proposed Wording
Wording is relative to [N4910]. Additions are presented like -, removals like -

[version.syn]
In [version.syn], add:

Adjust the placeholder value as needed to denote this proposal’s date of adoption.

[functional.syn]
In [functional.syn], in the synopsis, add the proposed class template:

// 22.10.17.4, move only wrapper
template<class... S> class move_only_function; // not defined
template<class R, class... ArgTypes>
class move_only_function<R(ArgTypes...) cv ref noexcept(noex)>; // see below

S

// 22.10.18, searchers
template<class ForwardIterator, class BinaryPredicate = equal_to<>>
class default_searcher;

[func.wrap]
In [func.wrap], insert the following section at the end of Polymorphic function wrappers:

http://wg21.link/P0302
https://github.com/MFHava/P2548
http://wg21.link/N4910

s

[func.wrap.move.ctor]
In [func.wrap.move.ctor], insert the following:

template<class F> move_only_function(F&& f);
4 Let VT be decay_t<F>.
5 Constraints:
(5.1) — remove_cvref_t<F> is not the same as move_only_function, and
(5:2) — remove_cvref_t<F> is not a specialization of in_place_type_t, and
(53) — is-callable-from<VT> is true.
6 Mandates: is_constructible_v<VT, F>is true.
7 Preconditions: VT meets the Cpp17Destructible requirements, and if is_move_constructible_v<VT> is true, VT meets the
Cppl7MoveConstructible requirements.
8 Postconditions: *this has no target object if any of the following hold:
(8.1) — fis a null function pointer value, or
(8.2) — fis a null member function pointer value, or
(83) — remove_cvref_t<F> is a specialization of the move_only_function class template, and f has no target object.
Otherwise, *this has a target object of type VT direct-non-list-initialized with std: : forward<F>(f).
9 Throws: Any exception thrown by the initialization of the target object. May throw bad_alloc unless VT is a function pointer
or a specialization of reference_wrapper

Acknowledgements

Thanks to RISC Software GmbH for supporting this work. Thanks to Peter Kulczycki for proof reading
and discussions. Thanks to Matt Calabrese for helping to get conversions to move_only_function to
work.

https://www.risc-software.at/

	Abstract
	Tony Table
	Revisions
	Motivation
	Design space
	Conversions between function wrappers
	Concerning allocator support

	Impact on the Standard
	Implementation Experience
	Proposed Wording
	[version.syn]
	[functional.syn]
	[func.wrap]
	[func.wrap.move.ctor]

	Acknowledgements

