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Revisions and History 
This document supersedes N4134. Changes relative to N4134 includes renaming resumable_traits and 

resumable_handle to coroutine_traits and coroutine_handle, adding a section describing a way to 

override default coroutine_traits selection, adjustment to coroutine_traits to support stateful allocators 

and altering Coroutine Promise concept requirements to allow omitting set_exception from the promise 

if stopping exception from propagating into a caller is not needed for a particular coroutine type. 
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Terms and Definitions 

Coroutine 
A generalized routine that in addition to traditional subroutine operations such as invoke and return 

supports suspend and resume operations.  

Coroutine State / Coroutine Frame 
A state that is created when coroutine is first invoked and destroyed once coroutine execution 

completes. Coroutine state includes a coroutine promise, formal parameters, variables and temporaries 

with automatic storage duration declared in the coroutine body and an implementation defined 

platform context. A platform context may contain room to save and restore platform specific data as 

needed to implement suspend and resume operations. 

Coroutine Promise 
A coroutine promise contains library specific data required for implementation of a higher-level 

abstraction exposed by a coroutine. For example, a coroutine implementing a task-like semantics 

providing an eventual value via std::future<T> is likely to have a coroutine promise that contains 

std::promise<T>. A coroutine implementing a generator may have a promise that stores a current value 

to be yielded and a state of the generator (active/cancelling/closed). 

Coroutine Object / Coroutine Handle / Return Object of the Coroutine 
An object returned from an initial invocation of a coroutine. A library developer defines the higher-level 

semantics exposed by the coroutine object. For example, generator coroutines can provide an input 

iterator that allows to consume values produced by the generator. For task-like coroutines, coroutine 

object can be used to obtain an eventual value (future<T>, for example).  

Generator 
A coroutine that provides a sequence of values. The body of the generator coroutine uses a yield 

statement to specify a value to be passed to the consumer. Emitting a value suspends the coroutine, 

invoking a pull operation on a channel resumes the coroutine.  

Stackless Coroutine 
A stackless coroutine is a coroutine which state includes variables and temporaries with automatic 

storage duration in the body of the coroutine and does not include the call stack.  

Stackful Coroutine / Fiber / User-Mode thread 
A stackful coroutine state includes the full call stack associated with its execution enabling suspension 

from nested stack frames. Stackful coroutines are equivalent to fibers or user-mode threads. 

Split Stack / Linked Stack / Segmented Stack 
A compiler / linker technology that enables non-contiguous stacks.  

Resumable Function 
Proposed C++ language mechanism to implement stackless coroutines. 
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Discussion 
Motivation for extending C++ language and libraries to support coroutines was covered by papers N3858 

(resumable functions) and N3985 (A proposal to add coroutines to C++ standard library) and will not be 

repeated here. 

Design goals for this revision of resumable functions were to extend C++ language and standard library 

to support coroutines with the following characteristics: 

 Highly scalable (to billions of concurrent coroutines). 

 Highly efficient resume and suspend operations comparable in cost to a function call overhead. 

 Seamless interaction with existing facilities with no overhead. 

 Open ended coroutine machinery allowing library designers to develop coroutine libraries 

exposing various high-level semantics, such as generators, goroutines, tasks and more. 

 Usable in environments where exception are forbidden or not available  

Unlike N3985 (A proposal to add coroutine to the C++ standard library), which proposes certain high-

level abstractions (coroutine-based input / output iterators), this paper focuses only on providing 

efficient language supported mechanism to suspend and resume a coroutine and leaves high-level 

semantics of what coroutines are to the discretion of a library developer and thus is comparable to 

Boost.Context rather than Boost.Coroutine / N3985. 

Stackless vs Stackful 
Design goals of scalability and seamless interaction with existing facilities without overhead (namely 

calling into existing libraries and OS APIs without restrictions) necessitates stackless coroutines. 

General purpose stackful coroutines that reserve default stack for every coroutine (1MB on Windows, 

2MB on Linux) will exhaust all available virtual memory in 32-bit address space with only a few thousand 

coroutines. Besides consuming virtual memory, stackful coroutines lead to memory fragmentation, since 

with common stack implementations, besides reserving virtual memory, the platform also commits first 

two pages of the stack (one as a read/write access to be used as a stack, another to act as a guard page 

to implement automatic stack growth), even though the actual state required by a coroutine could be as 

small as a few bytes. 

