
Revising the wording of stream input operations

Document #: P1264R2
Date: 2022-11-08
Project: Programming Language C++
Audience: LWG
Reply-to: Louis Dionne <ldionne@apple.com>

1 Revision history
• R0 – Initial draft

• R1 –

– Apply LWG small-group changes.

– Rebase on top of N4778.

• R2 – Rebase on top of latest working draft and apply LWG feedback.

2 Abstract
The wording in [istream], [istream.formatted] and [istream.unformatted] is very difficult to
follow when it comes to exceptions. Some requirements are specified more than once in different
locations, which makes it ambiguous how requirements should interact with each other.

This is problematic because implementations currently differ significantly on their handling of error
flags and exceptions. For example, this libc++ bug report claims that libc++’s
operator>>(istream&, std::string&) is not throwing exception when failbit is set and failbit
exceptions are enabled. GCC and MSVC both behave as expected there. Unfortunately, the Stan-
dard seems to give reason to libc++, despite the behavior not making sense. Note that as of
currently, libc++ has been fixed to be consistent with the wording in this paper.

[LWG2349] tries to solve this issue by applying a small patch to the current wording, but I think
not all issues are solved this way. This wording-only proposal instead tries to overhaul the current
wording to make it clearer, without changing the intended behavior (which is implemented by GCC
and MSVC).

3 Proposed wording
This wording is based on the latest working draft as of 2022-11-07.

1

mailto:ldionne@apple.com
https://llvm.org/PR21586


3.1 Remove common wording

First, we clean up confusing wording that overlaps with wording in the formatted and unformatted
input operations:

Remove in [istream.general]/4

If rdbuf()->sbumpc() or rdbuf()->sgetc() returns traits::eof(), then the input
function, except as explicitly noted otherwise, completes its actions and does setstate(eofbit),
which may throw ios_base::failure ([iostate.flags]), before returning.

Remove in [istream.general]/5:

If one of these called functions throws an exception, then unless explicitly noted otherwise,
the input function sets badbit in error state. If badbit is on in exceptions(), the input
function rethrows the exception without completing its actions, otherwise it does not
throw anything and proceeds as if the called function had returned a failure indication.

3.2 Revise wording for formatted input operations

We make precise the execution of formatted input operations by introducing the notion of a local
error state. In [istream.formatted.reqmts]:

Each formatted input function begins execution by constructing an object of type
ios_base::iostate, termed the local error state, and initializing it to ios_base::goodbit.
It then creates an object of class sentry with the noskipws (second) argument false.
If the sentry object returns true, when converted to a value of type bool, the function
endeavors to obtain the requested input. Otherwise, if the sentry constructor exits
by throwing an exception or if the sentry object produces false when converted to
a value of type bool, the function returns without attempting to obtain any input. If
rdbuf()->sbumpc() or rdbuf()->sgetc() return traits::eof(), then ios_base::eofbit
is set in the local error state and the input function stops trying to obtain the requested
input. If an exception is thrown during input then ios::badbit is turned on in
*this’s error state. If (exceptions()&badbit) != 0 then the exception is rethrown.
ios::badbit is set in the local error state, *this’s error state is set to the local
error state, and the exception is rethrown if (exceptions() & badbit) != 0. After
extraction is done, the input function calls setstate, which sets *this’s error state to
the local error state, and may throw an exception. In any case, the formatted input
function destroys the sentry object. If no exception has been thrown, it returns *this.

Then, we adjust the description of formatted input operations to take advantage of the local error
state introduced above. In [istream.formatted.arithmetic]:

basic_istream& operator>>(unsigned short& val);
basic_istream& operator>>(unsigned int& val);
basic_istream& operator>>(long& val);
basic_istream& operator>>(unsigned long& val);
basic_istream& operator>>(long long& val);
basic_istream& operator>>(unsigned long long& val);
basic_istream& operator>>(float& val);
basic_istream& operator>>(double& val);

2



basic_istream& operator>>(long double& val);
basic_istream& operator>>(bool& val);
basic_istream& operator>>(void*& val);

As in the case of the inserters, these extractors depend on the locale’s num_get<>
object to perform parsing the input stream data. These extractors behave as formatted
input functions (as described in [istream.formatted.reqmts]). After a sentry object is
constructed, the conversion occurs as if performed by the following code fragment, where
state represents the input function’s local error state:

using numget = num_get<charT, istreambuf_iterator<charT, traits>>;
iostate err = iostate::goodbit;
use_facet<numget>(loc).get(*this, 0, *this, err state, val);
setstate(err);

