

Document number: P0566R2
Date: 20170730 (post-Toronto)
Project: Programming Language C++, WG21, SG1,SG14, LEWG, LWG
Authors: Michael Wong, Maged M. Michael, Paul McKenney, Geoffrey Romer, Andrew Hunter
Email: ​michael@codeplay.com​, ​maged.michael@acm.org​, ​paulmck@linux.vnet.ibm.com​,
gromer@google.com​, ​ahh@google.com
Reply to: michael@codeplay.com
​

Proposed Wording for Concurrent Data
Structures: Hazard Pointer and
Read-Copy-Update (RCU)

1 Introduction 1

2 History/Changes from Previous Release 2

3 Guidance to Editor 2

4 Proposed wording 3

6 References 19

1 Introduction

This is proposed wording for Hazard Pointers [P0233] and Read-Copy-Update[P0461]. Both are
techniques for safe deferred resource reclamation for optimistic concurrency, useful for lock-free
data structures. Both have been progressing steadily through SG1 based on years of
implementation by the authors, and are in wide use in MongoDB (for Hazard Pointers) and
Linux OS (RCU).

We decided to do both papers wording together to illustrate their close relationship, and similar
design structure, while hopefully making it easier for the reader to review together for this first
presentation. They can be split on request or on subsequent presentation.

This wording is based on n4618 draft [N4618]

mailto:paulmck@linux.vnet.ibm.com
mailto:gromer@google.com
mailto:michael@codeplay.com
mailto:ahh@google.com
mailto:maged.michael@acm.org

2 History/Changes from Previous Release

2017-07-30 [P0566R2]
● Allow hazptr_holder to be empty. Add a move constructor, empty constructor, move

assignment operator, and a bool operator to check for empty state.
● A call be an empty hazptr_holder to any of the following is undefined behavior: reset(),

try_protect() and get_protected().
● Destruction of an hazptr_holder object may be invoked by a thread other than the one

that constructed it.
● Add overload of ​hazptr_obj_base​ ​retire()​.

2017-06-18 [P0566R1]
● Addressed comments from Kona meeting
● Removed Clause numbering 31 to leave it to the committee to decide where to inject

this wording
● Renamed ​hazptr_owner​ ​hazptr_holder​.
● Combined ​hazptr_holder​ member functions ​set()​ and ​clear()​ into ​reset()​.
● Replaced the member function template parameter ​A​ for ​hazptr_holder

try_protect()​ and ​get_protected​ with ​atomic<T*>​.
● Moved the template parameter ​T​ from the class ​hazptr_holder​ to its member functions

try_protect()​, ​get_protected()​, and ​reset()​.
● Added a non-template overload of ​hazptr_holder::reset()​ with an optional

nullptr_t​ parameter.
● Removed the template parameter ​T​ from the free function ​swap()​, as ​hazptr_holder​ is

no longer a template.
● Almost complete rewrite of the hazard pointer wording.

--

3 Guidance to Editor
Hazard Pointer and RCU are proposed additions to the C++ standard library, for the
concurrency TS. It has been approved for addition through multiple SG1/SG14 sessions.
As hazard pointer and rcu are related, both being utility structures for deferred reclamation of
concurrent data structures, we chose to do the wording together so that the similarity in
structure and wording can be more apparent. They could be separated on request.

As both techniques are related to a concurrent shared pointer, it could be appropriate to be in
Clause 20 with smart pointer, or Clause 30 with thread support, or even entirely in a new clause
31 labelled concurrent Data Structures Library. However, we also believe Clause 20 does not
seem appropriate as it does not cover the kind of concurrent data structures that we anticipate,
while clause 30 is just about Threads, mutex, condition variables, and futures but does not
cover data structures. We will not make any assumption for now as to the placement of this
wording and leave it to SG1/LEWG/LWG to decide and have used ? as a Clause placeholder.

