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copyable_function
Abstract

This paper proposes a replacement for function in the form of a copyable variant of
move_only function.

Tony Table
Before Proposed
auto lambda{[&]() /*const*/ { .. }}; auto lambda{[&]() /*const*/ { .. }};
ifunction<void(void)> func{lambda}; & |copyable function<void(void)> func@{lambda}; %4
const auto & ref{func}; const auto & refe{funce};
func(); « [funce(); <
ref(); « |refo(); //operator() is NOT const! p~4
copyable_function<void(void) const> funcil{lambda}; V4
const auto & refl{funcl};
funcl(); 4
refl(); //operator() is const! 4
auto lambda{[&]() mutable { .. }}; auto lambda{[&]() mutable { .. }};
ifunction<void(void)> func{lambda}; & |copyable_function<void(void)> func{lambda}; 4
const auto & ref{func}; const auto & ref{func};
func(); & [func(); 4
ref(); //operator() is const! I?V ref(); //operator() is NOT const! X
//this is the infamous constness-bug
copyable function<void(void) const> tmp{lambda}; X

Revisions

RO: Initial version
R1:

e Incorporated the changes proposed for move_only functionin [P2511R2].

e Added wording for conversions from copyable function to move only function.
R2:
e Removed changes adopted from [P2511R2] as that proposal didn’t reach consensus in the

2022-10 LEWG electronic polling.
R3: Updates after LEWG Review on 2022-11-08:

e Fixed requirements on callables in the design section — copy-construct-ability is sufficient.
e Removed open question on the deprecation of function.
e Replaced previously proposed conversion operators to move_only function.
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e Added section on conversions between standard library polymorphic function wrappers.
e Added section on potential allocator support.

Motivation

C++11 added function, a type-erased function wrapper that can represent any copyable callable
matching the function signature R(Args. .. ). Since its introduction, there have been identified several
issues — including the infamous constness-bug — with its design (see [N4159]).

[PO288R9] introduced move _only function, a move-only type-erased callable wrapper. In addition to
dropping the copyable requirement, move_only function extends the supported signature to
R(Args...) consto (&|8&%)op Noexceptop and forwards all qualifiers to its call operator, introduces
a strong non-empty precondition for invocation instead of throwing bad_function_call and drops
the dependency to typeid/RTTI (there is no equivalent to function’s target_type() or target()).

Concurrently, [P0792R10] introduced function_ref, a type-erased non-owning reference to any
callable matching a function signature in the form of R(Args...) consto noexceptop. Like
move_only function, it forwards the noexcept-qualifier to its call operator. As function_ref acts
like a reference, it does not support ref-qualifiers and does not forward the const-qualifier to its call
operator.

As a result, function is now the only type-erased function wrapper not supporting any form of
qualifiers in its signature. Whilst amending function with support for ref/noexcept-qualifiers would
be a straightforward extension, the same is not true for the const-qualifier due to the long-standing
constness-bug. Without proper support for the const-qualifier, function would still be inconsistent
with its closest relative.

Therefore, this paper proposes to introduce a replacement to function in the form of
copyable_function, a class that closely mirrors the design of move _only function and adds
copyability as an additional affordance.

Design space

The main goal of this paper is consistency between the move-only and copyable type-erased function
wrappers. Therefore, we follow the design of move_only function very closely and only introduce
three extensions:

1. Adding a copy constructor
2. Adding a copy assignment operator
3. Requiring callables to be copy-constructible

Conversions between function wrappers
Given the proliferation of proposals for polymorphic function wrappers, LEWG requested an evaluation
of the ,,conversion story” of these types.

To

function | move_only_function | copyable_function | function_ref
function
move_only_function x x
copyable_function
function_ref

From
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It is recommended that implementors do not perform additional allocations when converting from a
copyable_function instantiation to a compatible move_only_function instantiation, but this is left
as quality-of-implementation.

Concerning allocator support

After having reviewed R2, LEWG requested a statement about potential allocator support. As this
proposal aims for feature parity with move_only function (apart from the extensions mentioned
above) and considering the somewhat recent removal of allocator support from function [P0302], we
refrain from adding allocator support to copyable function. We welcome an independent paper
introducing said support to both classes.

Impact on the Standard

This proposal is a pure library addition. It introduces a new class template and adds an optimization
requirement to an existing class template.

Implementation Experience
The proposed design has been implemented at https://github.com/MFHava/P2548.

Proposed Wording
Wording is relative to [N4910]. Additions are presented like -, removals like -

[version.syn]
In [version.syn], add:

Adjust the placeholder value as needed to denote this proposal’s date of adoption.

[functional.syn]
In [functional.syn], in the synopsis, add the proposed class template:

// 22.10.17.4, move only wrapper
template<class... S> class move_only_function; // not defined
template<class R, class... ArgTypes>
class move_only_function<R(ArgTypes...) cv ref noexcept(noex)>; // see below

S

// 22.10.18, searchers
template<class ForwardIterator, class BinaryPredicate = equal_to<>>
class default_searcher;

[func.wrap]
In [func.wrap], insert the following section at the end of Polymorphic function wrappers:
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[func.wrap.move.ctor]
In [func.wrap.move.ctor], insert the following:

template<class F> move_only_function(F&& f);
4 Let VT be decay_t<F>.
5 Constraints:
(5.1) — remove_cvref_t<F> is not the same as move_only_function, and
(5:2) — remove_cvref_t<F> is not a specialization of in_place_type_t, and
(53) — is-callable-from<VT> is true.
6 Mandates: is_constructible_v<VT, F>is true.
7 Preconditions: VT meets the Cpp17Destructible requirements, and if is_move_constructible_v<VT> is true, VT meets the
Cppl7MoveConstructible requirements.
8 Postconditions: *this has no target object if any of the following hold:
(8.1) — fis a null function pointer value, or
(8.2) — fis a null member function pointer value, or
(83) — remove_cvref_t<F> is a specialization of the move_only_function class template, and f has no target object.
Otherwise, *this has a target object of type VT direct-non-list-initialized with std: : forward<F>(f).
9 Throws: Any exception thrown by the initialization of the target object. May throw bad_alloc unless VT is a function pointer
or a specialization of reference_wrapper
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