
Portable assumptions

Timur Doumler (papers@timur.audio)

Document #: P1774R4
Date: 2021-11-15
Project: Programming Language C++
Audience: Evolution Working Group

Abstract

We propose a standard facility providing the semantics of existing compiler intrinsics such as
__builtin_assume (Clang) and __assume (MSVC, ICC). It gives the programmer a way to
allow the compiler to assume that a given C++ expression is true, without evaluating it, and to
optimise based on this assumption. This is very useful for high-performance and low-latency
applications in order to generate both faster and smaller code.

1 Motivation
All major compilers offer built-ins that give the programmer a way to allow the compiler to assume
that a given C++ expression is true, and to optimise based on this assumption. They are very useful
for high-performance and low-latency applications in order to generate both faster and smaller code.
Use cases include more efficient code generation for mathematical operations, better vectorisation
of loops, elision of unnecessary branches, function calls, and more.
Consider the following function (from [Regehr2014]):

int divide_by_32(int x)
{

__builtin_assume(x >= 0);
return x/32;

}

Without the assumption, the compiler has to generate code that works correctly for all possible
input values. With the assumption, there is no need to generate code that handles the case of a
negative numerator. The calculation can therefore be performed using a single instruction (shift
right by 5 bits). Here is the output generated by clang (trunk) with -O3:

Without __builtin_assume:
mov eax, edi
sar eax, 31
shr eax, 27
add eax, edi
sar eax, 5
ret

With __builtin_assume:
mov eax, edi
shr eax, 5
ret

1

mailto:papers@timur.audio

All major compilers offer this functionality by providing the following built-ins (see [N4425] and
Section 3 below for a more thorough discussion):

— MSVC and ICC have __assume(expr);

— Clang has __builtin_assume(expr);

— GCC has __builtin_unreachable(), which works slightly differently. Assuming an expres-
sion can be written as

if (expr) {} else { __builtin_unreachable(); }

However, this has slightly different semantics: on GCC, expr will be evaluated, at least
notionally. In practice, this will often be optimised away if evaluating expr has no side effects.

Assumptions are a useful expert-level feature, and they are existing practice. However, they are
spelled differently on every compiler and subject to subtle differences and ambiguities in semantics,
which are not properly defined anywhere. The goal of this proposal is to introduce a unified syntax
and well-defined semantics for assumptions in a way that is compatible with all existing compiler
implementations and fits well into the existing C++ standard.

2 Syntax

2.1 Proposed

We propose an attribute syntax to spell portable assumptions. __builtin_assume(expression)
instead becomes:

[[assume(expression)]]

First of all, we propose that the word “assume” is used in the spelling this feature. This is the name
already used in existing built-ins, therefore choosing it means standardising existing practice. This
name will be least surprising and most self-explanatory to the user.
The syntax above (using parentheses) is chosen such that it is fully compatible with standard
attribute syntax and therefore backwards-compatible with a compiler that does not support this
feature.
Making this an attribute also makes it clear that assumptions share an important property with
the other C++ attributes: given a valid C++ program that contains the attribute, ignoring it does
not change the observable semantics of such a program.
It is further consistent with existing optimisation-related attributes ([[likely]], [[unlikely]],
[[carries_dependency]]) as well as existing attributes that increase the space of undefined
behaviour in a C++ program ([[noreturn]]).
We further believe that this syntax has the least impact on the core language as opposed to the
alternatives (see below).
Finally, the attribute syntax would also allow to add this feature to the C language with the same
spelling.
Herb Sutter argues in [P2064R0] against this attribute syntax, saying that it would “make assumes
awkward to write in the one place they should appear, which is a statement”, and that it “would
allow asuumes to be written outside of function bodies”. Neither of these are true. We specify
[[assume(expr)]] to be an attribute that can only be applied to a null statement, just like we
already do with [[fallthrough]]. The effect of this is that it can only appear on its own, as a
statement, followed by a semicolon, and only inside a function body, which is exactly the intended
use.

2

2.2 Alternatives considered (not proposed)

2.2.1 New syntax

We explored syntax involving a colon, such as [[assume: expression]], the syntax used in
[P0542R5] for contracts, and other variations that deviate from existing C++ attribute grammar.
We do not see any benefit of introducing a new syntax to C++ over using existing attribute syntax.
New syntax would require otherwise unnecessary changes to the C++ grammar, making it harder
to add assumptions to existing code due to lack of backwards-compatibility. At the same time, it
does not provide any benefits over the attribute syntax we propose.
In addition, using syntax too similar to that used by contracts proposals is actively harmful:
assumptions are a feature completely separate from contracts (see Section 5.1), and the syntax
should therefore be separate from contracts as well.