4 Proposed wording

? Concurrent Data Structures Library [concur.data]

1. The following subclauses describe components to create and manage concurrent data
structures, perform lock-free or lock-based concurrent execution, and synchronize
concurrent operations.

2. If a data structure is to be accessed from multiple threads, then the program must be
designed to ensure that any changes are correctly synchronized between threads.This
clause describes data structures that have such synchronization built in, and do not
require external locking.

?.1 Concurrent Data Structures Utilities [concur.util]

1. This component provides utilities for lock-free operations that can provide safe memory
access, safe memory reclamation, and ABA safety.

?.1.1 Concurrent Deferred Reclamation Utilities [concur.reclaim]

1. The following subclauses describe low-level utilities that enable the user to schedule
objects for destruction, while ensuring that they will not be destroyed until after all
concurrent accesses to them have completed. These utilities are summarized in Table 1.
These differ from ​shared_ptr​ in that they do not reclaim or retire their objects
automatically, rather it is under user control, and they do not rely on reference counting.

Table 1 - Concurrent Data Structure Deferred Reclamation Utilities Summary

 Subclause Header(s)

?.1.1.2 Hazard Pointers <hazptr>

?.1.1.3 Read-Copy-Update <rcu>

?.1.1.1 Concurrent Deferred Reclamation Utilities General [concur.reclaim.general]

Highly scalable algorithms often weaken mutual exclusion so as to allow readers to traverse
linked data structures concurrently with updates. Because updaters reclaim (e.g., destroy)
objects removed from a given structure, it is necessary to prevent objects from being reclaimed
while readers are accessing them: Failure to prevent such accesses constitute use-after-free
bugs. Hazard pointers and RCU are two techniques to prevent this class of bugs. Reference
counting (e.g., ​atomic_shared_pointer​) and garbage collection are two additional techniques.

? Hazard Pointers [hazptr]

1. A hazard pointer is a single-writer multi-reader pointer that can be owned by at most one
thread at any time. Only the owner of the hazard pointer can set its value, while any
number of threads may read its value. A thread that is about to access dynamic objects
optimistically acquires ownership of a set of hazard pointers (typically one or two for
linked data structures) that it will use to protect such objects from being reclaimed.

2. The owner thread sets the value of a hazard pointer to point to an object in order to
indicate to concurrent threads — that might remove such object — that the object is not
yet safe to reclaim.

3. The hazard pointers library allows the presence of multiple hazard pointer domains,
where the safe reclamation of objects in one domain does not require checking the
hazard pointers in different domains. It is possible for the same thread to participate in
multiple domains concurrently. A domain can be specific to one or more objects, or
encompass all shared objects.

4. Hazard pointers are not directly exposed by this interface. Operations on hazard pointers
are exposed through the ​hazptr_holder​ class template. Each instance of
hazptr_holder​ owns and operates on exactly one hazard pointer.

Header <hazptr> synopsis

namespace std {

namespace experimental {

// ?.1, Class hazptr_domain:

class hazptr_domain;

// ?.2, Default hazptr_domain:

hazptr_domain& default_hazptr_domain() noexcept;

// ?.3, Class template hazptr_obj_base:

template <typename T, typename D = std::default_delete<T>>

 class hazptr_obj_base;

// ?.4, class hazptr_holder: automatic acquisition and release of

// hazard pointers, and interface for hazard pointer operations:

class hazptr_holder;

// ?.5, hazptr_holder: Swap two hazptr_holder objects:

void swap(hazptr_holder&, hazptr_holder&) noexcept;

} // namespace experimental

} // namespace std

?.1 Class hazptr_domain [hazptr.domain]

1. A hazard pointer domain contains a set of hazard pointers. A domain is responsible for
reclaiming objects retired to it (i.e., objects retired to this domain by calls to
hazptr_obj_base::retire()​), when such objects are not protected by hazard pointers
that belong to this domain (including when this domain is destroyed).

