Relaxing equality_comparable with’s,

totally ordered with’s, and three way_comparable with’s

common reference requirements to support move-only types

Document #: P2404R0

Date: 2021-07-15

Project: Programming Language C++

Audience: LEWG and SG9

Reply-to: Justin Bassett (jbassett271 at gmail dot com)

Abstract

Each comparison_relation_with—where comparison_relation_with is any of the concepts
equality_comparable_with, totally_ordered_with, or three_way_comparable_with—does
not support move-only types, because the common reference requirement requires that const
T& and const U& are convertible to the possibly-not-a-reference common_reference_t. This
common reference requirement should be relaxed to the mathematical ideal of a common supertype
requirement, as the original reason to require formable references no longer exists and relaxing
this requirement allows us to support move-only types.

Contents

Contents
1 Motivation e e
2 Background e
3 Design o L e
4 Testing the proposed implementation
9 Intent L e e
6 Proposed wording L

References

1 Motivation

1.1 Overview

The common reference requirements of the comparison_relation_with concepts are stricter than
the mathematical requirement. Ideally, this requirement could be relaxed to be as close to the
mathematical requirement as possible to allow the maximum number of eligible types to satisfy
these concepts.

For example, equality_comparable_with<unique_ptr<T>, nullptr_t> is false despite the fact
that the heterogeneous operator== captures an actual equality. This happens because the common
reference requirement requires that the types are convertible_to the common reference, but
common_reference_t<const unique_ptr<T>&, const nullptr_t&> is unique_ptr<T>, meaning
that it requires convertible_to<const unique_ptr<T>&, unique_ptr<T>>, which is the same as
requiring that unique_ptr<T> is copyable. The other direction is also possible, where common_-
reference_t<const T&, const U&>is T and a constructor T(const U&) does not exist but T (U&&)
does exist.

Because they have the same common reference requirement, this also applies to three_way_-
comparable_with and totally_ordered_with.

1.2 Specific Code Changes

These are some specific examples of code which this paper will simplify. Given:

class bigint {
public:
bigint (int);

// Move-only

bigint (const bigint&) = delete;
bigint(bigint&&) noexcept = default;

bigint& operator=(const bigint&) = delete;
bigint& operator=(bigint&&) noexcept = default;

strong_ordering operator<=>(const bigint&) const;
bool operator==(const bigint&) const;

strong_ordering operator<=>(int) const;
bool operator==(int) const;

};

class copyable_bigint {
public:
copyable_bigint(bigint);

strong_ordering operator<=>(const copyable_bigint&) const;
bool operator==(const copyable_bigint&) const;

strong_ordering operator<=>(const bigint&) const;
bool operator==(const bigint&) const;

Before After

auto remove_zeros(
vector<bigint>& range)

{
return ranges::remove_if (
) auto remove_zeros(
range, [](const autok i) { vector<bigint>& range)
return i == 0; {
P . return ranges::remove(range, 0);
// Alternatively: }
return ranges: :subrange (remove (
range.begin(), range.end(), 0),
range.end()) ;
}

auto find_sorted(
vector<bigint>& range, int x)

t N L1 bound (auto find_sorted(
TELUTn Tanges::iower_boun vector<bigint>& range, int x)
range, X, f
1 ; NOT ::1
ess()) ,/7’ OT ranges ess return ranges::lower_bound(range, x);
// Alternatively: }
return lower_bound(
range.begin(), range.end(), x);
¥

bool is_same(
const vector<bigint>& 1lhs,
const vector<copyable_bigint>& rhs)