A mitigation approach such as using split-stacks requires the entire program (including all the libraries 

and OS facilities it calls) to be either compiled with split-stacks or to incur run-time penalties when 

invoking code that is not compiled with split-stack support. 

A mitigation approach such as using a small fixed sized stack limits what can be called from such 

coroutines as it must be guaranteed that none of the functions called shall ever consume more memory 

than allotted in a small fixed sized stack. 

Implementation Experience 
We implemented language changes described in this paper in Microsoft C++ compiler to gain experience 

and validate coroutine customization machinery. The following are illustrations of what library designers 

can achieve using coroutine mechanism described in this paper.  

Note the usage of proposed, await operator, yield and await-for statements. 
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Asynchronous I/O  
The following code implements zero-overhead abstractions over asynchronous socket API and windows 

threadpool.  

std::future<void> tcp_reader(int total) 
{ 
 char buf[64 * 1024]; 
 auto conn = await Tcp::Connect("127.0.0.1", 1337); 
 do 
 { 
  auto bytesRead = await conn.read(buf, sizeof(buf)); 
  total -= bytesRead; 
 } 
 while (total > 0); 
} 
 
int main() { tcp_reader(1000 * 1000 * 1000).get(); } 

 

Execution of this program incurs only one memory allocation12 and no virtual function calls. The 

generated code is as good as or better than what could be written in C over raw OS facilities. The better 

part is due to the fact that OVERLAPPED structures (used in the implementation of Tcp::Connect and 

conn.read) are temporary objects on the frame of the coroutine whereas in traditional asynchronous C 

programs OVERLAPPED structures are dynamically allocated for every I/O operation (or for every 

distinct kind of I/O operation) on the heap. 

Allocation of a future shared state (N3936/[futures.state]) associated with the future is combined with 

coroutine frame allocation and does not incur an extra allocation.  

Generator 
Another coroutine type was implemented to validate the generator pattern and a coroutine cancellation 

mechanics: 

generator<int> fib(int n) 
{ 
 int a = 0; 
 int b = 1; 
 while (n-- > 0) 
 { 
  yield a; 
  auto next = a + b; 
  a = b; 
  b = next; 
 } 
} 
 
int main() 
{ 
 for (auto v : fib(35)) { 
  std::cout << v << std::endl; 
  if (v > 10) 

                                                           
1 Allocation of the frame of a resumable function 
2 not counting memory allocations incurred by OS facilities to perform an I/O 
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   break; 
 } 
} 

Recursive application of generators allows to mitigate stackless coroutine inability to suspend from 

nested stack frames. This example is probably the most convoluted way to print number in range 

[1..100). 

recursive_generator<int> range(int a, int b) 
{ 
 auto n = b - a; 
 
 if (n <= 0) 
  return; 
 
 if (n == 1) 
 { 
  yield a; 
  return; 
 } 
 
 auto mid = a + n / 2; 
 
 yield range(a, mid); 
 yield range(mid, b); 
} 
 
int main() { 
 for (auto v : range(1, 100)) 
  std::cout << v << std::endl; 
} 

Parent-stealing parallel computations 
It is possible to adopt coroutine mechanics to support parallel scheduling techniques such as parent 

stealing [N3872].  

spawnable<int> fib(int n) { 
 if (n < 2) return n; 
 return await(fib(n - 1) + fib(n - 2)); 
} 
 
int main() { std::cout << fib(5).get() << std::endl; } 

 

In this example operator+ is overloaded for spawnable<T> type. Operator + schedules fib(n – 2) to a 

work queue whereas the execution continues into fib(n-1). When eventual values for both fib(n-1) and 

fib(n-2) are ready, fib(n) is resumed and result of await expression is computed as the sum of the 

eventual value of the left and right operand to + operator.  

Utilizing parent-stealing scheduling allows to compute fib(42) in less than 12k of space, whereas 

attempting to use more traditional scheduling will cause state explosion that will consume more than 

2gig of memory around fib(32). 
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Note, there are much better3 ways to compute Fibonacci numbers.  

