
Delimited escapes sequences
Document #: P2290R1
Date: 2021-05-06
Project: Programming Language C++
Audience: EWG, SG-22
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Abstract

We propose an additional, clearly delimited syntax for octal, hexadecimal and universal
character name escape sequences.

Revisions

R1

• Remove obsolete note about wording

Motivation

universal-character-name escape sequences

As their name does not indicate, universal-character-name escape sequences represent Uni-
code scalar values, using either 4, or 8 hexadecimal digits, which is either 16 or 32 bits.
However, the Unicode codespace is limited to 0-0x10FFFF, and all currently assigned code-
points can be written with 5 or less hexadecimal digits (Supplementary Private Use Area-B
non-withstanding). As such, the ~50% of codepoints that needs 5 hexadecimal digits to be
expressed are currently a bit awkward to write: \U0001F1F8.

Octal and hexadecimal escape sequences have variable length

\1, \01, \001 are all valid escape sequences. \17 is equivalent to 0x0F while \18 is equivalent to
"0x01" "8"

While octal escape sequences accept 1 to 3 digits as arguments, hexadecimal sequences
accept an arbitrary number of digits applying the maximal much principle.

This is how the Microsoft documentation describes this problem:

1

mailto:corentin.jabot@gmail.com
https://docs.microsoft.com/en-us/cpp/c-language/octal-and-hexadecimal-character-specifications?view=msvc-160


Unlike octal escape constants, the number of hexadecimal digits in an escape
sequence is unlimited. A hexadecimal escape sequence terminates at the
first character that is not a hexadecimal digit. Because hexadecimal digits
include the letters a through f, caremust be exercised tomake sure the escape
sequence terminates at the intended digit. To avoid confusion, you can place
octal or hexadecimal character definitions in a macro definition:

#define Bell '\x07'

For hexadecimal values, you can break the string to show the correct value
clearly:

"\xabc" /* one character */
"\xab" "c" /* two characters */

While, as this documentation suggests, there are workarounds, to this problem, neither
solution is really appealing, nor do they completely solve the maintenance issue. It might,
for example not be clear why a string is split in 2, and that split may be refactored away by
zealous tooling or contributors.

Proposed solution

We propose new syntaxes \u{}, \o{}, \x{} usable in places where \u, \x, \nnn currently are.
\o{} accepts an arbitrary number of octal digits while \u{} and \x{} accept an arbitrary number
of hexadecimal digit.

The values represented by these new syntaxes would of course have the same requirements
as existing escape sequences:

\u{nnnn} must represent a valid Unicode scalar value.

\x{nnnn} and \o{nnnn} must represent a value that can be represented in a single code unit
of the encoding of string or character literal they are a part of.

Note that "\x{4" "2}" would not be valid as escape sequences are replaced before string
concatenation, which we think is the right design.

Is it worth it?

It is certainly not an important feature. Low cost, mild benefits. However, it should be relatively
simple to write refactoring tools to migrate the old syntax to the new one for codebases
interested in the added visibility and safety.

Should existing forms be deprecated?

No (we are not in the business of breakings everyone’s code)!

2



Impact on existing implementations

No compiler currently accept \x{ or \u{ as valid syntax. Furthermore, while \o is currently
reserved for implementations, no tested implementation (GCC, Clang, MSVC, ICC) makes use
of it.

Impact on C

This proposal does not impact C, however, the C committee could find that proposal interest-
ing.

Prior arts and alternative considered

\u{} is a valid syntax in rust and javascript. The syntax is also similar to that of P2071R0 [1]

\x{} is a bit more novel - It is present in Perl and some regex syntaxes. However, most
languages (python, D, Perl, javascript, rust, PHP) specify hexadecimal sequences to be exactly
2 hexadecimal digits long (\xFF) which sidestep the issues described in this paper.

Most languages surveyed follow in C and C++ footstep for the syntax of octal numbers (no
braces, 1-3 digits), so this would novel indeed.

As such, for consistency with other C++ proposal and existing art, we have not considered
other syntaxes.

Wording

�? Character sets [lex.charset]

[...] The universal-character-name construct provides away to nameother characters.
hex-quad:

hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

universal-character-name:
\u hex-quad
\U hex-quad hex-quad
\u{ hexadecimal-digit... }

A universal-character-name designates the character in ISO/IEC 10646 (if any) whose
code point is the hexadecimal number represented by the sequence of hexadecimal-
digit s in the universal-character-name. The program is ill-formed if that number is
not a code point or if it is a surrogate code point.

[...]

3

https://wg21.link/P2071R0


�? Character literals [lex.ccon]

[...]

numeric-escape-sequence:
octal-escape-sequence
hexadecimal-escape-sequence

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit
\o{ octal-digit... }

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit
\x{ hexadecimal-digit... }

conditional-escape-sequence:
\ conditional-escape-sequence-char

Acknowledgments

References

[1] Tom Honermann and Peter Bindels. P2071R0: Named universal character escapes. https:
//wg21.link/p2071r0, 1 2020.

[Unicode] Unicode 13
http://www.unicode.org/versions/Unicode13.0.0/

[N4861] Richard Smith Working Draft, Standard for Programming Language C++
https://wg21.link/N4861

4

https://wg21.link/p2071r0
https://wg21.link/p2071r0
http://www.unicode.org/versions/Unicode13.0.0/
https://wg21.link/N4861

	1 Abstract
	2 Revisions
	2.1 R1

	3 Motivation
	3.1 universal-character-name escape sequences
	3.2 Octal and hexadecimal escape sequences have variable length

	4 Proposed solution
	4.1 Is it worth it?
	4.2 Should existing forms be deprecated?
	4.3 Impact on existing implementations
	4.4 Impact on C

	5 Prior arts and alternative considered
	6 Wording
	7 Character sets
	7.1 Character literals

	8 Acknowledgments
	9 References