In [istream.formatted.arithmetic]/2:
basic_istream& operator>>(short& val);

The conversion occurs as if performed by the following code fragment (using the same
notation as for the preceding code fragment):

using numget = num_get<charT, istreambuf_iterator<charT, traits>>;
iostate err = ios_base::goodbit;
long lval;
use_facet<numget>(loc).get(*this, 0, *this, err state, lval);
if (lval < numeric_limits<short>::min()) {

err state |= ios_base::failbit;
val = numeric_limits<short>::min();

} else if (numeric_limits<short>::max() < lval) {
err state |= ios_base::failbit;
val = numeric_limits<short>::max();

} else
val = static_cast<short>(lval);

setstate(err);

In [istream.formatted.arithmetic]/3:
basic_istream& operator>>(int& val);

The conversion occurs as if performed by the following code fragment (using the same
notation as for the preceding code fragment):

using numget = num_get<charT, istreambuf_iterator<charT, traits>>;
iostate err = ios_base::goodbit;
long lval;
use_facet<numget>(loc).get(*this, 0, *this, err state, lval);
if (lval < numeric_limits<int>::min()) {

err state |= ios_base::failbit;
val = numeric_limits<int>::min();

} else if (numeric_limits<int>::max() < lval) {
err state |= ios_base::failbit;

3



val = numeric_limits<int>::max();
} else

val = static_cast<int>(lval);
setstate(err);

In [istream.formatted.arithmetic]/3:
basic_istream& operator>>(extended-floating-point-type& val);

[...] The conversion occurs as if performed by the following code fragment (using the
same notation as for the preceding code fragment):

using numget = num_get<charT, istreambuf_iterator<charT, traits>>;
iostate err = ios_base::goodbit;
FP fval;
use_facet<numget>(loc).get(*this, 0, *this, err state, fval);
if (fval < -numeric_limits<extended-floating-point-type>::max()) {

err state |= ios_base::failbit;
val = -numeric_limits<extended-floating-point-type>::max();

} else if (numeric_limits<extended-floating-point-type>::max() < fval) {
err state |= ios_base::failbit;
val = numeric_limits<extended-floating-point-type>::max();

} else {
val = static_cast<extended-floating-point-type>(fval);

}
setstate(err);

In [istream.extractors]/10:
template<class charT, class traits, size_t N>

basic_istream<charT, traits>& operator>>(basic_istream<charT, traits>& in, charT (&s)[N]);
template<class traits, size_t N>

basic_istream<char, traits>& operator>>(basic_istream<char, traits>& in, unsigned char (&s)[N]);
template<class traits, size_t N>

basic_istream<char, traits>& operator>>(basic_istream<char, traits>& in, signed char (&s)[N]);

[...] If the function extracted no characters, it calls setstate(failbit), which may
throw ios_base::failure ([iostate.flags]) ios_base::failbit is set in the input function’s
local error state before setstate is called.

In [istream.extractors]/12:
template<class charT, class traits>

basic_istream<charT, traits>& operator>>(basic_istream<charT, traits>& in, charT& c);
template<class traits>

basic_istream<char, traits>& operator>>(basic_istream<char, traits>& in, unsigned char& c);
template<class traits>

basic_istream<char, traits>& operator>>(basic_istream<char, traits>& in, signed char& c);

Effects: Behaves like a formatted input member (as described in [istream.formatted.reqmts])
of in. After a sentry object is constructed a A character is extracted from in, if
one is available, and stored in c. Otherwise, the function calls in.setstate(failbit)
ios_base::failbit is set in the input function’s local error state before setstate is called.

4



In [string.io]:
template<class charT, class traits, class Allocator>

basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is, basic_string<charT, traits, Allocator>& str);

Effects: [...] After the last character (if any) is extracted, is.width(0) is called
and the sentry object is destroyed. If the function extracts no characters, it calls
is.setstate(ios::failbit), which may throw ios_base::failure ([iostate.flags]) ios_base::failbit
is set in the input function’s local error state before setstate is called.

In [bitset.operators]:
template<class charT, class traits, size_t N>

basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is, bitset<N>& x);

[...] If no characters are stored in str, calls is.setstate(ios_base::failbit) (which may
throw ios_base::failure ([iostate.flags])) ios_base::failbit is set in the input function’s
local error state before setstate is called.

