
P2329R0
Pablo Halpern <phalpern@halpernwightsoftware.com>
2021-12-13 16:24 EST

Move, Copy, and Locality at Scale
Abstract
This paper (paper, not proposal) explores the performance benefits and penalties
of preferring move assignment over copy assignment on containers that allocate
memory. A relatively simple experiment is described whereby elements within
a subsystem are allocated consecutively, in contiguous memory. The elements
are randomly shuffled across subsystems using either move assignment or copy
assignment, then accessed repeatedly within each subsystem. Although the
shuffle step is generally faster when using move assignment, especially for large
elements, Preliminary results show that cache effects can more than cancel out
the benefit under certain circumstances, e.g., when the overall system does not
fit in L3 cache. Moreover, when the system size approaches or exceeds the size of
physical memory, data within a subsystem is spread out over many more pages,
sometimes resulting in a dramatic slowdown for accessing the data after it had
been shuffled using move assignment vs. copy assignment. Programmers should
thus be aware that preferring moves to copies does not necessarily result in a
performance improvement and might, for some large programs, do the opposite.

Description
We (the author and other engineers at Bloomberg LP) designed an experiment
intended to simulate a system composed of multiple subsystems. Each subsystem
creates multiple data “elements,” each of which allocates memory. The simulation
assumes that these elements are mostly accessed (read and written) within the
subsystem, but are occasionally transferred across subsystems. This transfer
can be accomplished using either move assignment or copy assignment; move
assignment transfers ownership of the allocated memory, whereas copy assignment
copies the contents of the allocated bytes.

Under what conditions does the use of move assignment yield a performance
benefit over copy assignment and vice versa? To answer this question, our
simulation is parameterized on the following quantities:

1. the total size, in bytes, of the system (systemSize)
2. the number of subsystems in the system (numSubsystems)
3. the number of elements in each subsystem (elemsPerSubsys)
4. the size, in bytes, of each element (elemSize)
5. the number of times the elements are shuffled between subsystems, i.e.,

churned (churnCount)

1

mailto:phalpern@halpernwightsoftware.com


6. the number of times every element in each subsystem is accessed
(accessCount)

7. the number of times the entire churn/access cycle is repeated (repCount)

Note that systemSize is assumed to be the product of numSubsystems,
elemsPerSubsys, and elemSize; thus, a test run supplies values for only three
of the first four parameters (using a '.' placeholder for the fourth value), and
the simulation program computes the fourth value automatically.

The entire simulation is run once using copy assignment in the churn step and
then again using move assignment. Each simulated run is timed, and the times
are reported as well as the quotient (expressed as a percent) obtained by dividing
the move-assignment time measurement by the copy-assignment time measure-
ment. Varying these parameters reveals patterns for when move assignment
was beneficial (computed percentage significantly less than 100), detrimental
(computed percentage significantly greater than 100), and insignificant, i.e., when
the difference was within the noise (computed percentage close to 100).

Because the parameter space is large (7 parameters), and because some run
times were long (in excess of an hour), it was not possible to cover the entire
parameter space. Therefore the simulation was run within a script that varied
two or three parameters at a time while holding the rest constant. In most
cases, for each system size, the script allowed the number of subsystem to vary
automatically in inverse proportion to the number of elements per subsystem.

We ran three tests. Test 1 explored system sizes from below L1 cache size to
several times L3 size.

parameter type values
systemSize varying 213 to 225 bytes
elemsPerSubsys varying 4 to systemSize/elemSize/2 elements
elemSize constant 128 bytes (2 cache lines)
churnCount constant 1
accessCount constant 4
repCount varying inversely with systemSize (min 32)

Test 2 was similar to Test 1 except that elemSize was not a multiple of the
cache-line size.

parameter type values
systemSize varying 213 to 225 bytes
elemsPerSubsys varying 4 to systemSize/elemSize/2 elements
elemSize constant 96 bytes (1.5 cache lines)
churnCount constant 1
accessCount constant 4
repCount varying inversely with systemSize (min 32)

2



Test 3 explored very large system sizes, exceeding physical memory, when
accessCount greatly exceeded churnCount:

parameter type values
systemSize varying 232 to 235 bytes
elemsPerSubsys varying 8 to systemSize/elemSize/16 elements
elemSize constant 64 bytes (one cache line)
churnCount constant 1
accessCount constant 8
repCount constant 5

Source for this micro-benchmark can be found at https://github.com/phalp
ern/WG21-halpern/tree/P2329/P2329-move_at_scale. The three tests are
implemented in the runtest shell script.