2. The number of unreclaimed objects retired to a domain D is bounded by O(A * R * H),
where A is the maximum number of simultaneously-live threads that have constructed a
hazptr_holder with D as the first constructor argument, R is the maximum number of
simultaneously-live threads that have invoked hazptr_obj_base::retire() with D as the first
argument, and H is the maximum number of simultaneously-live hazptr_holder objects
that were constructed by a single thread with D as the first argument..

class hazptr_domain {

 public:

 // ?.1.1 constructor:

 constexpr explicit hazptr_domain(std::pmr::memory_resource* resource

 = std::pmr::get_default_resource());

 // disable copy and move constructors and assignment operators

 hazptr_domain(const hazptr_domain&) = delete;

 hazptr_domain(hazptr_domain&&) = delete;

 hazptr_domain& operator=(const hazptr_domain&) = delete;

 hazptr_domain& operator=(hazptr_domain&&) = delete;

 // ?.1.2 destructor:

 ~hazptr_domain();

 private:

 std::pmr::memory_resource* mr; // ​exposition only
};

?​.1.1 ​hazptr_domain​ constructors [hazptr.domain.constructor]
constexpr explicit hazptr_domain(

 std::memory_resource* resource = std::pmr::get_default_resource());

1. Requires: ​resource​ shall be the address of a valid memory resource.
2. Effects: Sets ​mr​ to ​resource​.
3. Throws: Nothing.
4. Remarks: All allocation and deallocation of hazard pointers in this domain will use ​*mr​.

*mr​ must not be destroyed before the destruction of this domain.

?.1.2 ​hazptr_domain​ destructor [hazptr.domain.destructor]
~hazptr_domain();

1. Requires: The destruction of all ​hazptr_holder​ objects constructed with this domain

and all ​retire()​ calls that take this domain as argument must happen before the
destruction of the domain.

2. Effects: Deallocates all hazard pointer storage used by this domain. Reclaims any
remaining objects that were retired to this domain.

3. Complexity: Linear in the number of objects retired to this domain that have not been
reclaimed yet and the number of hazard pointers contained in this domain.

?.2 Default ​hazptr_domain
[hazptr.default_domain]
hazptr_domain& default_hazptr_domain() noexcept;

1. Returns: A reference to the default ​hazptr_domain​.

?.3 Class template ​hazptr_obj_base​ [hazptr.base]
The base class template of objects to be protected by hazard pointers.

template <typename T, typename D = std::default_delete<T>>

class hazptr_obj_base {

 public:

 // retire

 void retire(

 D reclaim = {}, hazptr_domain& domain = default_hazptr_domain());

 void retire(

 hazptr_domain& domain);

};

1. hazptr_obj_base<T, D>*​ must be convertible to ​T*​. [​Note:​ Typically, ​T​ is derived from
hazptr_obj_base<T, D>​. — ​end note​]

2. A client-supplied template argument ​D​ shall be a function object type for which, given a
value ​d​ of type ​D​ and a value ​ptr​ of type ​T*​, the expression ​d(ptr)​ is valid and has the
effect of disposing of the pointer as appropriate for that deleter.

3. D​ shall satisfy the requirements of ​Destructible​.

 void retire(

D reclaim = {}, hazptr_domain& domain = default_hazptr_domain());

 void retire(

 hazptr_domain& domain);

1. Effects: Registers the expression ​reclaim(static_cast<T*>(this))​ to be evaluated

asynchronously. For every hazard pointer P in ​domain​, if P is set to ​this​ by the last
modification of P (in its modification order) that happens before the ​retire​ call, then the
evaluation of the expression will happen after a later modification of P that sets it to a
different value. The expression will only be evaluated once.

This function may also evaluate any number of expressions that were previously
registered by ​retire()​ calls with the same ​domain​ argument, subject to the restrictions
above.