{

bool is_same(
const vector<bigint>& 1lhs,
const vector<copyable_bigint>& rhs)

return ranges: :equal(
lhs, rhs,
// NOT ranges::equal_to

equal_to()); { .. .
1/ Alternatively- return ranges::equal(lhs, rhs);
}
return equal(
lhs.begin(), lhs.end(),
rhs.begin(), rhs.end());
3
bool multiset_includes(
const vector<bigint>& lhs,
const vector<copyable_bigint>& rhs)
{ bool multiset_includes(
return ranges::includes(const vector<bigint>& 1lhs,
lhs, rhs, const vector<copyable_bigint>& rhs)
less()); // NOT ranges::less {
// Alternatively: return ranges::includes(lhs, rhs);
return includes(}

lhs.begin(), lhs.end(),
rhs.begin(), rhs.end());
}

Notably, all of the above on the “After” column would compile today if bigint was copyable instead
of move-only, although no copies will be made. Also, note that although all of the above examples
use ranges, this issue would appear at any location where the comparison_relation _with concepts
are used.

2 Background

2.1 Overview

equality_comparable_with<T, U> does far more than test for a compatible operator==(T, U),
instead attempting to capture true cross-type equality. To do so, it considers the equality in
the context of a common supertype, codified as the requirement common_reference_with<const
remove_reference_t<T>&, const remove_reference_t<U>&>, which includes requiring both re-
quirements convertible_to<const T&, common_reference_t<const T&, const U&>> and sym-
metrically convertible_to<const U&, common_reference_t<const T&, const U&>>. Because
it is possible for common_reference_t<const T&, const U&> to be a non-reference type, these
convertible_to requirements can end up requiring that we copy the const T& or const Uk, es-
pecially if the common_reference_t is T or U itself as it is for the case of unique_ptr<T> and
nullptr.

Importantly, the conversion to the common reference never needs to happen at runtime, as we can
always use the provided heterogeneous operator==(T, U) instead. Historically, this was not the
case, as the C++40X concepts had a mechanism that would resolve the EqualityComparable<T,
U> cross type equality t == u as first converting to the common type if there was no heterogeneous
operator==(T, U) [Stroustrup2012, 51]. However, as concepts are now only a way to check
syntactic validity, this feature was removed.

three_way_comparable_with has the same common reference requirement and can similarly be
relaxed. totally_ordered_with has this common reference requirement, but only transitively
through equality_comparable_with.

2.2 Why the common reference requirement?

Cross-type equality is not initially well defined in mathematics, so some work must be done to
capture it. The Palo Alto report describes this conundrum [Stroustrup2012, 16]. In particular,
establishing an equivalence relation between two arbitrary sets A and B only makes sense if you
instead establish the equivalence relation over AU B. In C++, this means that we need to think of
the equality as operating over some common “supertype” of T and U. This requirement is codified
in equality_comparable_with by the common reference requirement common_reference_with,
where common_reference with<T, U> is defined as follows:
template<class T, class U>
concept common_reference_with =
same_as<common_reference_t<T, U>, common_reference_t<U, T>> &&

convertible_to<T, common_reference_ t<T, U>> &&
convertible_to<U, common_reference_t<T, U>>;

[N4878, 540]

This requirement is not the same as the purely mathematical supertype requirement, as C++ has
to deal with objects and references, incidentally adding the requirement that this common reference
must be formable from the two types.

This same argument applies to three_way_comparable_with and totally_ordered_with: the
relations only make sense when we lift the types to the common supertype, but this common
supertype conversion never needs to happen at runtime. three_way_comparable_with similarly
encodes this with the same invocation of common_reference_with, but totally_ordered_with
receives this requirement transitively through equality_comparable_with.

3 Design

3.1 Overview

The problem with the comparison_relation _with concepts is the encoding of the supertype
requirement as a common reference requirement; we want to encode the supertype requirement
without requiring formable references or any particular cvref-qualities. Considering comparison_-
relation _with<T, U> with the type common_reference_t<const T&, const U&> notated as C,
this issue can be considered in two parts:

1. T is a move-only type, and C is the same as T.

2. Cis not T and can only be constructed by an rvalue T.

For both of these issues, it is essential to note that although a conversion to C must exist to satisfy
our mathematical axioms, we never need to perform this conversion, as we will always use the
heterogeneous operator@(T, U) comparison functions. This means that it is okay to make it require
extreme acrobatics or even make it impossible to write a bool equal_by_common_reference(T,
U) function, and similarly for the other comparison relations.