2.2.2 Keyword

An assumption can be characterised as an operator with an unevaluated operand, somewhat similar
to decltype(expression), where decltype is a keyword. We therefore considered to add a new
keyword for assumptions, so that the spelling becomes:

assume(expression)

We could also spell such a keyword differently. [P2064R0] suggests the spelling unsafe_assume to
highlight that this is a narrow, low-level, expert-only feature, with the potential to inject undefined
behaviour into an otherwise valid program, and should therefore be used with great care.
However, for exactly this reason, we believe that a new keyword is not the right approach. Adding
a new keyword is a very significant change to the language. A narrow, expert-only feature that will
only be used by a small fraction of developers does not justify a new keyword.

2.2.3 Macro

Instead of introducing a keyword, we could introduce an assume macro, analogous to how assert
is already defined as a macro (and again, we could spell it in different ways). However, macros are
known to cause many problems. Their lack of scoping can lead to name clashes, the preprocessor
grammar makes it impossible to use curly braces inside the expression, etc. For these and other
reasons, modern C++ tries to minimise the use of macros. We don’t see any good reason to deviate
from this principle.

2.2.4 “Magic” library function

One option that at first glance seems very attractive is to spell an assumption as a “magic” library
function:

std::assume(expression);

Herb Sutter [P2064R0] and others have argued for such an approach. However, a deeper analysis
reveals that this is not a viable route. Making assumptions a function would introduce a weird
novelty into the C++ language: something that is syntactically a function call, yet does not evaluate
its operand. This would be very different in nature to all existing “magic” library functions. Apart
from not evaluating the argument of the function call, such a function would differ from other C++
language functions in many other ways. It would look like a standard C++ function, but it would
behave like built-ins such as __builtin_assume behave today: the only thing that you can do with
them is to directly call them. You can’t take their address, you can’t assign them to a function
pointer, etc. By making assumptions a function, we would essentially be saying that it’s a function

3

but it’s so special that the only properties it shares with an actual function is that it has a name
and an argument list. It would effectively be a namespaced keyword.
Significant core language changes would be needed to make such a novelty work, adding more
complexity to a fundamental part of the core language (what is a function call?). We do not believe
that assumptions come anywhere close to justifying such changes to the language. The proposed
attribute syntax avoids all this complexity by using a mechanism that already exists in the language.
It has been pointed out that the spelling std::assume would be consistent with the related
std::assume_aligned, which was adopted for C++20. However, as should be clear from the above
discussion, they are fundamentally different. For std::assume_aligned, unlike for an assumption,
the operand may be evaluated, just like for any other function call in C++. The problem described
above does therefore not arise for std::assume_aligned (or any other existing “magic” library
function in C++).

3 Semantics
We collaborated with compiler engineers from MSVC, GCC, Clang, ICC, and EDG, to make sure
that the semantics proposed here for standard C++ are implementable on all these compilers and
are compatible with the de-facto semantics of all the existing assumption built-ins.

3.1 Assumptions do not evaluate their operand

The expression inside an assumption is an unevaluated operand, like for example the operand of
decltype. This is a fundamental property of assumptions. The whole point is to assume the
operand without checking it (see also section 5.1, and Herb Sutter’s discussion in [P2064R0] why
assumptions are fundamentally different from assertions).
Therefore, expressions with side effects are allowed, which is useful (consider [[assume(++ptr !=
end)]]), and there is a guarantee that those side effects will not be executed and will not affect the
behaviour of the program. This is consistent with both the semantics of attributes in C++ and the
semantics of existing __assume and __builtin_assume.
GCC is currently the only major compiler that doesn’t have an intrinsic with the unevaluated
operand semantics. In GCC, we have to spell assumptions like this:

if (expr) {} else { __builtin_unreachable(); }

which evaluates expr. However, GCC can implement assume in a way conforming to the semantics
proposed here relatively easily, by employing the following strategy. First, we check whether expr
can have side effects if evaluated. If we can prove that it cannot, we can use the existing GCC
mechanism to implement assumptions. Otherwise, we simply ignore the assumption. Ignoring
assumptions with potential side effects is a conforming implementation of the semantics proposed
here.
Ignoring assumptions altogether is also a conforming implementation. A trivial implementation of
assumptions is therefore possible on any C++ compiler.

