
Top Level Is Constant Evaluated
Document No P1955r0
Date November 3, 2019
Project The C++ Programming Language
Audience EWG
Authors Frank Birbacher (Bloomberg LP), frank.birbacher@gmail.com

With the discussion and outcomes of the std::is_constant_evaluated()
functions we propose a different way to solve the need. The alternative is
easier to understand, allows extension to more use cases, and should be less
liable to wording oversights.

Contents
1 Revisions 1

2 Introduction 1

3 Too Long, Didn’t Read 2

4 We Propose 2

5 Use Case: Easy to Understand and Use 3

6 Future Use Case: Supply Out-Of-Line Definition 3

7 Future Use Case: Separate inline Implementation 3

8 Summary 5

1 Revisions
Initial revision.

2 Introduction
The introducion of the std::is_constant_evaluated() function has created a lot of
discussion about its correct use. Also it has fallen afoul of the maintenance trap resulting
from concurrent modifications to the Standard resulting in a NB comment about miss-
ing support for calling consteval qualified functions. The current wording also comes
with an example to convince the commttee members themselves of its meaning. While
essential to the implementation of compile time containers, e. g. strings, we’ll present
alternatives that are easier to understand, more general in nature, and should result in
less maintenance issues for the wording.

1



P1955r0 Top Level Is Constant Evaluated

3 Too Long, Didn’t Read
We propose to answer the question whether something is evaluated at compile time or
not for a whole function body, that is, allow two different function bodies for the two
cases respectively. This makes the facility easier to understand and harder to use wrong.
Furthermore it also allows extension for more use cases, such as moving the runtime
body out-of-line.

Listing 1: Tony Table: Example from meta.const.eval contrasted with idea for top-level
distinction.

// BEFORE: Using is_constant_evaluated().
constexpr void f(unsigned char *p, int n) {

if (std::is_constant_evaluated()) {
for (int k = 0; k<n; ++k) p[k] = 0;

} else {
memset(p, 0, n);

}
}

// AFTER: Proposed idea.
constexpr void f(unsigned char *p, int n)
consteval = {

for (int k = 0; k<n; ++k) p[k] = 0;
}, {

memset(p, 0, n);
}

4 We Propose
• Introduce a function body syntax to distinguish code for constant evaluation.

• Use language syntax to provide a language feature instead of a magic function.

• Reuse wording about constexpr functions and lose the need to speak of the se-
mantics in if-branches.

Allow for the body of a function definition to give a constexpr = {...} body between
the signature and the regular body. The meaning is to use the designated body for
constant evaluation. All rules for what is possible inside a constexpr function would
apply to that body. The regular body will be used for the runtime case as usual. Refer
to the listing 1 for the proposed syntax. The items serve use cases that are detailed in
the following sections.

2



P1955r0 Top Level Is Constant Evaluated

Listing 2: Issues of using it wrong
// in Header:
constexpr void f(unsigned char *p, int n)
{

// mistake here:
if constexpr(is_constant_evaluated()) {

for (int k = 0; k<n; ++k) p[k] = 0;
} else {

memset(p, 0, n);
}

}

5 Use Case: Easy to Understand and Use
As a C++ user I want to use the facilities offered with ease. As a Standards
Committee Member I want to understand the dependencies between different
features.

The definition and effects of is_standard_evaluated() confuses a number of people
thereby raising the need to put an explaining example into the Standard. Also the
particularities of it being a magic function incurs wording overhead regarding other
features, such as consteval functions, see listing 2. These issues are also outlined in
P1938R0.

By referring to the wording of definitions of constexpr functions the meaning of
calling consteval functions becomes clear.

6 Future Use Case: Supply Out-Of-Line Definition
As a C++ user I want to have functions with implementation details hidden
in a translation unit and still let them have a constexpr part in the header.

Although this can be worked around by defining two functions, one of which is constexpr
and calls the other for the not constant evaluated case, it’s much more straight forward
to only declare one function. Moving the definition out of the header allows to pull in
additional includes without exposing them.

7 Future Use Case: Separate inline Implementation
As a C++ user I want to optimize the code for an inline function in the
non-inline case.

3

http://wg21.link/P1938R0


P1955r0 Top Level Is Constant Evaluated

Listing 3: How to move runtime case into .cpp
// in Header:
constexpr void f(unsigned char *p, int n)
consteval = {

for (int k = 0; k<n; ++k) p[k] = 0;
}; // Semicolon concludes declaration with missing definition

// in .cpp:
void f(unsigned char *p, int n)
{

memset(p, 0, n);
}

Listing 4: Hide detail in .cpp
// in Header:
void f(unsigned char *p, int n)
inline = {

for (int k = 0; k<n; ++k) p[k] = 0;
}; // Semicolon concludes declaration with missing definition

// in .cpp:
#include <cstdlib>
void f(unsigned char *p, int n)
{

std::memset(p, 0, n);
}

4



P1955r0 Top Level Is Constant Evaluated

This use case was suggested in P1220R0 for San Diego. The feature has been deemed
too specific at that time, but when combined with the constexpr case discussed here
it makes for a stronger argument. The proposed split between constant evaluated and
runtime case could also allow to split inline and non-inline case in the same way. This
makes this proposal more general than either of the individual feature proposals.

8 Summary
The proposed new syntax avoids a number of misunderstandings by limiting the facility
to function body selection. It allows to support future extensions that serve additional
use cases by omitting certain bodies and defining them later. Overall we think this to
be a better approach to distinguishing constant evaluation.

5

http://wg21.link/P1220R0

	Revisions
	Introduction
	Too Long, Didn't Read
	We Propose
	Use Case: Easy to Understand and Use
	Future Use Case: Supply Out-Of-Line Definition
	Future Use Case: Separate inline Implementation
	Summary