Go-like channels and goroutines 
The following example (inspired by programming language go [GoLang]) creates one million goroutines, 

connects them to each other using channels and passes a value that will travel through all the 

coroutines. 

goroutine pusher(channel<int>& left, channel<int>& right) 
{ 
 for (;;) { 
  auto val = await left.pull(); 
  await right.push(val + 1); 
 } 
} 
 
int main() 
{ 
 static const int N = 1000 * 1000; 
 std::vector<channel<int>> c(N + 1); 
 
 for (int i = 0; i < N; ++i) 
  goroutine::go(pusher(c[i], c[i + 1])); 
 
 c.front().sync_push(0); 
 
 std::cout << c.back().sync_pull() << std::endl; 
} 
 

Reactive Streams 
Resumable functions can be used as producers, consumers and transformers of reactive streams in 

recently rediscovered [Rx, ReactiveX, RxAtNetflix] functional reactive programming [FRP]. 

As a consumer (utilizing await-for statement proposed by this paper):  

future<int> Sum(async_read_stream<int> & input) 
{ 
 int sum = 0;  
 for await (v : input)  

{ 
sum += v; 

} 
 return sum;  
} 

 

As a producer: 

async_generator<int> Ticks()  
{ 
 for(int tick = 0;; ++tick)  

{ 
  yield tick; 

await sleep_for(1ms);  

                                                           
3 In constant space with only log n iterations 
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} 
} 

As a transformer: (adds a timestamp to every observed value) 

template<class T>  
async_generator<pair<T, system_clock::time_point>>  
Timestamp(async_read_stream<T> S)  
{ 
 for await(v: S) yield {v, system_clock::now()}; 
} 

 

Resumable lambdas as generator expressions 
Resumable lambdas can be used as generator expressions [PythonGeneratorExpressions]. 

     squares = (x*x for x in S) // python 

auto squares = [&]{ for(x:S) yield x*x;} ; // C++ 

In this case squares is a lazy transformer of sequence S and similar in that respect to boost range 

adapters [BoostRangeAdapter]. 

 Conceptual Model 

Resumable Function 
A function or a lambda is called resumable function or resumable lambda if a body of the function or 

lambda contains at least one suspend/resume point. Suspend/resume points are expressions with one 

or more await operators, yield statements or await-for statements. From this point on, we will use the 

term resumable function to refer to either resumable lambda or resumable function. 

Suspend/resume points indicate the location where execution of the resumable function can be 

suspended and control returned to the current caller with an ability to resume execution at 

suspend/resume point later. 

N3936/[intro.execution]/7 defines that suspension of a block preserves the automatic variables in a case 

of a function call or receipt of a signal. We propose to extend that language to coroutine suspension as 

well. 

From the perspective of the caller, resumable function is just a normal function with that particular 

signature. The fact that a function is implemented as resumable function is unobservable by the caller. 

In fact, v1 version of some library can ship an implementation of some functions as resumable and 

switch it later to regular functions or vice versa without breaking any library user. 

Design Note: Original design relied on resumable keyword to annotate resumable functions or lambdas. 

This proposal does away with resumable keyword relying on the presence of suspend/resume points. 

There were several motivations for this change. 

1. It eliminates questions such as: Is resumable a part of signature or not? Does it change a calling 

conventions? Should it be specified only on a function definition?  
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2. It eliminates compilation errors due to the absence of resumable keyword that were in the category: 

“A compiler knows exactly what you mean, but won’t accept the code until you type ‘resumable’.” 

3. Usability experience with the resumable functions implemented in C++ compiler by the authors. Initial 

implementation had resumable keyword and writing code felt unnecessarily verbose with having to type 

resumable in the declarations and definitions of functions or lambda expressions. 

Coroutine traits 
Coroutine traits are specialized by resumable functions to select an allocator and a coroutine promise to 

use in a particular resumable function. 

If the signature of a resumable function is  

 R func(T1, T2, … Tn) 

then, a traits specialization std::coroutine_traits<R,T1,T2,…,Tn> will indicate what allocator and what 

coroutine promise to use. 