?.4 class hazptr_holder [hazptr.holder]
 Every object of type hazptr_holder is either empty or ​owns​ exactly one hazard pointer.

class hazptr_holder {

 public:

 // ?.4.1, Constructors

 explicit hazptr_holder(hazptr_domain& domain = default_hazptr_domain());

 explicit hazptr_holder(nullptr_t) noexcept;

 hazptr_holder(hazptr_holder&&) noexcept;

 // disallow copy operations

 hazptr_holder(const hazptr_holder&) = delete;

 hazptr_holder& operator=(const hazptr_holder&) = delete;

 // ?.4.2, destructor

 ~hazptr_holder();

 // ?.4.3 assignment

 hazptr_holder& operator=(hazptr_holder&&) noexcept;

 // ?.4.4 operator

 explicit bool operator() const noexcept;

 // ?.4.5- get_protected

 template <typename T>

 T* get_protected(const atomic<T*>& src) noexcept;

 // ?.4.6 try_protect

 template <typename T>

 bool try_protect(T*& ptr, const atomic<T*>& src) noexcept;

 // ?.4.7 reset

 template <typename T>

 void reset(const T* ptr) noexcept;

 void reset(nullptr_t = nullptr) noexcept;

 // ?.4.8 swap

 void swap(hazptr_holder&) noexcept;

};

?.4.1 ​hazptr_holder​ constructors [hazptr.holder.constructors]
explicit hazptr_holder(hazptr_domain& domain = default_hazptr_domain());

1. Effects: Acquires ownership of a hazard pointer from ​domain​.
2. Throws: Any exception thrown by ​domain.mr->allocate()​.

explicit hazptr_holder(nullptr_t) noexcept;

1. Effects: Constructs an empty hazptr_holder.

hazptr_holder& hazptr_holder(hazptr_holder&& other) noexcept;

1. Effects: Constructs a hazptr_holder that owns the pointer originally owned by ​other​.

other​ becomes empty.

?.4.2 ​hazptr_holder​ destructor [hazptr.holder.destructor]
~hazptr_holder();

1. Effects: If the hazptr_holder is not empty, sets the owned hazard pointer to null and then
releases ownership of it.

?.4.3 hazptr_holder assignment [hazptr.holder.assignment]
hazptr_holder& operator=(hazptr_holder&& other) noexcept;

1. Effects: If *this != other, then *this takes ownership of the pointer originally owned by
other, and other becomes empty. Otherwise no effect.

2. Returns: ​*this.

?.4.4 hazptr_holder operator [hazptr.holder.operator]
explicit bool operator() const noexcept;

1. Returns: ​true​ if and only if hazptr_holder is not empty.
?.4.5 hazptr_holder get_protected [hazptr.holder.get_protected]
template <typename T>
 T* get_protected(const atomic<T*>& src) noexcept;

1. Requires: ​*this​ is not empty.
2. Effects: Equivalent to

T* ptr = src.load(memory_order_relaxed);

while (!try_protect(ptr, src)) {}

return ptr;
?.4.6 hazptr_holder try_protect [hazptr.holder.try_protect]
template <typename T>
 bool try_protect(T*& ptr, const atomic<T*>& src) noexcept;

1. Requires: ​*this​ is not empty.
2. Effects: Retrieves the value in ​ptr​. It sets the owned hazard pointer to that value. It

compares the contents of ​src​ for equality with the value retrieved from ​ptr​. If and only if
the comparison is false, the contents of ​ptr​ are replaced by the value read from ​src
during the comparison and the owned hazard pointer is set to null. If and only if the
comparison is true, performs an acquire operation on ​src​.