The first case can be solved by noting that, although the cvref-quality differs, T and C are of the
same base type, so we can solve it by relaxing the convertible_to<const T&, C> requirement
to also accept cases where const T& and C are the same after remove_cvref_t, which can be
accomplished by using convertible_to<const T&, const C&> (and similarly for U). This works
because if const T& is already const C&, we can simply bind the reference, but we can still construct
a C from the const T& by binding the const C& to the temporary C object. Despite how dangerous
that sounds, the risk is resolved by the fact that we do not have to do this at runtime.

The second case can be solved by relaxing the convertible_to<const T&, C> to not require
copying the T but instead look for any valid conversion, which can be accomplished by using
convertible_to<const T&, C> || convertible_to<T&&, C> (and similarly for U).

Taking both solutions together yields convertible_to<const T&, const C&> || convertible_-
to<T&&, const C&>, and this combined solution does not invalidate any of the prior arguments.

3.2 Syntactic requirements changes

Changing the meaning of common_reference_with is not the best idea, as the proposed changes are
inconsistent with the concept’s name and with its usage in other contexts. As such, it makes sense
to add a new exposition only concept common-comparison-supertype-with<T, U> which applies
these modifications to common_reference_with. However, since T and U are possibly cvref-qualified,
this new concept will need to account for that by stripping the cvref-qualifiers. const and references
are mathematically meaningless, so stripping the cvref-qualifiers does not cause any issues with the
meaning of this exposition only concept. In summary, common-comparison-supertype-with<T, U>
is a variant of common_reference_with<remove_cvref_t<T>, remove_cvref_ t<U>> which modi-
fies the convertible_to<...> requirements to support move-only types.

This modified exposition only concept will replace the common_reference_with requirements in
three_way_comparable_with and equality_comparable_with, transitively applying to totally_-
ordered_with as well.

3.3 Semantic requirements changes

Changing the syntactic requirements also requires that we change the semantic requirements of all of
these concepts. Rather than purely copying the semantic requirements of common_reference_with
where we construct the common reference via C(t) and C(u), common-comparison-supertype-with

must instead capture the idea that we will copy or move to a const& by modifying the wording to
use both static_cast<const C&>(t) and static_cast<const C&>(move(t)) to allow for either
the copying constructor or the moving constructor to be used, whichever is valid.

For equality_comparable_with, the common supertype requirement may now move its arguments,
but equality_comparable_with<T, U> specifies its semantic requirements using t and u of const
remove_reference_t<T> and const remove_reference_t<U> respectively. Instead of having t
and u be const, this paper proposes making them the non-const remove_cvref_t<T> and remove_-
cvref_t<U>, allowing us to move from t and u. This is not to prohibit the equality comparison of
const lvalues, but the behavior of equality comparison of const lvalues must be the same as if they
were non-const and allowed to be moved from. Furthermore, despite moving from these lvalues, the
objects should retain the exact same state as before they were moved from, because a move never
actually happens at runtime. That is to say, the bool result of the heterogeneous operator== must
be the same as if we move to the const C& common supertype and perform the comparison there,
ignoring any side effects caused by the move. The same holds true for three_way_comparable_with
and totally_ordered_with.

Actually encoding this new model is a bit tricky, because the comparison operators do not introduce
a sequence point between their arguments. As such, the two comparisons must be evaluated in
separate lines of code to prevent the move from affecting the heterogeneous comparison.

3.4 Potential issues with this approach

There are some issues with this approach:

1. Changing any standard library concept is a breaking change for many reasons.

2. Subsumption between each comparison_relation_with and common_reference_with—and
any of the internal concepts used in common_reference_with—will be lost.