For example, for coroutines returning future<R>, the following trait specialization can be provided. 

 template <typename R, typename... Ts> 
 struct coroutine_traits<std::future<R>, Ts...> 
 { 
   template <typename... Us> static auto get_allocator(Us&&...); 
  using promise_type = some-type-satisfying-coroutine-promise-requirements; 
 }; 
 

get_allocator should return an object satisfying allocator requirements 

N3936/[allocator.requirements]. If get_allocator is not specified, a resumable function will defaults to 

using std::allocator<char>. get_allocator can examine the parameters and decide if there is a stateful 

allocator passed to a function and use it, otherwise, it can ignore the parameters and return a stateless 

allocator. 

promise_type should satisfy requirements specified in “Coroutine Promise Requirements”. If 

promise_type is not specified it is assumed to be as if defined as follows: 
      using promise_type = typename R::promise_type;  

C++ standard library defines the coroutine traits as follows: 

 template <typename R, typename... Ts> 
 struct coroutine_traits 
 { 

template <typename... Us> 
  static auto get_allocator(Us&&...) { return std::allocator<char>{}; } 
  using promise_type = typename R::promise_type; 
 }; 

Design note: Another design option is to use only the return type in specializing the coroutine traits. The 

intention for including parameter types is to enable using parameters to alter allocation strategies or 

other implementation details while retaining the same coroutine return type.  
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Allocation and parameter copy optimizations 
An invocation of a coroutine may incur an extra copy or move operation for the formal parameters if 

they need to be transferred from an ABI prescribed location into a memory allocated for the coroutine 

frame. 

A parameter copy is not required if a coroutine never suspends or if it suspends but its parameters will 

not be accessed after the coroutine is resumed.  

If a parameter copy/move is required, class object moves are performed according to the rules 

described in Copying and moving class objects section of the working draft standard 3936/[class.copy]. 

An implementation is allowed to elide calls to the allocator’s allocate and deallocate functions and use 

stack memory of the caller instead if the meaning of the program will be unchanged except for the 

execution of the allocate and deallocate functions.  

auto / decltype(auto) return type 
If a function return type is auto or declspec(auto) and no trailing return type is specified, then the return 

type of the resumable function is deduced as follows: 

1. If a yield statement and either an await expression or an await-for statement are present, then 

the return type is default-async-generator<T,R>, where T is deduced from the yield statements 

and R is deduced from return statements according to the rules of return type deduction 

described in N3936/[dcl.spec.auto]. 

2. Otherwise, if an await expression or an await-for statement are present in a function, then 

return type is default-standard-task-type<T> where type T is deduced from return statements as 

described in N3936/[dcl.spec.auto].  

3. Otherwise, If a yield statement is present in a function, then return type is default-generator-

type<T>, where T is deduced from the yield statements according to the rules of return type 

deduction described in N3936/[dcl.spec.auto].  

At the moment we do not have a proposal for what default-standard-task-type, default-generator-type 

or default-async-generator should be. We envision that once resumable functions are available as a 

language feature, C++ community will come up with ingenious libraries utilizing that feature and some 

of them will get standardized and become default-generator-type, default-task-type and default-async-

generator types. Appendix A, provides a sample implementation of generator<T>. 

Until that time, an attempt to define resumable functions with auto / decltype(auto) and no trailing 

return type should result in a diagnostic message. 

C++ does not need generator expressions… it already has them! 
Assuming that we have a standard generator type that can be deduced as described before, the 

Python’s generator expression can be trivially written in C++: 

     squares = (x*x for x in s) // python 

auto squares = [&]{ for(x:s) yield x*x;} ; // C++ 
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Coroutine promise Requirements 
A library developer supplies the definition of the coroutine promise to implement desired high-level 

semantics associated with a coroutine type. The following tables describe the requirements on 

coroutine promise types.  

Table 1: Descriptive Variable definitions 

Variable Definition 

P Coroutine promise type 

P A value of type P 

E A value of std::exception_ptr type 

Rh A value of type std::coroutine_handle<P> 

T An arbitrary type T 

V A value of type T 

 

Table 2: Coroutine Promise Requirements 

Expression Note 

P{} Constructs a promise type.  
 

p.get_return_object(rh) get_return_object is invoked by the coroutine to construct the 
return object prior to the first suspend operation. 
 
get_return_object receives a value std::coroutine_handle<Promise> 
as the first parameter. 
 