3. Returns: The result of the comparison.
4. Complexity: Constant.

?.4.7 hazptr_holder reset [hazptr.holder.reset]
template <typename T>
void reset(const T* ptr) noexcept;

1. Requires: ​*this​ is not empty.
2. Effects: Sets the value of the owned hazard pointer to ​ptr​.

void reset(nullptr_t = nullptr) noexcept;

1. Requires: ​*this​ is not empty.
2. Effects: Sets the value of the owned hazard pointer to ​nullptr​.

?.4.8 hazptr_holder swap[hazptr.holder.swap]

void swap(hazptr_holder& other) noexcept;

1. Effects: Swaps the owned hazard pointer and the domain of this object with those of the

other object. [​Note:​ The owned hazard pointers, if any, remain unchanged during the
swap and continue to protect the respective objects that they were protecting before the
swap, if any. — ​end note​]

2. Complexity: Constant.

?.5 hazptr_holder Swap hazptr_holder [hazptr.swap_owners]
void swap(hazptr_holder& a, hazptr_holder& b) noexcept;

1. Effects: Equivalent to ​a.swap(b)​.

?.1.1.3 Read-Copy Update (RCU) [rcu]

1. RCU read-side critical sections are designated using an RAII class ​std::rcu_reader​.
2. RCU-protected data structures use an intrusive scheme via the ​std::rcu_obj_base

class.
3. The ​std::rcu_obj_base::retire​ member function invokes the specified deleter after

all pre-existing ​std::rcu_reader​ instances have been destructed.
4. In the typical use case where a call to ​std::rcu_obj_base::retire​ is placed after an

object is made inaccessible to readers, any object accessed within an RCU read-side
critical section is guaranteed not be be reclaimed until that critical section completes.
This in turn ensures that code within a critical section is ABA-safe . Objects that were
removed prior to the beginning of the oldest RCU read-side critical section may be
reclaimed and reused.

5. RCU protects all data that might be accessed within an RCU read-side critical section
instead of protecting specific individual objects.

6. We anticipate that the constructor of ​std::thread​ will register each new thread with the
RCU runtime, and that the destructor of ​std::thread​ will unregister the thread.

Header <rcu> synopsis

namespace std {

namespace experimental {

// ?.2, class template rcu_obj_base

template<typename T, typename D = default_delete<T>>

 class rcu_obj_base {

public:

 // ?.2.1, rcu_obj_base: Retire a removed object and pass the responsibility

 // for reclaiming it to the RCU library:

 void retire(

 D d = {});

};

// ?.2.2, class rcu_reader: RCU reader as RAII

 class rcu_reader {

public:

 rcu_reader() noexcept;

 rcu_reader(std::defer_lock_t) noexcept;

 rcu_reader(const rcu_reader &) = delete;

 rcu_reader(rcu_reader &&other) noexcept;

 rcu_reader&operator=(const rcu_guard &) = delete;

 rcu_reader& operator=(rcu_reader&& other) noexcept;

 ~rcu_reader() noexcept;

 static void rcu_barrier() noexcept;

 void swap(rcu_reader& other) noexcept;

 void lock() noexcept;

 void unlock() noexcept;

};

void swap(rcu_reader& a, rcu_reader& b) noexcept;

// ?.2.3 class rcu_updater

 class rcu_updater {

public:

 static void synchronize() noexcept;

 static void barrier() noexcept;

};

template<typename T, typename D = default_delete<T>>

Void retire(T* p, D d = {});

} // namespace experimental

} // namespace std

?.2.1, class template rcu_obj_base [rcu.rcu_obj_base]

Objects of type ​T​ to be protected by RCU inherit from ​rcu_obj_base<T>​. Note that
rcu_obj_base<T>​ has no non-default constructors or destructors.

template<typename T, typename D = default_delete<T>>

 class rcu_obj_base {

public:

 // ?.2.1, rcu_obj_base: Retire a removed object and pass the responsibility

 // for reclaiming it to the RCU library:

 void retire(

 D d = {});

};

?.2.1.1, rcu_obj_base retire [rcu.rcu_obj_base.retire]
 void retire(

 D d = {});

1. Requires: This object is no longer reachable by new RCU readers, that is, it has been
removed from whatever reader-accessible linked data structure previously contained it,
and that removal happens-before the ​std::rcu_obj_base::retire​ invocation.