3.3 Revise wording for unformatted input operations

In [istream.unformatted]/1:

Each unformatted input function begins execution by constructing an object of type
ios_base::iostate, termed the local error state, and initializing it to ios_base::goodbit.
It then creates an object of class sentry with the default argument noskipws (second)
argument true. If the sentry object returns true, when converted to a value of
type bool, the function endeavors to obtain the requested input. Otherwise, if the
sentry constructor exits by throwing an exception or if the sentry object returns
produces false, when converted to a value of type bool, the function returns without
attempting to obtain any input. In either case the number of extracted characters
is set to 0; unformatted input functions taking a character array of nonzero size as
an argument shall also store a null character (using charT()) in the first location of
the array. If rdbuf()->sbumpc() or rdbuf()->sgetc() return traits::eof(), then
ios_base::eofbit is set in the local error state and the input function stops trying to
obtain the requested input. If an exception is thrown during input then ios_base::badbit
is turned on in *this’s error state. (Exceptions thrown from basic_ios<>::clear()
are not caught or rethrown.) If (exceptions()badbit) != 0 then the exception is
rethrown. It also counts the number of characters extracted. ios_base::badbit is set in
the local error state, *this’s error state is set to the local error state, and the exception
is rethrown if (exceptions()&badbit) != 0. If no exception has been thrown it ends by
storing stores the count number of characters extracted in a member object and returning
the value specified. After extraction is done, the input function calls setstate, which
sets *this’s error state to the local error state, and may throw an exception. In any
event the sentry object is destroyed before leaving the unformatted input function.

In [istream.unformatted]/4:

5



int_type get();

Effects: Behaves as an unformatted input function (as described above). After con-
structing a sentry object, extracts a character c, if one is available. Otherwise,
the function calls setstate(failbit), which may throw ios_base::failure ([iostate.flags])
ios_base::failbit is set in the input function’s local error state before setstate is called.

In [istream.unformatted]/6:
basic_istream<charT, traits>& get(char_type& c);

Effects: Behaves as an unformatted input function (as described above). After con-
structing a sentry object, extracts a character, if one is available, and assigns it to
c. Otherwise, the function calls setstate(failbit) (which may throw ios_base::failure
([iostate.flags])) ios_base::failbit is set in the input function’s local error state before
setstate is called.

In [istream.unformatted]/8:
basic_istream<charT, traits>& get(char_type* s, streamsize n, char_type delim);

Effects: [...]

– n is less than one or n - 1 characters are stored;

– end-of-file occurs on the input sequence (in which case the function calls setstate(eofbit));

– traits::eq(c, delim) for the next available input character c (in which case c
is not extracted).

If the function stores no characters, it calls setstate(failbit) (which may throw
ios_base::failure ([iostate.flags])) ios_base::failbit is set in the input function’s local
error state before setstate is called. In any case, if n is greater than zero it then stores
a null character into the next successive location of the array.

In [istream.unformatted]/13:
basic_istream<charT, traits>& get(basic_streambuf<char_type, traits>& sb, char_type delim);

Effects: [...]

– end-of-file occurs on the input sequence;

– inserting in the output sequence fails (in which case the character to be inserted is
not extracted);

– traits::eq(c, delim) for the next available input character c (in which case c
is not extracted);

– an exception occurs (in which case, the exception is caught but not rethrown).

If the function inserts no characters, it calls setstate(failbit), which may throw
ios_base::failure ([iostate.flags]) ios_base::failbit is set in the input function’s local
error state before setstate is called.

6



In [istream.unformatted]/18:
basic_istream<charT, traits>& getline(char_type* s, streamsize n, char_type delim);

Effects: [...]

1. end-of-file occurs on the input sequence (in which case the function calls setstate(eofbit));

2. traits::eq(c, delim) for the next available input character c (in which case the
input character is extracted but not stored);

3. n is less than one or n - 1 characters are stored (in which case the function calls
setstate(failbit)).

These conditions are tested in the order shown.

If the function extracts no characters, it calls setstate(failbit) (which may throw
ios_base::failure ([iostate.flags])) ios_base::failbit is set in the input function’s local
error state before setstate is called.

In any case, if n is greater than zero, it then stores a null character (using charT()) into
the next successive location of the array.

In [istream.extractors]/14:
basic_istream<charT, traits>& operator>>(basic_streambuf<charT, traits>* sb);

Effects: [...] If the function inserts no characters, it calls setstate(failbit), which may
throw ios_base::failure ([iostate.flags]) ios_base::failbit is set in the input function’s
local error state before setstate is called. If it inserted no characters because it caught
an exception thrown while extracting characters from *this and failbit is on in
exceptions() ([iostate.flags]), then the caught exception is rethrown.

