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1 Introduction

The paper proposes a generalisation of std: :nth_element, taking a sorted range of iterators instead
of a single nth iterator, allowing arbitrary partial sorting of any sortable range. The use and analysis
of such algorithms is widespread and mature[Alsuwaiyel2001, Panh2002, lent1996, Shen1997] and
is available to Python programmers as numpy.partition[NpPart, NPImpl] since 2014.

The single-nth nth_element algorithm has been part of the C++ standard library since the
beginning[StepLee95], introduced as ... the element in the position pointed to by nth is the element
that would be in that position if the whole range were sorted. Also for any iterator i in the range
[first, nth) and any iterator j in the range [nth, last) it holds that !(*i > *j) or comp(*i, *j) ==

false. It is linear on the average.”

A possible implementation of the range-of-nths algorithm is provided (section 2). It translates

naturally to std: :ranges versions just like std: :nth_element, returning last.

To clarify what is new, the addition is called std::nth_elements throughout the text, but is

proposed to go as nth_element.
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2 The algorithm

The proposal can be implemented with an algorithm that partitions the data on the mid-
point of nths using the single-nth nth_element and proceeds to recurse into the two parti-
tions. Ref [Alsuwaiyel2001] considers this algorithm and concludes complexity O(N log m) where
N = last - first and m is the number of unique elements in nths. The same paper presents a parallel

version, building on refs [Ak11984, Akl1989, Shen1997].

In many applications m is constant and the complexity as function of N alone is naturally linear on
average. On the other hand, in the worst case m varies with N as m = N, and the whole container is
sorted. For parallel versions (overloads taking an ExecutionPolicy) it is reasonable to leave freedom

to implementers to do a full parallel sort and allow O(N log N).

Python has numpy.partition[NpPart] as their incarnation of ntn_element. It supports a range-of-
nths as proposed here and the implementation[NPImpl] (in C++) uses Introselect[Musser1997] by

specification’.

A possible implementation? is shown below. Comparisons and projections can also be fed through

in the most natural way.

template< class RandomAccessIterator, class RandomAccessIterator2 >
constexpr void nth_elements(RandomAccessIterator first,
RandomAccessIterator2 nth_first, RandomAccessIterator2 nth_last,

RandomAccessIterator last)

if (last - first <= 32) { std::sort(first, last); return; }

const auto nth_dist = nth_last - nth_first;

if (nth_dist == 0 || *nth_first == last) return;

const auto nth_mid = nth_first + nth_dist / 2;

const auto at_nth mid = *nth_mid;

nth_element (first, at_nth_mid, last);

nth_elements(first, nth_first, nth_mid, at_nth_mid);

if (at_nth_mid != last){
const auto nth_left = std::find_if_not(nth_mid, nth_last,

[at_nth_mid] (auto v) {return v == at_nth_mid; });

nth_elements(at_nth_mid + 1, nth_left, nth_last, last);

}

numpy.partition and the in-place version numpy.ndarray.partion do not state complexity in

terms of M (the size of nths) or m (the number of unique nths), but appears to be ~ N log M for
reasonable M, to become ~ N - M for large M, such as M>1e4, N=1e6.

2The implementation is not the point of the proposal but it may help explain it. Feedback
would be very much appreciated. The algorithm described in [Alsuwaiyel2001] is a little bit simpler
since it takes unique nths, something that is not reasonable to require here. The algorithms is
O(N log m) except for a small N-independent term O(M-m) where M is the size of nths, due to
the iterator comparisons and increments in find_if_not to skip over doublets in nths. The first
if-statement is found in existing single-nth nth_element implementations, but here it also prevents
some unnecessary bisections of nths.



3 Before/After

Existing alternatives are to sort the whole container or to figure out a series of calls to e.g. nth_-
element and partial_sort. The examples below could be the linear time partitioning of messages
to be processed into fixed sized priority buckets, keeping or dropping remaining messages. Or finding
the fastest 25, 100, and 1000 race participants in linear time. The partitions themselves form half

open ranges so it’s easy to e.g. sort and print the 100th up to the 1000th fastest runners by name.

Context: partitioning into a fixed number of slots

vector<decltype(v)::iterator> nths;

for(size_t slot=1; slot<16 ; ++slot){
nths.push_back(v.begin()+ min(slot*2048,N));

}

or at some other arbitrary iterators in the inclusive range [first,last].

auto nths=vector{v.begin()+25,v.begin()+100,v.begin()+1000};

After Simple and O(N)

nth_elements(v, nths, pred);

Before Alternative la: Hand-wired bisection for nths of known size. O(N) but messy

nth_element(v.begin(), nths[1], v.end(), pred);
nth_element(v.begin(), nths[0], nths[1], pred);
nth_element (nths[1]+1, nths[2], v.end(), pred);

Did we get this right? Is it correct for repeated nths or empty v?

Before Alternative 1b: Hand-wired for size 3. O(N - M)

nth_element(v.begin(), nths[0],v.end(), pred);
nth_element (nths[0], nths[1], v.end(), pred);
nth_element (nths[1], nths[2], v.end(), pred);

Did we get this right?