An object of std::coroutine_handle<Promise> type can be used to 
resume the coroutine or get access to its promise. 
 

p.set_result(v) Sets the value associated with the promise. set_result is invoked by 
a resumable function when return <expr> ; statement is 
encountered in a resumable function. 
 
If p.set_result(v) member function is not present, coroutine does 
not support eventual return value and presence of return <expr> 
statement in the body is a compile time error.   
 

p.set_result() set_result() is invoked by the resumable function when return; 
statement is encountered or the control reaches the end of the 
resumable function. 
 
If set_result() is not present, it is assumed that the function 
supports eventual value and diagnostic should be given if return 
<expr> is not present in the body of the resumable function 
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If both set_result() and set_result(v) are present in a promise type, 
the type does not satisfy coroutine promise requirement and a 
diagnostic message should be given to the user. 

p.set_exception(e) set_exception is invoked by a resumable function when an 
unhandled exception occurs within a body of the resumable 
function. 
 
If promise does not provide set_exception, unhandled exceptions 
will propagate from a resumable functions normally. 

p.yield_value(v) returns: awaitable expression 
 
yield_value is invoked when yield statement is evaluated in the 
resumable function.  
 
If yield_value member function is not present, using yield statement 
in the body of the resumable function results in a compile time 
error. 
 
yield <expr>; is equivalent to 
    (void)( await <Promise>.yield_value(<expr>) ); 
 
Where a <Promise> refers to the coroutine promise of the enclosing 
resumable function. 
 

initial_suspend() Returns: awaitable expression 
 
A resumable function awaits on a value returned by the 
initial_suspend() member function immediately before user 
provided body of the resumable function is entered. 
 
This member function gives a library designer an option to suspend 
a coroutine after the coroutine frame is allocated, parameters are 
copied and return object is obtained, but before entering the user-
provided body of the coroutine. 
 
For example, in a generator scenario, a library designer can choose 
to suspend a generator prior to invoking user provided body of the 
coroutine and to resume it once the user of the generator tries to 
pull the first value. 
  

final_suspend() Returns: nothrow awaitable expression 
Throws: nothing 
 
Resumable function awaits on a value returned by final_suspend() 
immediately after the user provided body of the resumable function 
i.e. point prior to the destruction and deallocation of a coroutine 
frame. 
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This allows library designer to store the eventual value of the task, 
or the current value of the generator within the coroutine promise. 
 
Once the eventual value or last value is consumed, coroutine can be 
resumed to free up resources associated with it. 
 

cancellation_requested() Returns: bool to indicate whether coroutine is being cancelled 
 
cancellation_requested() is evaluated on resume code path. If it 
evaluates to true, control is transferred to the point immediately 
prior to compiler synthesized await promise-expr.final_suspend(), 
otherwise control is transferred to the current resume point. 
 
All of the objects with non-trivial destructors, will be destroyed in 
the same manner as if “goto end-label” statement was executed 
immediately after the resume point. 
 
(Assuming that “goto” was allowed to be used within an expression) 

 

Bikeshed: on_complete, on_error, on_next as a replacement for set_result, set_exception and 

yield_value, set_error as a replacement for set_exception. 

Resumption function object 
A resumable function has the ability to suspend evaluation by means of await operator or yield and 

await-for statements in its body. Evaluation may later be resumed at the suspend/resume point by 

invoking a resumption function object.  

A resumption function object is defined by C++ standard library as follows: 

 template <typename Promise = void> 
 struct coroutine_handle; 
 
 template <> struct coroutine_handle<void> 
 { 
  void operator() (); 
  static coroutine_handle<void> from_address(void*); 
  void * to_address() ; 
 
              explicit operator bool() const; 
 
              coroutine_handle() = default; 
              explicit coroutine_handle(std::nullptr_t); 
              coroutine_handle& operator = (nullptr_t);  
 }; 
 
 template <typename Promise> 
 struct coroutine_handle: public coroutine_handle<> 
 { 
  Promise & promise(); 
  Promise const & promise() const; 
  static coroutine_handle<Promise> from_promise(Promise*); 
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              using coroutine_handle<>::coroutine_handle; 
              coroutine_handle& operator = (nullptr_t); 
 }; 
 
 
       template <typename Promise> 
 bool operator == (coroutine_handle<Promise> const& a,  
                         coroutine_handle<Promise> const& b); 
 
 template <typename Promise> 
 bool operator != (coroutine_handle<Promise> const& a,  
                         coroutine_handle<Promise> const& b) 

 

Note, that by design, a resumption function object can be “round tripped” to void * and back. This 

property allows seamless interactions of resumable functions with existing C APIs4. 