In [string.io]/6:
template<class charT, class traits, class Allocator>
basic_istream<charT, traits>&

getline(basic_istream<charT, traits>& is,
basic_string<charT, traits, Allocator>& str,
charT delim);

template<class charT, class traits, class Allocator>
basic_istream<charT, traits>&

getline(basic_istream<charT, traits>&& is,
basic_string<charT, traits, Allocator>& str,
charT delim);

Effects: [...]

– end-of-file occurs on the input sequence;(in which case, the getline function calls
is.setstate(ios_base::eofbit)).

– traits::eq(c, delim) for the next available input character c (in which case, c
is extracted but not appended) ([iostate.flags]) ;

7



– str.max_size() characters are stored (in which case, the function calls is.setstate(ios_base::failbit)
([iostate.flags]) ios_base::failbit is set in the input function’s local error state)

The conditions are tested in the order shown. In any case, after the last character is
extracted, the sentry object is destroyed.

If the function extracts no characters, it calls is.setstate(ios_base::failbit) which
may throw ios_base::failure ([iostate.flags]) ios_base::failbit is turned on in the input
function’s local error state before setstate is called.

4 Appendix: a few test cases
This section contains test cases that were handled in different ways by the implementations. They
are provided as a proof that we need to solve the problem, and for the implementer’s reference if
they deem it useful.

First, let’s introduce a few definitions from the Standard so we can refer to them below.

(A) [istream]/3 (applies to both formatted and unformatted input functions):

If rdbuf()->sbumpc() or rdbuf()->sgetc() returns traits::eof(), then the
input function, except as explicitly noted otherwise, completes its actions and does
setstate(eofbit), which may throw ios_base::failure ([iostate.flags]), before
returning.

(B) [istream]/4 (applies to both formatted and unformatted input functions):

If one of these called functions throws an exception, then unless explicitly noted other-
wise, the input function sets badbit in error state. If badbit is on in exceptions(),
the input function rethrows the exception without completing its actions, otherwise
it does not throw anything and proceeds as if the called function had returned a
failure indication.

(C) [istream.formatted.reqmts] [istream.formatted.reqmts]/1 (applies only to formatted
input functions):

Each formatted input function begins execution by constructing an object of class
sentry with the noskipws (second) argument false. If the sentry object returns
true, when converted to a value of type bool, the function endeavors to obtain
the requested input. If an exception is thrown during input then ios::badbit is
set in *this’s error state. If (exceptions()&badbit) != 0 then the exception is
rethrown. In any case, the formatted input function destroys the sentry object. If
no exception has been thrown, it returns *this.

(D) [istream.unformatted]/1 (applies only to unformatted input functions):

[...] If an exception is thrown during input then ios::badbit is turned on in *this’s
error state. (Exceptions thrown from basic_ios<>::clear() are not caught or
rethrown.) If (exceptions()&badbit) != 0 then the exception is rethrown. It
also counts the number of characters extracted. If no exception has been thrown
it ends by storing the count in a member object and returning the value specified.

8



In any event the sentry object is destroyed before leaving the unformatted input
function.

With all this laid out, here’s a couple of test cases:

1. Formatted input operation which fails to extract from a non-empty stream

#include <iostream>
#include <sstream>
int main () {

std::stringbuf buf("not empty");
std::istream is(&buf);
is.exceptions(std::ios::failbit);

bool threw = false;
try {

unsigned int tmp{};
is >> tmp;

} catch (std::ios::failure const&) {
threw = true;

}

std::cout << "bad = " << is.bad() << std::endl;
std::cout << "fail = " << is.fail() << std::endl;
std::cout << "eof = " << is.eof() << std::endl;
std::cout << "threw = " << threw << std::endl;

}

The current behavior is the following:

libstdc++ MSVC libc++
bad 0 0 1
fail 1 1 1
eof 0 0 0
threw 1 1 0

My interpretation is that per the definition of operator>>(unsigned int&) in [istream.formatted.arithmetic]/1,
we try to extract an unsigned int from the stream:

using numget = num_get<charT, istreambuf_iterator<charT, traits>>;
iostate err = iostate::goodbit;
use_facet<numget>(loc).get(*this, 0, *this, err, val);
setstate(err);

This num_get::get fails because the format is wrong and reports that by setting err to
std::ios_base::failbit, which results in setstate(err) throwing because failbit had
been set in the exceptions. I don’t think (B) applies here because the exception is not being
thrown as part of rdbuf()->sbumpc() or rdbuf()->sgetc(). However, (C) seems to apply,
which means that we catch the exception and set badbit on the stream, but we do not rethrow

9

https://wandbox.org/permlink/fVgU3C1cZWXwbhAN
http://rextester.com/CBDQE38523
https://wandbox.org/permlink/7sHlkXB3hBqZZ1Ge


the exception because badbit is not set in exceptions(). Hence, libc++’s behavior seems
correct to me, despite being useless.