Some examples broken by this change:

// Questionable, but still broken by the change. Demonstrates issue #1.
template <typename T>
void questionable(unique_ptr<T> p) {
if constexpr (equality_comparable_with<unique_ptr<T>, nullptr_t>) {
1/ 0; // Cause undefined behavior.
}
)

// Behavior change. Demonstrates issue #1.
template <typename T, typename U>
struct equality_traits;

// Assume bigint and copyable_bigint are as before.

template <>

struct equality_traits<bigint, copyable_bigint> {
// A manual implementation which, for some reason, does not use operator==.
static bool equals(const bigint&, const copyable_bigint&);

3

template <typename T, typename U>
requires equality_comparable_with<T, U>
bool fancy_equals(const T& t, const U& u) {
return t == u;

}

template <typename T, typename U>
bool fancy_equals(const T& t, const U& u) {
return equality_traits<T, U>::equals(t, u);

}

// Calling code
bigint a = ...;
copyable_bigint b = ...;

// Uses the heterogeneous operator== after the proposed changes.

// Prior to the changes, uses equality_traits<bigint, copyable_bigint>::equals.

// As such, if equals is in sync with operator==, this is fine, although which function is called in the end
// will change. However, if the two functions fall out of sync, this is a change in behavior.
fancy_equals(a, b);

// Broken subsumption. Demonstrates issue #2.

// Some type using a different spelling of equality.
class fancy_int {
int x;

public:
fancy_int(int x) : x(x) {3}

bool equals(int y) const { return x == y; }

};

template<class T, class U>
requires equality_comparable_with<T, U>

bool attempted_equals(const T& t, const U& u) {
return t == u;

}

template<class T, class U>
requires common_reference_with<
const remove_reference_ t<T>&,
const remove_reference_t<U>&>
bool attempted_equals(const T& t, const U& u) {
static_assert(requires { { t.equals(u) } -> convertible_to<bool>; });
return t.equals(u);

}

auto testl(const shared_ptr<int>& p) {
return attempted_equals(p, nullptr);
// With this proposed change:
// error: call of overloaded ‘common() ’ is ambiguous

}

auto test2(const fancy_int& x, int y) {
// Still works:
return attempted_equals(x, y);

}

Although these issues provide examples broken by this change, the drawbacks of these issues are
low compared to the benefits of enabling move-only types for the comparison_relation _with
concepts. The first example—where semantics are modified or even made undefined based on
type introspection whose answer changes with this paper—is pathological. Refusing to break such
pathological code is to forbid changing the standard, as adding member functions, overloads, and so
on also breaks similar code. In the fancy_equals(...) example, either the end result will be the

same or the code already had a bug where the semantic meaning of “equals” was not respected
by equality_traits<bigint, copyable_bigint>::equals(...). For the second issue, the loss
of subsumption generally results in hard errors rather than silently incorrect behavior changes, as
demonstrated in the attempted_equals(...) example.

3.5 Why is convertible_to<T&&, const C&> insufficient?

It may appear that we could simplify convertible_to<const T&, const C&> || convertible_-
to<T&&, const C&> to just convertible_to<T&&, const C&>, as a constructor that takes a const
T& can also always take a T&&. However, this forgets the case of deleted rvalue overloads:

// Assume bigint is as before.

class bigint_cref {

public:
bigint_cref (const bigint&);
// Forbid construction from rvalue references:
bigint_cref (const bigint&&) = delete;

strong_ordering operator<=>(bigint_cref) const;
bool operator==(bigint_cref) const;

strong_ordering operator<=>(const bigint&) const;
bool operator==(const bigint&) const;

};

static_assert(equality_comparable_with<bigint, bigint_cref>);

// With convertible_to<T&&, const C&> instead of the disjunction:

// error: static_assert failed

// note: because ‘convertible_to<bigint &&, const bigint_cref &>’ evaluated to false.