Resumption function object has two forms. One that provides an ability to resume evaluation of a 

resumable function and another, which additionally allows access to the coroutine promise of a 

particular resumable function. 

Bikeshed: resumption_handle, resumption_object, resumable_ptr, basic_coroutine_handle instead of 

coroutine_handle<void>, from_raw_address, to_raw_address, from_pvoid, to_pvoid. 

await operator 
is a unary operator expression of the form: await cast-expression 

1. The await operator shall not be invoked in a catch block of a try-statement5 

2. The result of await is of type T, where T is the return type of the await_resume function invoked 

as described in the evaluation of await expression section. If T is void, then the await expression 

cannot be the operand of another expression. 

Evaluation of await expression 
An await expression in a form await cast-expression is equivalent to (if it were possible to write an 

expression in terms of a block, where return from the block becomes the result of the expression) 

{ 
    auto && __expr = cast-expression; 
    if ( !await-ready-expr ) { 
       await-suspend-expr; 
       suspend-resume-point 
    } 
    cancel-check; 
    return await-resume-expr; 
} 
 

                                                           
4 Usually C APIs take a callback and void* context. When the library/OS calls back into the user code, it invokes the 
callback passing the context back. from_address() static member function allows to reconstitute 
coroutine_handle<> from void* context and resume the coroutine  
5 The motivation for this is to avoid interfering with existing exception propagation mechanisms, as they may be 
significantly (and negatively so) impacted should await be allowed to occur within exception handlers.   
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Where __expr is a variable defined for exposition only, and _ExprT is the type of the cast-expression, and 

_PromiseT is a type of the coroutine promise associated with current resumable function and the rest 

defined as follows: 

await-ready-expr 
await-suspend-expr 
await-resume-expr 

— if _ExprT is a class type, the unqualified-ids await_ready, 
await_suspend and await_resume are looked up in the scope of class 
_ExprT as if by class member access lookup (N3936/3.4.5 
[basic.lookup.classref]), and if it finds at least one declaration, then 
await_ready-expr, await_suspend-expr and await_resume-expr are 
__expr.await_ready(), __expr.await_suspend(resumption-function-object) 
and __expr.await_resume(), respectively; 
 
— otherwise, await_ready-expr, await_suspend-expr and await_resume-
expr are await_ready(__expr), await_suspend(__expr, resumption-
function-object) and await_resume(__expr), respectively, where 
await_ready, await_suspend and await_resume are looked up in the 
associated namespaces (N3936/3.4.2). [ Note: Ordinary unqualified lookup 
(3.4.1) is not performed. —end note ] 
 
A type for which await_ready, await_suspend and await_resume function 
can be looked up by the rules described above is called an awaitable type. 
 
If none of await_xxx functions can throw an exception, the awaitable type 
is called a nothrow awaitable type and expression of this type a nothrow 
awaitable expressions. 

resumption-function-
object 

A function object of type std::coroutine_handle<_PromiseT>. When 
function object is invoked it will resume execution of the resumable 
function at the point marked by suspend-resume-point. 
 

suspend-resume-point When this point is reached, the coroutine is suspended. Once resumed, 
execution continues immediately after the suspend-resume-point 
 

cancel-check For all await expressions except for the one implicitly synthesized by a 
compiler at the end of the function it is  
 
if ( <promise-expr>.cancellation_requested() ) goto <end-label>; 

 
where <promise-expr> is a reference to a coroutine promise associated 
with the current resumable function and an end-label is a label at the end 
of the user provided body of the resumable function, just prior to the 
await <promise-expr>.final_suspend(). 
 