2. Formatted input operation which fails to extract from an empty stream

#include <iostream>
#include <sstream>
int main () {

std::stringbuf buf; // empty
std::istream is(&buf);
is.exceptions(std::ios::failbit);

bool threw = false;
try {

unsigned int tmp{};
is >> tmp;

} catch (std::ios::failure const&) {
threw = true;

}

std::cout << "bad = " << is.bad() << std::endl;
std::cout << "fail = " << is.fail() << std::endl;
std::cout << "eof = " << is.eof() << std::endl;
std::cout << "threw = " << threw << std::endl;

}

The current behavior is the following:

libstdc++ MSVC libc++
bad 0 0 1
fail 1 1 1
eof 1 1 1
threw 1 1 0

My interpretation is that per (C), we create a sentry object which attempts to skip whitespace
and fails because we’re at the end of file. The sentry calls setstate(failbit | eofbit),
which throws an exception because failbit is set in the exceptions. We then set badbit on the
stream and do not rethrow the exception, because badbit is not in the exceptions. Also note
that I don’t think (B) applies here, because we never make it to the operations specified in
(A), which I think is what (B) is referring to. Hence, libc++ is correct again here.

3. Unformatted input operation which hits EOF

#include <iostream>
#include <sstream>
int main() {

std::stringbuf sb("rrrrrrrrr");
std::istream is(&sb);
is >> std::noskipws;

10

https://wandbox.org/permlink/UpOSzH76Ovm4RzTz
http://rextester.com/WBRK78783
https://wandbox.org/permlink/aL4Xl2d8VKVK2EY2


is.exceptions(std::ios::eofbit);

bool threw = false;
try {

while (true) {
is.get();
if (is.eof())

break;
}

} catch (std::ios::failure const&) {
threw = true;

}

std::cout << "bad = " << is.bad() << std::endl;
std::cout << "fail = " << is.fail() << std::endl;
std::cout << "eof = " << is.eof() << std::endl;
std::cout << "threw = " << threw << std::endl;

}

The current behavior is the following:

libstdc++ MSVC libc++
bad 0 0 1
fail 1 1 1
eof 1 1 1
threw 1 1 0

My interpretation is that we create the sentry, which doesn’t do much because we’re not
trying to skip whitespace. We then try to extract a character and fail because we hit the end
of file. Per the definition of basic_istream::get() in [istream.unformatted]/4, we call
setstate(failbit), which throws an exception. Per (A), we’re also somehow required to call
setstate(eofbit). Finally, per (D), we also set badbit on the stream, and we don’t rethrow
any exception because badbit is not in the exceptions. I think this makes libc++ right again.

Actually, I don’t think this specification can be implemented as-is because of [LWG61],
which added the part "(Exceptions thrown from basic_ios<>::clear() are not caught or
rethrown.)". This would make it effectively impossible to call both setstate(failbit) and
setstate(eofbit), and also to set the badbit on the stream. Unless I’m missing a clever
implementation trick, you basically have to catch and rethrow.

5 References
[LWG2349] Zhihao Yuan, Clarify input/output function rethrow behavior

https://cplusplus.github.io/LWG/issue2349

[LWG61] Matt Austern, Ambiguity in iostreams exception policy
https://cplusplus.github.io/LWG/issue61

11

https://wandbox.org/permlink/jSSGM6TcqLzZSl6M
http://rextester.com/OPIJW60076
https://wandbox.org/permlink/O302uzC1VW0nW1Pn
https://cplusplus.github.io/LWG/issue2349
https://cplusplus.github.io/LWG/issue61

	1 Revision history
	2 Abstract
	3 Proposed wording
	3.1 Remove common wording
	3.2 Revise wording for formatted input operations
	3.3 Revise wording for unformatted input operations

	4 Appendix: a few test cases
	5 References