Results of the above three tests are available as a set of .csv files in the
R0-results subdirectory of the source repository. Each line of each .csv file
lists the test arguments, the time (in ms) spent on the simulation using copy
assignment, the corresponding time (in ms) for move assignment, and the move-
assignment time as a percentage of the copy-assignment time (less than 100% if
move was faster, greater than 100% if copy was faster).

Test platform
The results were generated on a MacBook Pro with the following specifications
(source: GeekBench Browser):

• Model: MacBook Pro 2018 (Model ID: MacBookPro15,1)
• CPU: 6-core Intel Core i7, 2.2 GHz
• L1 Data Cache: 32KiB per core
• L1 Instruction Cache: 32KiB per core
• L2 Cache 256KiB per core
• L3 Cache 9MiB shared
• RAM: 16GiB
• Disk: 512GB SSD

Observations
Rather than publishing page after page of raw numbers, we invite the reader to
view the resulting .csv files in the repository listed above.

Although this paper does not present a comprehensive analysis, the data yielded
the following observations.

• With 128-byte elements and a 32MiB total system size, move assignment
yielded up to a 2x speedup (50% run time) with a large number of small

3

https://github.com/phalpern/WG21-halpern/tree/P2329/P2329-move_at_scale
https://github.com/phalpern/WG21-halpern/tree/P2329/P2329-move_at_scale
https://github.com/phalpern/WG21-halpern/tree/P2329/P2329-move_at_scale/R0-results
https://browser.geekbench.com/v4/compute/2624464


subsystems but a 2x slowdown (189% run time) with a small number of
large subsystems.

• With 64-byte elements and a 4GiB or 8GiB total system size, move assign-
ment was typically worse than copy assignment (up to 7x worse), but even
in this case, move assignment was significantly faster than copy assignment
for large numbers of small subsystems.

• The results were somewhat noisy; in many cases, consecutive runs with
only small parameter changes resulted in large swings. One theory is that
the alignment of elements on cache lines was different between such runs.
Nevertheless, certain patterns did emerge, such as the large slowdowns
caused by page thrashing.

Future directions
We recognize that this experiment is not the final word on this subject. Specifi-
cally, we are considering making the following improvements.

• Run on a greater variety of hardware.
• Experiment with element sizes that are not necessarily uniform.
• When computing the total system size, take into the account that the

system, subsystems, and elements are all vector types and have their own
footprints.

• Experiment with a memory resource that allocates items in the smallest
possible number of cache lines.

• Experiment with using a non-polymorphic memory allocator.
• Run experiments where subsystem accesses run in concurrent threads.
• Cover a larger portion of the parameter space.

Whether and to what degree our simulation reflects real-world programs is
unclear. Measurements on real, memory-bound programs would be ideal.

Conclusions
• In a great many circumstances with non-trivial element sizes, using move as-

signment instead of copy assignment results in a performance improvement,
sometimes dramatically so.

• However, in large systems with individual subsystems that exceed the size
of the L3 cache, copy assignment can provide better spacial locality when
the number of data accesses exceeds the number of transfers by a factor of
4 or more.

• The deleterious effect of non-locality on performance caused by using move
assignment is even more dramatic if the total system size exceeds the size
of physical memory.

• When the number of data accesses greatly exceeds the number of transfers,
the benefits of move assignment are diluted, but the potential downside on
performance remain larges.

4



• These effects are not always predictable. As always, the best approach is
to measure.

• Programmers should not assume that move assignment is preferable to
copy assignment in large-scale programs.

5


	Move, Copy, and Locality at Scale
	Abstract
	Description
	Test platform
	Observations
	Future directions
	Conclusions


