
P1685R0: Make get/set_default_resource Replaceable Page 1 of 4

Doc No: P1685R0
Date: 2019-06-14
Audience: LEWG
Authors: Pablo Halpern <phalpern@halpernwightsoftware.com>

Make get/set_default_resource Replaceable

Contents
1 Abstract ... 1
2 Change History ... 1

2.1 R0 (Pre-Cologne, June 2019) .. 1
3 Motivation and Proposal Overview ... 1
4 Impact on the Standard .. 2
5 Potential extensions .. 2
6 Formal Wording .. 2

6.1 Document Conventions .. 2
6.2 Changes to set/get_default_resource descriptions.. 3
6.3 Changes to Replacement Functions section ... 4

1 Abstract
This paper proposes that the functions std::pmr::get_default_resource and
std::pmr::set_default_resource be modified to be replaceable functions (similar to operator
new and operator delete) so that the application developer can replace them with more
efficient or more flexible alternative implementations.

This proposal is targeted for the C++23 working paper.

2 Change History

2.1 R0 (Pre-Cologne, June 2019)

Initial revision.

3 Motivation and Proposal Overview
The default constructor for std::pmr::polymorphic_allocator<T>, obtains a pointer to the
default memory resource by calling std::pmr::get_default_resource(). The default memory
resource can be changed by calling std::pmr::set_default_resource(). This interface, while
providing a simple way for the application owner to choose a default memory-allocation
strategy for the program, has a few disadvantages:

1. The get/set interface must use atomic variables to avoid race conditions. The acquire
barrier on each call to get_default_resource can have a negative performance impact
on certain architectures.

P1685R0: Make get/set_default_resource Replaceable Page 2 of 4

2. There is no reliable way to set the default resource for objects defined in global scope
or namespace scope.

3. A poorly written library can modify the default resource without the knowledge of the
application owner, causing serious performance or even correctness problems.

In common usage, the default resource is set at most once at the start of a program, ideally
before any use of get_default_resource, and is never changed throughout the course of the
program.1 This use case is best supported by defining get_default_resource() to simply
return the application’s preferred default memory resource and defining
set_default_resource() either to be a no-op or to abort the program (as it could be
considered an error to ever call set_default_resource in this case).

Another use case would be to have a thread-local default memory resource. In this case,
set_default_resource would store a value in thread-local storage and get_default_resource
would retrieve the value from thread-local storage, with no need for atomic operations.

Both of the above use cases, as well as just about any other scenario, can be supported in
the standard by allowing the programmer to replace get_default_resource and
set_default_resource. This paper proposes exactly that, borrowing language from other
replaceable functions in the standard, namely operator new and operator delete.

4 Impact on the Standard
Although it changes the attributes of a pair of standard library functions, this proposal
should have no effect on existing programs and minimal effect on existing standard library
implementations.

5 Potential extensions
The committee might consider extending replaceability to all of the functions that install and
retrieve handlers, specifically set/get_new_handler and set/get_terminate. It is not clear
that there is sufficient motivation to do so, as these functions are used much less frequently
than pmr::get_default_resource. However, if the LEWG decides that this direction is
desirable, the author would be willing to update this paper or submit a new paper proposing
such a change.

6 Formal Wording

6.1 Document Conventions

All section names and numbers are relative to the March 2019 C++ Working Paper, N4810.

1 This assertion (that the common use case is to set the default resource once) comes from experience
with Bloomberg’s large codebase. Other common use patterns that may emerge are also supported by
the change proposed in this paper.

P1685R0: Make get/set_default_resource Replaceable Page 3 of 4

Existing working paper text is indented and shown in dark blue. Edits to the working paper are shown with
red strikeouts for deleted text and green underlining for inserted text within the indented blue original text.

Comments and rationale mixed in with the proposed wording appears as shaded text.

6.2 Changes to set/get_default_resource descriptions

In Section 20.12.4 [mem.res.global], amend the definitions of set_default_resource and
get_default_resource as follows:

The default memory resource pointer is a pointer to a memory resource that is used by certain facilities when an
explicit memory resource is not supplied through the interface. Its initial value is the return value of
new_delete_resource(). The value of the default memory resource pointer is retrieved by calling
get_default_resource()and can usually be set by calling set_default_resource(). The library
provides default definitions for these functions, which are replaceable. A C++ program shall provide at most
one definition of each of these functions. Any such function definition replaces the default version provided in
the library (16.5.4.6 [replacement.functions]).

memory_resource* set_default_resource(memory_resource* r) noexcept;

Effects: If r is non-null, sets the value of the default memory resource pointer to r, otherwise sets the default
memory resource pointer to new_delete_resource().

Returns: The previous value of the default memory resource pointer.

Remarks: Calling the set_default_resource and get_default_resource functions shall not incur a
data race. A call to the set_default_resource function shall synchronize with subsequent calls to the
set_default_resource and get_default_resource functions.

Replaceable: A C++ program may define a function with this function signature, and thereby displace the
default version defined by the C++ standard library.

Required behavior: Return the previous value of the default memory resource pointer or else terminate the
program. [Note: There is no requirement that a replacement function modify the default memory resource
pointer in any way – end note]

The required behavior does not require much – not even that the set/get functions be thread
safe (not incur races). It is quite possible that set_default_resource would be called only
before multiple threads were started. Thus, certain replacement versions of these functions
could depend on the program to avoid races, rather than guaranteeing thread-safe behavior
themselves.

Default behavior: If r	is non-null, sets the value of the default memory resource pointer to r, otherwise sets
the default memory resource pointer to new_delete_resource(). Calling the
set_default_resource	and get_default_resource	functions shall not incur a data race. A call to
the set_default_resource	function shall synchronize with subsequent calls to the
set_default_resource	and get_default_resource	functions.

memory_resource* get_default_resource() noexcept;

Returns: The current value of the default memory resource pointer.

P1685R0: Make get/set_default_resource Replaceable Page 4 of 4

Replaceable: A C++ program may define a function with this function signature, and thereby displace the
default version defined by the C++ standard library.

Required behavior: Return a non-null pointer to a memory resource, whether or not
set_default_resource() has previously been called.

Default behavior: Return the value set by the most recent call to set_default_resource(), if any;
otherwise the value returned by new_delete_resource().

6.3 Changes to Replacement Functions section

Amend section 16.5.4.6 [replacement.functions] as follows:

A C++ program may provide the definition for any of the following dynamic memory allocation function
signatures declared in header <new> (6.6.5.4, 17.6):

operator new(std::size_t)
operator new(std::size_t, std::align_val_t)
…
operator delete[](void*, const std::nothrow_t&)
operator delete[](void*, std::align_val_t, const std::nothrow_t&)

or any of the following default-resource management function signatures declared in header
<memory_resource> (20.12.4 [mem.res.global]):

std::pmr::memory_resource*
 std::pmr::set_default_resource(memory_resource* r) noexcept

std::pmr::memory_resource* std::pmr::get_default_resource() noexcept

The program’s definitions are used instead of the default versions supplied by the implementation (17.6,
20.12.4). Such replacement occurs prior to program startup (6.2, 6.8.3). The program’s declarations shall not be
specified as inline. No diagnostic is required.