This pattern deletes the rvalue overload of an overload set—the constructor in this case—to attempt
to prevent the function from being called with temporaries and solve some lifetime management
errors. Although this pattern fails to correctly capture lifetime constraints as rvalue references
do not necessarily imply an immediately expiring lifetime, there is currently no way to properly
manage lifetime constraints, so this is a pattern that is used not too infrequently. To maintain
support of this pattern, this paper uses the disjunction convertible_to<const T&, const C&>
|| convertible to<T&&, const C&>.

3.6 A smaller alternative which solves part of the problem

If we only wish to solve the first of the two issues referenced in the overview (3.1), the change
to support this case would be significantly smaller. In particular, this issue is solved solely by
modifying the syntactic requirement to convertible_to<const T&, const C&>, with no rvalue
concerns needing to be managed. Indeed, common-comparison-supertype-with could be made to
differ from common_reference_with only by this single change; the remove_cvref_t calls would be
unneeded. The semantic requirements must still be modified, but only because we need to convert
to const C& rather than C itself: static_cast<const C&>(t) instead of C(t) and similarly with
U.

3.7 Could we remove the common reference requirement?

A common suggestion has been to remove the common reference requirement altogether, possibly by
adding additional semantic requirements. If we assume that the current model is correct, where we
cannot rely on operator== modeling equality, this is an infeasible direction because a large number
of types—including in the standard library—use operator== for something other than equality, so

either these types would syntactically meet equality_comparable_with and just not actually work
correctly, or we would have to have an explicit opt-in, barring a significant number of types from
being equality_comparable_with when they trivially are. Furthermore, it is exceedingly easy to
write an operator==(T, U) which feels like equality and even could be equality but actually is not
when considered in the context of all of operator==(T, T), operator==(T, U), operator==(U,
U), and operator==(C, C) (where C is the common reference). To be a proper equality, all of these
operator==s must be part of the same equality, otherwise we lose key properties of an equivalence
class.

As an example, iterators and sentinels have a cross-type operator==(iterator, sentinel) which
feels like equality and indeed could form an equivalence class, except that operator==(iterator,
iterator) is mot part of the same equivalence relation as operator==(iterator, sentinel).
Indeed, if these were to be part of the same equivalence relation, then operator==(iterator,
iterator) must instead be testing to see if both iterators have reached the end of the range.
Therefore, equality_comparable_with<iterator, sentinel> must be false.

The same holds true for three_way_comparable_with and totally_ordered_with.

However, it may be possible to remove these requirements altogether by requiring operator==(T,
U) to model equality on its own. Under this alternative model, we may be able to eliminate the need
for equality_comparable<T>, equality_comparable<U>, and the common reference requirements.
However, such a significant change to the model is out of scope for this paper, which instead
attempts to appropriately expand the concepts while assuming that we maintain the current model.

4 Testing the proposed implementation

The changed concepts in the Proposed Wording (6) were tested against the libc++ test suite
and the Microsoft STL test suite at commits 1c69005c2e11414669ac8ba094a9b059920936db and
280347a4309eaaf5f 1bba3b1ad98a27687b9d9c3 respectively. At the time of writing, libstdc++ at
commit a7098d6ef4e4e799dab8ef925c62b199d707694b did not have tests for these concepts. With
the proposed changes, all the tests pass for all three of equality_comparable_with, totally_-
ordered_with, and three_way_comparable_with except tests which fail even without these changes
due to compiler bugs or incomplete implementations. That is to say, the only tests that fail do so
for unrelated reasons. To summarize the test results:

— A single test fails for GCC 11.1, as it claims that nullptr_t meets totally_ordered. This
is because GCC 11.1 has relational operators defined for nullptr_t. This test failure is
unrelated to the proposed changes.