           

Design Note: rules for lookup of await_xxx identifiers mirror the look up rules for range-based for 

statement. We also considered two other alternatives (we implemented all three approaches to test 

their usability, but found the other two less convenient than the one described above): 
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1. To have only ADL based lookup and not check for member functions. This approach was rejected as it 

disallowed one of the convenient patterns that was developed utilizing await. Namely to have compact 

declaration for asynchronous functions in a form: auto Socket::AsyncRead(int count) { struct awaiter {…}; 

return awaiter{this, count}) }; 

2. Another approach considered and rejected was to have an operator await function found via ADL and 

having it to return an awaitable_type that should have await_xxx member functions defined. It was 

found more verbose than the proposed alternative. 

Bikeshed: await_suspend_needed, await_pre_suspend, await_pre_resume 

yield statement 
A yield statement is a statement of form:   

       yield expression;  

or 

       yield braced-init-list;   

yield <something>; is equivalent to 

    (void)(await <Promise>.yield_value(<something>)) 

Where a <Promise> refers to the coroutine promise of the enclosing resumable function. 

Design note: yield is a popular identifier, it is used in the standard library, e.g. this_thread::yield(). 

Introducing a yield keyword will break existing code. Having a two word keyword, such as yield return 

could be another choice.  

Another alternative is to make yield a context-sensitive keyword that acts like a keyword at a statement 

level and as an identifier otherwise. To disambiguate access to a yield variable or a function, yield has to 

be prefixed by ::yield, ->yield and .yield. This will still break some existing code, but allows an escape 

hatch to patch up the code without having to rename yield function which could be defined by the 

libraries a user have no source access to.  

 

Return statement 
A return statement in a resumable function in a form return expression; is equivalent to: 

 { promise-expr.set_result(expression); goto end-label; } 

A return statement in a resumable function in a form return braced-init-list; is equivalent to: 

 { promise-expr.set_result(braced-init-list); goto end-label; } 

A return statement in a resumable function in a form return; is equivalent to: 

 { promise-expr.set_result(); goto end-label; } 

Where end-label is a label at the end of the user provided body of the resumable function, just prior to 

the await <promise-expr>.final_suspend(). 
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If resumable function does not have return statements in the form return expression; or return braced-

init-list; then the function acts as if there is an implicit return; statement at the end of the function. 

await-for statement 
An await-for statement of the form: 

for await ( for-range-declaration : expression ) statement 
 

is equivalent to 
{ 

auto && __range = expression; 
for ( auto __begin = await begin-expr, 
            __end = end-expr; 
     __begin != __end; 
      await ++__begin )  
{ 
   for-range-declaration = *__begin; 
   statement 
} 

} 
 

where begin-expr and end-expr are defined as described in N3936/[stmt.ranged]/1.  

The rationale for annotating begin-expr and ++ with await is as follows: 

A model for consuming values from an asynchronous input stream looks like this: 

for (;;) { 
   initiate async pull() 
   wait for completion of async 
   if (no more)  
      break; 
 
   process value 
} 
 

We need to map this to iterators. The closest thing is an input_iterator. 

For an input_iterator, frequent implementation of end() is a tag value that makes iterator equality 

comparison check for the end of the sequence, therefore, != end() is essentially an end-of-stream check. 

So, begin() => async pull, therefore await is needed 

++__begin => async pull, therefore await is needed 

!= end() – is end-of-stream check post async pull, no need for await 

Design note: We implemented two variants of await-for statement to evaluate their aesthetical appeal 

and typing convenience. One form was for await(x:S) , another await for(x:S)  

Even though our initial choice was await for, we noticed that the brain was so hardwired to read things 

starting with for as loops, that await for did not register as loop when reading the code.  
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Trivial awaitable types 
Standard library provides three awaitable types defined as follows: 

namespace std { 
 struct suspend_always { 
  bool await_ready() const { return false;  } 
  void await_suspend(std::coroutine_handle<>) {} 
  void await_resume() {} 
 }; 
 struct suspend_never { 
  bool await_ready() const { return true;  } 
  void await_suspend(std::coroutine_handle<>) {} 
  void await_resume() {} 
 }; 
 struct suspend_if 
 { 
  bool ready; 
 
  suspend_if(bool condition): ready(!condition){} 
 
  bool await_ready() const { return ready; } 
  void await_suspend(std::coroutine_handle<>) {} 
  void await_resume() {} 
 }; 
} 

These types are used in implementations of coroutine promises. Though they are trivial to implement, 

including them in the standard library eliminates the need for every library designer from doing their 

own implementation. 