2. Effects: Posts the deleter for invocation; the deleter will be invoked once all currently
active RCU read-side critical sections have completed. The deleter will be invoked in the
context of some implementation-specified thread of execution. [Note: This is not
required to be the thread of execution that invoked the corresponding ​retire​.] A pair of
deleters might be executed concurrently, even if one of the corresponding ​retire
functions happens-before the other.

3. Complexity: Constant.
4. Postconditions: Upon return, the callback function for the specified deleter has been

posted for later invocation. At the time that deleter is invoked, pre-existing RCU
read-side critical sections have completed.

5. Return: None.
6. Synchronization: Implementations may use heavy-weight synchronization mechanisms.

?.2.2, class template rcu_reader [rcu.rcu_reader]

This class template provides RAII RCU readers.

// ?.2.2, class template rcu_readers

class rcu_reader {

public:

 // ?.2.1, rcu_reader: RAII RCU readers

 rcu_reader() noexcept;

 rcu_reader(std::nullptr_t) noexcept;

 rcu_reader(const rcu_reader &) = delete;

 rcu_reader(rcu_reader &&other) noexcept;

 rcu_reader& operator=(const rcu_reader&) = delete;

 rcu_reader& operator=(rcu_reader&& other) noexcept;

 ~rcu_reader() noexcept;

 static void barrier() noexcept;

};

?.2.2.1, class template rcu_reader constructors [rcu.rcu_reader.constructors]

 ​rcu_reader() noexcept;

1. Requires: There may be implementation restrictions on nesting depth. If present, such
restrictions must allow at least 100 levels of nesting.

2. Effects: Enters an RCU read-side critical section, which is exited when the current scope
ends.

3. Complexity: QOI issue, but complexity should be constant in the common case.
4. Postconditions: Prevents any subsequent ​retire​ invocations from invoking their

deleters until the current scope ends.
5. Return: None. [Note: Underlying RCU implementations in which some value must be

transferred from critical-section entry to critical-section exit should stash this value in a
private member of this class.]

6. Synchronization: QOI issue. High-quality implementations will make common-case use
of neither locking, read-modify-write atomic operations, nor memory accesses incurring
cache misses.

 rcu_reader(std::nullptr_t) noexcept​;

1. Requires: None.
2. Effects: Creates an empty ​rcu_reader​.
3. Complexity: Constant.
4. Postconditions: None.
5. Return: None.
6. Synchronization: None.

 rcu_reader(rcu_reader &&other) noexcept;

1. Requires: None.
2. Effects: Creates an rcu_reader that is associated with the RCU read-side critical section

that was associated with ​other​. If ​this​ was already associated with an RCU read-side
critical section, that critical section ends as described in the destructor. The ​rcu_reader
other​ becomes empty.

3. Complexity: QOI issue, but complexity should be constant in the common case.
4. Postconditions: The RCU read-side critical section associated with ​this​ no longer

prevents deleter invocation.
5. Return: None.
6. Synchronization: None.

?.2.2.2, class template rcu_reader assignment [rcu.rcu_reader.assignment]

 rcu_reader& operator=(rcu_reader&& other) noexcept;

1. Requires: None
2. Effects: If ​this​ is non-empty, the corresponding RCU read-side critical section ends as

described in the destructor.
Otherwise, if ​other​ is empty, no effect.
Otherwise, ​this​ become active and holds the RCU read-side critical section
corresponding to ​other​, and ​other​ becomes empty.

3. Complexity: QOI issue, but complexity should be constant.
4. Postconditions: None.
5. Return: None.
6. Synchronization: None.