3.2 Assumptions that would not evaluate to true are undefined behaviour

The operand of an assumption is not evaluated, however the optimiser may analyse it, and deduce
from that information used to optimise the program. The crucial property of an assumption is that
if such analysis reveals that it would not evaluate to true, the behaviour is undefined. This gives
the compiler the freedom to optimise away any code path that could be reached if the assumption
would not hold. This includes so-called time-travel optimisation. Consider the following function
(example from [P2064R0]:

4

int f(int j) {
int i = 42;
if (j == 0)

i = 0;

[[assume(j != 0)]];
return i;

}

The proposed semantics allow the optimiser to assume that j != 0 was already true before the
code reached the assumption, since j was not modified. It can therefore remove the branch before
the assumption, and reduce the whole function to return 42. This is merely specifying existing
practice: both GCC and Clang actually perform this optimisation.
There is a subtle difference between behaviour being undefined if the expression would evaluate to
false, or if the expression would not evaluate to true. The latter (proposed here) also includes the
assumption that the expression itself would not result in UB if it were evaluated. This enlarges the
space of assumptions that can be stated by the programmer (Thanks to Joshua Berne for pointing
this out). In other words, UB inside the assumed expression is allowed to escape the assumption,
even if the expression is notionally unevaluated.

3.3 Assumptions ODR-use their operand

At first glance, this requirement seems unnecessary. If the operand of an assumption is not evaluated,
why would we want to specify that it is ODR-used?
The answer is: ODR-use is what existing implementations do. Implementing assumptions without
ODR-use of the operand would be extremely difficult. As far as we know, such an implementation
does not exist.
MSVC, ICC, and Clang all follow the same basic principle to implement assumptions. The compiler
actually generates intermediate representation for the expression inside the assumption (which
requires ODR-use). This code is then used during optimisation of the program. At a later stage of
the optimiser, the assumption-related code is then stripped out again (the exact mechanics of this
vary from compiler to compiler).

3.4 Behaviour of assumptions during constant evaluation

What should happen if an assumption is encountered during constant evaluation? We propose
that, if such an assumption would not evaluate to true, it is implementation-defined whether the
program is ill-formed or not. This way, we leave freedom for implementations to conduct such an
analysis at compile time and emit a compiler error for a failed assumption (which can be useful),
while not requiring an implementation to do so (because it might be very difficult to implement). If
an assumption holds during constant evaluation, this should have no effect.
Another subtlety is the question what should happen if inside a constexpr function we encounter
an assumption that would evaluate to true, but can not be evaluated during constant evaluation?
Currently, there is implementation divergence. MSVC rejects the following code, while GCC and
Clang accept it (when using the appropriate platform-specific built-in for the assumption):

int foo() { // not a constexpr function
return 0;

}

constexpr int bar() {
[[assume(foo() == 0)]]; // this assumption holds but isn’t constexpr
return 1;

}

5

int main() {
return bar();

}

We propose that this code should be well-formed. If an assumption cannot be checked at compile
time, the assumption should simply be ignored, rather than making the whole program ill-formed.
Otherwise, in order to be able to make the function constexpr, the user would have to branch on
std::is_constant_evaluated() just for the purpose of using such an assumption.

4 Benchmarks
Since assumptions are not standardised yet, for this study we use an ASSUME macro instead of the
syntax proposed above. The macro is defined as follows and works on all major compilers:

#if defined(__clang__)
#define ASSUME(expr) __builtin_assume(expr)

#elif defined(__GNUC__) && !defined(__ICC)
#define ASSUME(expr) if (expr) {} else { __builtin_unreachable(); }

#elif defined(_MSC_VER) || defined(__ICC)
#define ASSUME(expr) __assume(expr)

#endif

As discussed above, there are differences in semantics across compilers, in particular whether or not
expr is evaluated; however, by assuming only expressions without side effects we can make sure
this has no impact on the benchmarks.

4.1 Code size

Consider looping over a range of floats and clamping all values between -1 and 1. This is an
operation that often occurs in audio processing and is known as a limiter :

void limiter(float* data, size_t size)
{

for (size_t i = 0; i < size; ++i)
data[i] = std::clamp(data[i], -1.0f, 1.0f);

}

Often, such data has invariants which are guaranteed by the surrounding code, but this information
is invisible to the optimiser, for example because the code is too complex for the optimiser to
see through, or because there is a TU boundary in between. We can inject such invariants via
assumptions. In this example, we inject the knowledge that data buffers contain at least 32 frames
and the buffer size is a multiple of 32 (a common scenario in audio processing), and that the data
does not contain NaNs or infinity:

void limiter(float* data, size_t size)
{

ASSUME(size > 0);
ASSUME(size % 32 == 0);

for (size_t i = 0; i < size; ++i) {
ASSUME(std::isfinite(data[i]));
data[i] = std::clamp(data[i], -1.0f, 1.0f);

}
}

We have compiled both versions of this function on godbolt.org with MSVC, GCC, Clang, and ICC,
respectively. We have used the latest trunk versions of these compilers at the time of writing, and
compiled the code with the maximum optimisation setting (-O3 and /O2, respectively). As a crude
estimate of code size, we counted the number of instructions emitted, with the following results.