— Two tests fail for MSVC 19.29.30130.2:

— MSVC does not support static_assert(requires { ... 1}), so it fails to parse a test
in that form. This test failure is unrelated to the proposed changes.

— MSVC claims 'equality_comparable_with<nullptr_t, int (&) ()>, but libc++ in-
cludes such a test in its test suite. This test failure is unrelated to the proposed changes.

— All tests pass for Clang 12.0.0.

In short, the proposed changes do not break any of the tests in libc++ or the Microsoft STL.

5 Intent

To summarize the intent of the proposed changes, given C = common_reference_t<const T&,
const U&>, this paper intends to relax the common reference requirements by:

9

https://github.com/llvm/llvm-project/tree/1c69005c2e11414669ac8ba094a9b059920936db/libcxx
https://github.com/microsoft/STL/tree/280347a4309eaaf5f1bba3b1ad98a27687b9d9c3
git://gcc.gnu.org/git/gcc.git

— Relaxing the convertible_to<const T&, C> invocations to allow types satisfying same_-
as<remove_cvref_t<T>, remove_cvref_t<C>> to meet the concept without requiring copy-
ing the T.

— Relaxing the convertible_to<const T&, C>invocations to allow for types where it is possible
to convert a T to C, but only via moving the T. Recall that the move does not happen at
runtime, so despite allowing moves, we are not changing any values (3.1).

The following proposed wording (6) uses some patterns whose intent is as follows:

— COMMON (. ..) is intended to convert the ... to the common reference via copying or moving
the value, whichever is valid. This should allow for types which can be moved to the common
reference, but not copied to the common reference.

— COMMON (...) uses static_cast<const C&>(...) in its conversions, but this is intended
solely to convert to a const C& instead of C directly. This is not intended to require explicit
conversions to be taken, which should already be forbidden by the fact that the syntactic
requirements require implicit conversions via convertible_to.

— FEach expression which previously had conversions to the common type is split into two pieces,
first evaluating without the conversion, then comparing this prior evaluation against the result
after the conversion. This is intended to avoid any issue where moving the T or U lvalues
via COMMON (...) changes the value of the objects before we perform the heterogeneous
evaluation.

— The original semantic requirements used lvalues of type const remove_reference_t<T> and
similarly for U, but these lvalues were changed to be of type remove_cvref_t<T> and remove_-
cvref_t<U>. This change is not intended to say that the concepts only work with non-const
lvalues, but it is instead intended to allow COMMON (...) to properly move if necessary by
creating T&& and U&& instead of const T&& and const U&&.

6 Proposed wording

In [concepts.lang], the following exposition-only concept is added, intended to detect that there
exists a common supertype of T and U as described earlier:

Common supertypes [concept.commonsupertype]

For two types T and U, if common_reference_t<const remove_cvref_ t<T>&, const
remove_cvref_t<U>&> is well-formed and denotes a type C such that both convertible_-
to<const T&, const C&> || convertible_to<T&&, const C&> and convertible_ -
to<const U&, const C&> || convertible_to<U&&, const C&> are modeled, then T
and U share a common comparison supertype C.

template<class T, class U>
concept common-comparison-supertype-with = // exposition only
same_as<
common_reference_t<
const remove_cvref t<T>&,
const remove_cvref t<U>&>,
common_reference_t<
const remove_cvref_ t<U>&,
const remove_cvref t<T>&>> &&
(convertible_to<const T&,

10

const common_reference_t<
const remove_cvref t<T>&,
const remove_cvref t<U>&>&> ||
convertible_to<T&&,
const common_reference_t<
const remove_cvref t<T>&,
const remove_cvref t<U>&>&>) &&
(convertible_to<const U&,
const common_reference_t<
const remove_cvref_ t<T>&,
const remove_cvref_t<U>&>&> ||
convertible_to<U&&,
const common_reference_t<
const remove_cvref t<T>&,
const remove_cvref t<U>&>&>);