?.2.2.3, class template rcu_reader destructor [rcu.rcu_reader.destructor]

 ~rcu_reader() noexcept;

1. Requires: None
2. Effects: If ​this​ is empty, none.

Otherwise, ​this​ is non-empty, and exits the corresponding RCU read-side critical
section. If an operation ​A​ happens before this destruction and if ​A​ is in turn
coherence-ordered before any operation ​B​ that happens before a given
std::rcu_obj_base::retire​ operation, and if the invocation of the corresponding
deleter​ happens before an operation ​C​, then any operation ​D​ that happens before this
destruction also happens before ​C​. [Note: This is considerably weaker than the actual
guarantee.]
Similarly, if an invocation of some ​std::rcu_obj_base::retire​’s deleter happens
before an operation ​F​ and if either ​F​ is coherence-ordered before an operation ​G​ such
that the construction that initiated this RCU read-side critical section happens-before ​G​,
then any operation ​H​ that happens-before that ​std::rcu_obj_base::retire​ also
happens-before any operation ​I​ such that the construction that initiated this RCU
read-side critical section happens-before ​I​. [Note: This is considerably weaker than the
actual guarantee.]

3. Complexity: QOI issue, but complexity should be constant in the common case.
4. Postconditions: None.
5. Return: None.
6. Synchronization: QOI issue. High-quality implementations will make common-case use

of neither locking, read-modify-write atomic operations, nor memory accesses incurring
cache misses.

?.2.2.4, class template rcu_reader swap [rcu.rcu_reader.swap]

 void swap(rcu_reader& other) noexcept;

1. Requires: None
2. Effects: Swaps ​this​ and ​other​ thus swapping their RCU read-side critical section

states.
3. Complexity: Constant.
4. Postconditions: None.
5. Return: None.
6. Synchronization: None.

 void swap(rcu_reader& a, rcu_reader& b) noexcept; // free function

1. Requires: None
2. Effects: Swaps ​a​ and ​b​ thus swapping their RCU read-side critical section states.
3. Complexity: Constant.
4. Postconditions: None.
5. Return: None.
6. Synchronization: None.

?.2.2.5, class template rcu_reader lock/unlock [rcu.rcu_reader.lock]

 void lock() noexcept;

1. Requires: Inactive ​this​. There may be implementation restrictions on nesting depth. If

present, such restrictions must allow at least 100 levels of nesting.
2. Effects: Enters an RCU read-side critical section, which is exited when the current scope

ends.
3. Complexity: QOI issue, but complexity should be constant in the common case.
4. Postconditions: Prevents any subsequent ​retire​ invocations from invoking their

deleters until the current scope ends.
5. Return: None. [Note: Underlying RCU implementations in which some value must be

transferred from critical-section entry to critical-section exit should stash this value in a
private member of this class.]

6. Synchronization: QOI issue. High-quality implementations will make common-case use
of neither locking, read-modify-write atomic operations, nor memory accesses incurring
cache misses.

void unlock() noexcept;

1. Requires: Active ​this​.

2. Effects: Exits the corresponding RCU read-side critical section. If an operation ​A
happens before this destruction and if ​A​ is in turn coherence-ordered before any
operation ​B​ that happens before a given ​std::rcu_obj_base::retire​ operation, and if
the invocation of the corresponding ​deleter​ happens before an operation ​C​, then any
operation ​D​ that happens before this destruction also happens before ​C​. [Note: This is
considerably weaker than the actual guarantee.]
Similarly, if an invocation of some ​std::rcu_obj_base::retire​’s deleter happens
before an operation ​F​ and if either ​F​ is coherence-ordered before an operation ​G​ such
that the construction that initiated this RCU read-side critical section happens-before ​G​,
then any operation ​H​ that happens-before that ​std::rcu_obj_base::retire​ also
happens-before any operation ​I​ such that the construction that initiated this RCU
read-side critical section happens-before ​I​. [Note: This is considerably weaker than the
actual guarantee.]

3. Complexity: QOI issue, but complexity should be constant in the common case.
4. Postconditions: None.
5. Return: None.
6. Synchronization: QOI issue. High-quality implementations will make common-case use

of neither locking, read-modify-write atomic operations, nor memory accesses incurring
cache misses.