Before Alternative 2: Simple but O(N log N):

sort(v,pred) ;



4 Applications

It partitions into any number of partitions as shown in the previous section. Partitioning a bunch
of ponies into several age groups, then sort one group by name.
stuct Pony{
double littleness;
chrono: :duration age;
string name;
};
auto end=nth_elements(v, nths, std::greater{}, Pony::age);
std::sort(nths[3], nths[4], std::less{}, Pony::name);

Partitioning with interpolation. Quantiles.

nth_elements can be used to efficiently implement the calculation of a single or a range of quantiles.
To do interpolation one may directly partition at two iterators at each quantile point. For example,
partitioning N elements at a single quantile specified as a divisor d (where d=2 would be median
and d=100 would mark the first percentile).

auto n = N == 070:N-1;

auto [q,r] = div(n, d);

auto nths=vector{first+q, first+q+(r>0)};

auto last = nth_elements(v, nths, std::less{}, Pony::littleness);

if (nths[0]!=last){

cout << nths[0]->name << " " << nths[1]->name ;

auto intrp_littleness = lerp(nths[0]->littleness, nths[1]->1littleness, r*1.0/d);
}

In the above we did floating point based interpolation, but one may stay in integer arithmetic?® for
example when working with chrono durations, iterators and indices. Any type the user knows how
to interpolate.

auto last = nth_elements(v, nths, std::less{}, Pony::age);

if (nths[0]!=last){

auto intrp_dur = i_lerp(nths[0]->age, nths[1]->age, r, d);
}

In Python, numpy.quantile* takes a range of floating point quantile points in [0.0,1.0] and uses

the previously mentioned multi-nth version of numpy.partition.

3i_lerp(auto a,auto b,auto r,auto d){return a+(rx(b-a))/d;}. Yes, there are other

ways to express this depending on type, e.g. extra work to avoid overflow.

4Tt defaults to the above division by N-1 to do linear interpolation but there’s a plethora of
variations (nine different modes supported by many statistical libraries and tools) on which indices
to use, rounding and interpolation/selection and handling of edge cases. A good overview is found
in P2119R0 commenting on the paper P1708R4 “Simple Statistical Functions” which proposes
user-facing median and quantile similar to numpy . partition, returning by value (not via iterators).
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5 Wording and Synopsis

5.1 First wording draft [alg.nth.element]

1 Let comp be less and proj be identity for the overloads with no parameters by those names.

2 Preconditions: [first, nth) and [nth, last) are valid ranges. For the overloads in namespace std,
RandomAccesslterator meets the Cppl7ValueSwappable requirements ([swappable.requirements),
and the type of *first meets the Cppl7MoveConstructible (Table 30) and Cppl7MoveAssignable
(Table 32) requirements. For the overloads taking a range [nths first,nths last),

RandomAccesslterator2 is a RandomAccess iterator, and *nths_first is convertible to

RandomAccesslterator. For every iterator i and j in the range [nths_first,nths_last), it holds that
if (i<j) then !(*j<*i).

3 Preconditions: The elements e of [first, last) are partitioned with respect to the expression

bool(invoke(comp, invoke(proj, e), value)).

4 Effects: After nth_element the element in the position pointed to by nth is the element that
would be in that position if the whole range were sorted with respect to comp and proj, unless
nth==last. Also for every iterator i in the range [first, nth) and every iterator j in the range [nth,

last) it holds that: bool(invoke(comp, invoke(proj, *j), invoke(proj, *1))) is false.

5 Complexity: For the overloads with no ExecutionPolicy, linear on average. For the overloads with
an ExecutionPolicy, O(N) applications of the predicate, and O(N log N) swaps, where N = last -

first. For overloads taking a range [nths first,nths_last) but no ExecutionPolicy the complexity is

approximately O(N log m) where m is the number of unique elements in [nths_first,nths_last).

For overloads taking a range [nths first,nths last) and an ExecutionPolicy the complexity is

O(N log N).

5.2 Synopsis — <algorithm> [algorithm.syn]

Added signatures:

template<class RandomAccessIterator, class RandomAccessIterator2>
constexpr void nth_element (
RandomAccessIterator first,
RandomAccessIterator2 nths_first, RandomAccessIterator2 nths_last,

RandomAccessIterator last);

template<class RandomAccessIterator, class RandomAccessIterator2, class Compare>
constexpr void nth_element (

RandomAccessIterator first,

RandomAccessIterator2 nths_first, RandomAccessIterator2 nths_last,

RandomAccessIterator last, Compare comp);

template<class ExecutionPolicy, class RandomAccessIterator, class RandomAccessIterator2>
void nth_element (ExecutionPolicy&& exec,

RandomAccessIterator first,

RandomAccessIterator2 nths_first, RandomAccessIterator2 nths_last,

RandomAccessIterator last);



template<class ExecutionPolicy, class RandomAccessIterator,

class RandomAccessIterator2, class Compare>

void nth_element (ExecutionPolicy&& exec,

RandomAccessIterator first,

RandomAccessIterator2 nths_first, RandomAccessIterator2 nths_last,

RandomAccessIterator last, Compare comp);

namespace ranges {
template<random_access_iterator I, sentinel_for<I> S,
random_access_range R2, class Comp = ranges::less, class Proj = identity>
requires sortable<I, Comp, Proj>
constexpr I nth_element(I first, R2&& nths, Comp comp = {}, Proj proj = {});

template<random_access_range R,

random_access_range R2,

class Comp = ranges::less, class Proj = identity>

requires sortable<iterator_t<R>, Comp, Proj>

constexpr safe_iterator_t<R>

nth_element (R&& r, R2&& nths, Comp comp = {}, Proj proj = {});

6 Questions and Answers

Q: What’s the best name? A: I suggest to reuse nth_element for discoverability but could as well
be a separate name. Numpy calls both single nth and range-of-nths “partition”.

Q: What if nths or [first,last) is empty? A: nth_elements does nothing.

Q: What if some elements of nths are equal to last. A: As with nth_element, not a problem.

Q: What if some elements of nths are equal to each other A: By specification, not a problem.
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