Let C be common_reference_t<const T&, const U&>. Let t1 and t2 be equality-
preserving expressions such that decltype((t1)) and decltype((t2)) are each
remove_cvref_t<T>, and let ul and u2 be equality-preserving expressions such that
decltype((ul)) and decltype((u2)) are each remove_cvref_t<U>. Let COMMON (. . .)
be static_cast<const C&>(...) if static_cast<const C&>(...) is a valid ex-
pression and static_cast<const C&>(move(...)) otherwise. T and U model
common-comparison-supertype-with<T, U> only if:

— COMMON (t1) equals COMMON (t2) if and only if t1 equals t2, and
— COMMON (ul) equals COMMON (u2) if and only if ul equals u2.

In [cmp.concept]:

template<class T, class U, class Cat = partial_ordering>
concept three_way_comparable_with =
three_way_comparable<T, Cat> &&
three_way_comparable<U, Cat> &&
common—_reference—with<

const—remove—_reference—t<T>&;—const—remove_reference—t<U>&>&&
common—compartison—-supertype-with<T, U> &&
three_way_comparable<

common_reference_t<

const remove_reference_t<T>&, const remove_reference_t<U>&>, Cat> &&

weakly-equality—comparable-with<T, U> &&
partially-ordered-with<T, U> &&
requires(const remove_reference_t<T>& t, const remove_reference_t<U>& u) {

{t <=>u}l} -> compares-as<Cat>;

{u<=>t 3} -> compares-as<Cat>;

};

Let— % andwuw be lvalues —of Aypes const remove reference t<T> and
const—remove_reference—t<U> respeetively= Let C be common_reference_t<const

remove_reference_t<T>&, const remove_reference_t<U>&>. Let coMMON (.. .)
be static_cast<const C&>(...) if static_cast<const C&>(...) is a valid
expression and static_cast<const C&> (move(...)) otherwise. T, U, and Cat model
three_way_comparable_with<T, U, Cat> only if given Ivalues t and u of types
remove_cvref_t<T> and remove_cvref_t<U>, respectively:

— t <=> uand u <=> t have the same domain,
— ((t <=> u) <=> 0) and (0 <=> (u <=> t)) are equal,

— (t <=> u == 0) == bool(t == u) is true,

11

— (£ <=> u !'= 0) == bool(t != u) is true,

After evaluating const auto cat = Cat(t <=> u);,
cat == Cat(COMMON (t) <=> COMMON (u)) is true,

— (t <=> u < 0) == bool(t < u) is true,

— (£ <=> u > 0) == bool(t > u) is true,
— (t <=> u <= 0) == bool(t <= u) is true,
— (t <=> u >= 0) == bool(t >= u) is true, and

— if Cat is convertible to strong_ordering, T and U model totally_ordered_-
with<T, U>.

In [concept.equalitycomparable]:

Concept equality_comparable [concept.equalitycomparable]

template<class T, class U>
concept equality_comparable_with =
equality_comparable<T> && equality_comparable<U> &&

common—comparison—supertype-with<T, U> &&
equality_comparable<
common_reference_t<
const remove_reference_t<T>&,
const remove_reference_t<U>&>> &&
weakly-equality—comparable-with<T, U>;

Given types T and U, let +-be-antvalue-of-type-const—remove—_reference—t<T>ube
an-lvalue of type const remove_reference t<U>, and C be:

common_reference_t<
const remove_reference_ t<T>&,
const remove_reference_t<U>&>

T and Umodel equality_comparable_with<T, U>only if bool(t == u) == bool(C(t)

= C(uw). Let COMMON (. ..) be static_cast<const C&>(...) if static_cast<const
C&>(...) is a valid expression and static_cast<const C&>(move(...)) otherwise. T
and U model equality_comparable_with<T, U> only if given Ivalues t and u of types
remove_cvref_t<T> and remove_cvref_t<U>, respectively, after evaluating const
bool eq = bool(t == u);, eq == bool (COMMON (t) == COMMON (u)) .