?.2.3, class template rcu_updater [rcu.rcu_updater]

This class template provides RAII RCU readers.

 class rcu_updater {

public:

 static void synchronize() noexcept;

 static void barrier() noexcept;

};

?.2.3.1, class template rcu_updater synchronize [rcu.rcu_updater.synchronize]

 static void synchronize() noexcept;

1. Requires: None.
2. Effects: If the beginning of a given RCU read-side critical section happens-before

operation ​A​ and if ​A​ is in turn coherence-ordered before any operation ​B​ that happens
before this ​synchronize​ operation, and if this ​synchronize​ happens before an
operation ​C​, then any operation ​D​ that happens before the end of this RCU read-side
critical section also happens before ​C​. [Note: This is considerably weaker than the
actual guarantee.]
Similarly, if this ​synchronize​ happens before an operation ​F​ and if ​F​ is
coherence-ordered before an operation ​G​ that happens-before the end of a second RCU

read-side critical section, then any operation ​H​ that happens-before this ​synchronize
also happens-before any operation ​I​ such that the beginning of this same second RCU
read-side critical section happens before ​I​. [Note: This is considerably weaker than the
actual guarantee.]

3. Complexity: Blocking, can have significant latency.
4. Postconditions: All pre-existing RCU read-side critical sections have completed.
5. Return: None.
6. Synchronization: Implementations may use heavyweight blocking synchronization

mechanisms.

?.2.3.2, class template rcu_updater barrier [rcu.rcu_updater.barrier]

 static void barrier() noexcept;

1. Requires: None.
2. Effects: For each invocation of ​std::rcu_obj_base::retire​ that happens-before

barrier, any operation ​A​ that is part of that ​std::rcu_obj_base::retire​ invocation’s
deleter​ happens before any operation ​B​ such that ​barrier​ happens-before ​B​.

3. Complexity: Blocking, can have significant latency.
4. Postconditions: All pre-existing ​std::rcu_obj_base::retire​ operation’s ​deleter

invocations have completed.
5. Return: None.
6. Synchronization: Implementations may use heavyweight blocking synchronization

mechanisms.

?.2.4, function template rcu_retire [rcu.rcu_retire]

template<typename T, typename D = default_delete<T>>

void rcu_retire(T* p, D d = {});

1. Requires: This object is no longer reachable by new RCU readers, that is, it has been
removed from whatever reader-accessible linked data structure previously contained it,
and that removal happens-before the ​std::retire​ invocation.

2. Effects: Posts the deleter for invocation; the deleter will be invoked once all currently
active RCU read-side critical sections have completed. The deleter will be invoked in the
context of some implementation-specified thread of execution. [Note: This is not
required to be the thread of execution that invoked the corresponding ​retire​.] A pair of
deleters might be executed concurrently, even if one of the corresponding ​retire
functions happens-before the other.

3. Complexity: Constant.
4. Postconditions: Upon return, the callback function for the specified deleter has been

posted for later invocation. At the time that the deleter is invoked, pre-existing RCU
read-side critical sections have completed.

5. Return: None.
6. Synchronization: Implementations may use heavy-weight synchronization mechanisms.

6 References
Hazptr implementation:
https://github.com/facebook/folly/blob/master/folly/experimental/hazptr/hazptr.h

RCU implementation: ​https://github.com/paulmckrcu/RCUCPPbindings​ (See Test/paulmck)

[N4618] ​http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4618.pdf

[P0233] Hazard Pointers: Safe Resource Reclamation for Optimistic Concurrency
 ​http://wg21.link/P0233

[P0461] Proposed RCU C++ API http://wg21.link/P0461

https://github.com/paulmckrcu/RCUCPPbindings
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4618.pdf
http://wg21.link/P0233
https://github.com/facebook/folly/blob/master/folly/experimental/hazptr/hazptr.h

