
Issues and questions with
p2300

A number of open issues identified by the BSI P2300 review
group

Kudos where kudos are due

- P2300 is an awesome paper with a lot to like
- Compositionality model is enticing
- All-in-one-paper, and not a mess of addenda (great success)

How should we do this?

(compendium paper is nice)

- We can have another paper salad
- Or all the authors can hash it out together and keep bringing a single paper

with a list of open issues

Consider a head-of-line blocking erase-on-execute queue

Allocate

Initialize

Commit

Execute + destroy

Allocate

Initialize

Commit

Execute + destroy

Transaction start_detached(S)? But how in primitives?

S = schedule(queue);
S’ = S|in_place_with_buffer(init, 512)
 |...;
O = new(q.head){connect(s, r?)}; // init(buf)
start(O); // not calling this breaks program

Missing algorithms:

We have when_all(), when_any()

We also need:

- when_any_success() (ignores errors)
- when_any_error()
- when_all_successes() waits for all, but only propagates successful ones

Stoppable_token callbacks

- Stoppable token seems to require an unlimited number of type-erased
callbacks (registration can only throw if init() throws)

- Could we allow attaching a finite, algo-specific number of callbacks and
replace set_done() with them? The registered callback can then transition
execution contexts manually if needed.

The kinds of cancellation
In general, we have three guarantee types when it comes to cancellation (analogous to exception safety)

- Terminal (no guarantees - valid but unspecified, you can’t retry, in any case)
- Partial (you can retry if no parts of the op succeeded - partial read / weakish guarantee) - you can also resume the remainder
- Total (you can retry with impunity - similar to strong guarantee)

Might be important to understand the state of the execution context that the scheduler runs on [Gordon Brown] - mechanism to
provide this kind of info is welcome

set_done(how much succeeded)

Eric: some way to query a sender which cancellation modes it supports?

Chris: reliably querying is difficult (layers of state machines - provide different cancellation guarantees)

I went with “when you request cancellation, you indicate what kind you want. That builds on P2175 - cancellation is advisory and
can be ignored. I’m asking for a kind of cancellation, if you don’t support it, I’m alright if you ignore it, just don’t give me a cancel I
didn’t ask for”.

Tail calls?

The paper states: because all the work is done within callbacks invoked on the
completion of an earlier sender, recursively up to the original source of
computation, the compiler is able to see a chain of work described using senders
as a tree of tail calls, allowing for inlining and removal of most of the sender
machinery.

But set_value() can throw, and propagate up the stack until some sender redirects
to set_error(). Due to this stack unwinding, are these really tail-calls? Do these
tail-call optimizations depend on wrapping every set_value() in a try block?

In general - how do we handle re-entrancy?

AsyncReader

- async_read_some() -> ar.set_value(bytes), get partial, re-register
- ar.set_value(some more bytes), re-register
- check stop_token, ar.set_done()?
- The on_done(func) algorithm completion_scheduler - how does it propagate?

Possibly eager has additional synchronization
requirements
If connect() can commit the data to the queue, we need start/completion feedback.

this_thread::sync_wait() is not easy to implement efficiently (best lock-free I can
think of is a spinloop)

Error handling

How do we distinguish between expected errors (other side hanging up) and weird
errors (another thread close()’d the socket while we were read()ing it)?

Network card goes away, hotpluggable accelerator goes away

Functionality gap: P2300 executor model

- Event-driven execution

Current known open issues (list)

- Stoppable_token is both heavy and insufficiently general
- Operation states need a separate allocation for runtime-sized data
- Operation states can’t be allocated inside the queue due to lifetime model (right?)
- Toplevel operation states that can still need to return something from connect()
- “Work counting” - how do we prevent thread pools joining because of composited but not start()’d work?
- Slight inelegance in having to curry (and thus decay-copy) arguments that are consumed when starting work in

all cases. Lazy/eager should be user choice but only some algos get lazy versions.
- When_all and when_any: missing wait_one_success, wait_one_error
- Partial results are results - don’t throw away work.
- Insufficient distinction between exceptions and “expected errors”
- sync_wait/fiber_wait need to be parametrized with execution context-specific info (how do I schedule a fiber

wait?)
- Prefer tag-dispatching (set_value_t, set_error_t, set_done_t) on operator() vs three named channels - would be

nice to be able to if constexpr between them in a lambda.
- Scheduler equality is defined as equality on execution contexts (Identified as a bug last week). If not bug,

means that a threadpool with priorities presents an execution context per-priority even if runtime.

Stoppable token composition

- Chris Kohlhoff has a (very new) signal/slottish lighter-weight cancellation
mechanism that at a glance can do everything stoppable_token + set_done()
can do together.

- This will be a paper. Has the potential to replace set_done() as a full cancellation feature - but
we need some time. Promise not to take long - bird in hand applies.

- Cancellation can be partial (some success has been achieved), and needs to
be pluggable by algorithms without allocation of callback erasures.

- Cancellation over via and on may need to transition execution contexts - can’t
run handler in previous exec context!

Stoppable Token is insufficiently general

- How do we support different notions of cancellation-safety (”exception safety”)
- restore state so ops can be re-run, or just leave it as-is because nobody will
try to do it again? Partial reads from a socket are not unrollable, reversing
partial reads from a file is a matter of resetting the cursor.

- Propose 4 levels of cancellation:
- Terminal (never going to retry this)
- Partial (Leave the system as “basic exception guarantee” analogue)
- Total (As if the op was never started)

Operation state memory issues

- operation_state objects have several memory/placement-related issues:
- Need separate allocation for runtime-sized data
- Can’t be allocated directly into a queue which frees memory immediately after execution
- (both of these issues are serious performance blockers for line-rate UDP handling)
- Our code deals with queues exposing std::allocator-like interfaces with tight constraints on

freeing memory (no out-of-order freeing, order is set_value(), ~task(), free(), no buts.)