In [concept.totallyordered]:

template<class T, class U>
concept totally_ordered_with =
totally_ordered<T> && totally_ordered<U> &&
equality_comparable_with<T, U> &&
totally_ordered<
common_reference_t<
const remove_reference_t<T>&,
const remove_reference_t<U>&>> &&
partially-ordered-with<T, U>;

12

Given types T and U, let +-be-anlvalue-of type-const—remove—reference—t<T>ube
antvalue-of-type-const—remove—reference—t<U>and C be:

common_reference_t<const remove_reference_t<T>&,
const remove_reference_t<U>&>

Let COMMON (. ..) be static_cast<const C&>(...) if static_cast<const C&>(...)

is a valid expression and static_cast<const C&>(move(...)) otherwise. T and U
model totally_ordered_with<T, U> only if given lvalues t and u of types
remove_cvref_t<T> and remove_cvref_t<U>, respectively:

— bool(t < u) == bool(C(t) < C(uw)).
— bool(t > u) == bool(C(t) > C(u)).
bool(C(t) <= C(w)).
bool(C(t) >= C(u)).
bool(C(u) < C(t)).
— bool(u > t) == bool(C(u) > C(t)).
— bool(u <= t) == bool(C(u) <= C(t)).
— bool(u >= t) == bool(C(u) >= C(t)).

— bool(t <= u) =

— bool(t >= u) =

— bool(u < t) =

— After evaluating const bool r = bool(t < u);,
r == bool (COMMON (t) < COMMON (u)) is true,

— After evaluating const bool r = bool(t > u);,
r == bool (COMMON (t) > COMMON (u)) is true,

— After evaluating const bool r = bool(t <= u);,
== bool (COMMON (t) <= COMMON (u)) is true,

— After evaluating const bool r = bool(t >= u);,
r == bool (COMMON (t) >= COMMON (u)) is true,

— After evaluating const bool r = bool(u < t);,
r == bool (COMMON (t) < COMMON (u)) is true,

— After evaluating const bool r = bool(u > t);,
r == bool (COMMON (t) > COMMON (u)) is true,

— After evaluating const bool r = bool(u <= t);,
r == bool (COMMON (t) <= COMMON (u)) is true,

— After evaluating const bool r = bool(u >= t);,
r == bool (COMMON (t) >= COMMON (u)) is true,

The proposed changes are relative to the current working draft [N4878].

Document history

— RO, 2021-07-15 : Initial version.

13

Acknowledgements

Many thanks to:

— Matthew Rodusek for their question on Stack Overflow which brought this issue to my
attention.

— Tim Song for pointing me in the right direction to gain a mathematical understanding of
cross-type equality.

References

[N4878] Thomas Koppe. Working Draft, Standard for Programming Language C++. https:
//wg21.1ink/n4878, 2020 (accessed 2021-07-10).

[Stroustrup2012] Bjarne Stroustrup and Andrew Sutton. A Concept Design for the STL. https:
//wg21.1ink/n3351, 2012 (accessed 2021-06-30).

14

https://stackoverflow.com/q/66937947/1896169
https://wg21.link/n4878
https://wg21.link/n4878
https://wg21.link/n3351
https://wg21.link/n3351

	Contents
	1 Motivation
	1.1 Overview
	1.2 Specific Code Changes

	2 Background
	2.1 Overview
	2.2 Why the common reference requirement?

	3 Design
	3.1 Overview
	3.2 Syntactic requirements changes
	3.3 Semantic requirements changes
	3.4 Potential issues with this approach
	3.5 Why is convertible_to<T&&, const C&> insufficient?
	3.6 A smaller alternative which solves part of the problem
	3.7 Could we remove the common reference requirement?

	4 Testing the proposed implementation
	5 Intent
	6 Proposed wording

	References