6

Compiler Without ASSUME With ASSUME
MSVC 88 52
GCC 77 42
Clang 74 20
ICC 62 62

On all compilers except ICC, using ASSUME leads to significantly less code being emitted. The
injected assumptions lead to a better optimisation of the loop as well as elimination of unnecessary
code inside std::clamp.

4.2 Execution time

Benchmarks comparing execution time of the same code compiled with and without assumptions
are planned for the next revision of this paper.

5 History and related work

5.1 N4425 and Contracts

Adding portable assumptions was already proposed once [N4425] and discussed by EWG in 2015 in
Lenexa1. The paper was rejected. EWG’s guidance was that this functionality should be provided
within the proposed contracts facility, and not as a separate feature.
However, contracts as merged into the C++20 working draft in June 2018 in Rapperswil [P0542R5],
actually failed to provide such portable optimisation hints [P1773R0]. Later, in July 2019 in Cologne,
contracts were pulled from C++20 altogether. More recent proposals [P2358R0] for adding contracts
to C++ no longer include the possibility to assume contracts for purposes of optimisation. These
ideas will also take time to develop. Assumptions are useful, well-understood, existing practice, and
we should standardise them now, rather than waiting for progress on contracts.
Contracts and assumptions are very different features. The purpose of contracts is to find and
avoid bugs, and to document pre- and postconditions in code; they are meant to be used at API
boundaries; and they are a “cross-cutting” feature that is meant to be used widely throughout a
codebase by many developers. By contrast, the purpose of assumptions is to make specific invariants
of your code visible to the optimiser; they are meant to be an implementation detail; and they are a
“local” feature that will only be used rarely, at specific locations in performance bottlenecks, and by
experts only.
More specifically, assertions and assumptions are fundamentally different in nature (see also
[P2064R0]). We are not aware of any study that could conclusively show that there is a measurable
performance benefit from turning assertions into assumptions throughout a codebase. [P2064R0]
found that it actually degrades performance, while [Amini2021] found that it makes no statistically
significant difference at all. Therefore, we should not combine assertions and assumptions in the
same language feature. Instead, we should use assumptions explicitly in the few cases where it
actually matters for performance, while making sure that assertions are a “safe-to-use” feature that
cannot inject undefined behaviour and “time travel” into a program.
We need a low-level assumptions facility that is independent of contracts or assertions. The present
paper focuses on proposing exactly this low-level facility. In case contracts or other higher-level
features will incorporate assumptions in some form in the future, they can then be specified and
implemented in terms of this low-level facility.

1https://cplusplus.github.io/EWG/ewg-closed.html#179

7

https://cplusplus.github.io/EWG/ewg-closed.html#179

5.2 std::unreachable

[P0627R6] is a related paper proposing a function std::unreachable(), standardising GCC’s
__builtin_unreachable() (see above): a function that invokes UB when called, and therefore can
be used to mark unreachable code paths.
It is important to recognise that the functionality provided by std::unreachable() is a strict
subset of the functionality provided by assumptions as proposed here. std::unreachable() has
the exact same semantics as [[assume(false)]]. Assuming an expression without side effects
can be expressed with either assume or std::unreachable (although the latter is significantly
more verbose), while assuming an expression with side effects can only be expressed with assume,
and at least one existing compiler (MSVC) is capable of using such assumptions for optimisations.
Therefore, assume is the more general feature, and the one that should be standardised first.
That being said, the possibility to spell [[assume(false)]] as std::unreachable might still
be desirable. If what the user wants to do is to mark unreachable control flow (unreachable
branches, unreachable switch cases etc.), for example to avoid compiler warnings, then the spelling
std::unreachable better communicates that intent. If we want to standardise std::unreachable,
we should specify it in terms of assumptions as proposed here.

6 Previous polls
Below are the polls taken by WG21 subgroups on previous revisions of this paper.

6.1 EWG, Prague (February 2020)

1. We want assumptions now and independent of future contract facilities.
SF F N A SA
18 5 1 3 3

2. We like the proposed semantics for assumptions.
SF F N A SA
18 5 4 2 0

3. We want exploration on a mode which can check assumptions, including side effects.
SF F N A SA
1 0 9 9 5

4. We like the proposed attribute syntax [[assume(expr)]]

SF F N A SA
9 8 5 5 1

5. We’d like more exploration on macro assume, like assert
SF F N A SA
0 0 1 10 16

6. We’d like more exploration on keyword such as one of unsafe_assume / assume / __assume /
_Assume / . . .

SF F N A SA
5 7 9 5 2

7. We’d like more exploration on magic library function such as std::assume(expr).
SF F N A SA
0 0 0 9 14

8

6.2 SG21, Prague (February 2020)

Assumptions should proceed independently of contracts.
SF F N A SA
9 8 5 6 5

6.3 EWG, Belfast (November 2019)

1.. P1774 with [[assume(expr)]] syntax.
SF F N A SA
15 5 1 0 0

2. P1774 with std::assume(expr) syntax.
SF F N A SA
1 3 4 10 4

7 Proposed wording
Add the following subclause to [dcl.attr]:

Assumption attribute [dcl.attr.assume]

The attribute-token assume may be applied to a null statement; such a statement is an
assumption. The attribute-token assume shall appear at most once in each attribute-list. An
attribute-argument-clause shall be present and shall have the form:

(assignment-expression)

The epression shall be contextually convertible to bool. The expression is not evaluated,
however, it is potentially evaluated [basic.ref.odr]. If the expression would not evaluate to
true, the behavior is undefined.
[Note: The use of assumptions is intended to allow implementations to analyze the form of
the expression and deduce from that information used to optimize the program. —end note]
[Example:

int divide_by_32(int x) {
[[assume(x >= 0)]];
return x/32; // The instructions produced for the division

// may omit handling of negative values
}

—end example]

Modify [expr.const] as follows:

If e satisfies the constraints of a core constant expression, but evaluation of e would evaluate
an operation that has undefined behavior as specified in [library] through [thread] of this
document, a statement with an assumption ([dcl.attr.assume]) that has a predicate that
would not evaluate to true, or an invocation of the va_start macro ([cstdarg.syn]), it is
unspecified whether e is a core constant expression.

Add to [cpp.predefined]/table 21:

__cpp_assume with the appropriate value.

9

Document history

— R0, 2019-06-17: Initial version.

— R1, 2019-10-06: Updated text to reflect removal of Contracts from C++20; made proposed
attribute syntax backwards-compatible by replacing colon with parentheses.

— R2, 2019-11-25: Changed title to “Portable assumptions”; changed semantics from UB if
expression would evaluate to false to UB if expression would not evaluate to true; changed
syntax section to propose attribute-syntax only, dropping “magic” library function syntax as
a viable alternative.

— R3, 2020-01-13: Updated text to clarify the discussion of the proposed semantics and syntax.

— R4, 2021-11-15: Added wording. Added polls. Added code size measurement results. Updated
and restructured text, adding discussion of proposed semantics and recent related work.

Acknowledgements
Many thanks to Herb Sutter, Chandler Carruth, Joshua Berne, Michael Spencer, Jonathan Caves,
Hal Finkel, Erich Keane, Judy Ward, Inbal Levi, Eric Brumer, Nathan Sidwell, and Daveed
Vandevoorde for their help with this proposal.

References

[Amini2021] Parsa Amini. Asserting Your Way To Faster Programs. CppCon talk, 2021-10-28.

[N4425] Hal Finkel. Generalized Dynamic Assumptions. http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2015/n4425.pdf, 2015-04-07.

[P0542R5] G. Dos Reis, J. D. Garcia, J. Lakos, A. Meredith, N. Myers, and B. Stroustrup. Support
for contract based programming in C++. http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2018/p0542r5.html, 2017 (accessed 2018-06-08).

[P0627R6] Melissa Mears and Jens Maurer. Function to mark unreachable code. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2021/p0627r6.pdf, 2021-10-15.

[P1773R0] Timur Doumler. Contracts have failed to provide a portable “assume”. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1773r0.pdf, 2019-06-17.

[P2064R0] Herb Sutter. Assumptions. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2020/p2064r0.pdf, 2020-01-13.

[P2358R0] Gašper Ažman, John McFarlane, and Bronek Kozicki. Defining contracts. http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2358r0.pdf, 2020-01-14.

[Regehr2014] John Regehr. Assertions Are Pessimistic, Assumptions Are Optimistic. https:
//blog.regehr.org/archives/1096, 2014-02-05.

10

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4425.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4425.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p0627r6.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p0627r6.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1773r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1773r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2064r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2064r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2358r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2358r0.pdf
https://blog.regehr.org/archives/1096
https://blog.regehr.org/archives/1096

	1 Motivation
	2 Syntax
	3 Semantics
	4 Benchmarks
	5 History and related work
	6 Previous polls
	7 Proposed wording
	References