For example, generator<T> coroutine listed in the Appendix A, defines yield_value member function as 

follows: 

 std::suspend_always promise_type::yield_value(T const& v) {  
          this->current_value = &v;  
          return{};  
       } 

An expository Resumable Function Implementation 

Note: The following section is for illustration purposes only. It does not prescribe how resumable 

functions must be implemented. 

Given a user authored function: 

      R foo(T1 a, T2 b) { body-containing-suspend-resume-points } 

Compiler can constructs a function that behaves as if the following code was generated: 

R foo(T1 a, T2 b) { 
   using __traits = std::coroutine_traits<R, T1, T2>; 
   struct __Context { 
      __traits::promise_type _Promise;  
      T1 a; 
      T2 b; 
 
      template <typename U1, typename U2> 
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      __Context(U1&& a, U2&& b) : a(forward<U1>(a)), b(forward<U2>(b)) {} 
 
      void operator()() noexcept { 
          await _Promise.initial_suspend(); 
          try { body-containing-suspend-resume-points-with-some-changes } 
          catch (...) { _Promise.set_exception(std::current_exception()); } 
      __return_label: 
          await _Promise.final_suspend(); 
          <deallocate-frame> (this, sizeof(__Context) + <X>); 
      } 
   }; 
 
   auto mem = <allocate-frame>(sizeof(__Context) + <X>); 
   __Context * coro = nullptr; 
   try { 
      coro = new (mem) __Context(a, b); 
      auto result = __traits::get_return_object( 
         std::coroutine_handle<__traits::promise_type>::from_promise(&coro->__Promise); 
      (*coro)(); 
      return result; 
   } 
   catch (...) { 
      if (coro) coro->~__Context(); 
      <deallocate-frame> (mem, sizeof(__Context) + <X>); 
      throw; 
   } 
} 
 

Where, <X> is a constant representing the number of bytes that needs to be allocated to accommodate 

variables with automatic storage duration in the body of the resumable function and platform specific 

data that is needed to support resume and suspend. 

Access to variables and temporaries with automatic storage duration in the body of operator() should be 

relative to “this” pointer at the offset equal to sizeof(*this). 

<body-containing-suspend-resume-points-with-some-changes> is identical to <body-containing-

suspend-resume-points> with the exception that await operators and yield, await-for statements, and 

return statements are transformed as described in earlier sections, __return_label is the <end-label>  

that return and await refer to and accesses to formal parameters a, b are replaced with accesses to 

member variables a and b of __Context class. 

Coroutines in environments where exceptions are unavailable / banned 
C++ exceptions represent a barrier to adoption of full power of C++. While this is unfortunate and may 

be rectified in the future, the current experience shows that kernel mode software, embedded software 

for devices and airplanes [JSF] forgo the use of C++ exceptions for various reasons. 

Making coroutine fully dependent on C++ exceptions will limit their usefulness in contexts where 

asynchronous programming help is especially valuable (kernel mode drivers, embedded software, etc). 

The following sections described how exceptions can be avoided in implementation and applications of 

resumable functions. 
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Allocation failure 
To enable handling of allocation failures without relying on exception mechanism, coroutine_traits 

specialization can declare an optional static member function 
get_return_object_on_allocation_failure. 

If get_return_object_on_allocation_failure  member function is present, it is assumed that an 

allocator’s allocate function will violate the standard requirements and will return nullptr in case of an 

allocation failure. 

If an allocation has failed, a resumable function will use static member function 

get_return_object_on_allocation_failure() to construct the return value. 

The following is an example of such specialization 

namespace std { 
 template <typename T, typename... Ts> 
 struct coroutine_traits<kernel_mode_future<T>, Ts...> { 
           template <typename... Us> 
  static auto get_allocator(Us&&...) {return std::kernel_allocator<char>{}; } 
  using promise_type = kernel_mode_resumable_promise<T>; 
 
  static auto get_return_object_on_allocation_failure() { … } 
 }; 
} 

Generalizing coroutine’s promise set_exception 
In exception-less environment, a requirement on set_exception member of coroutine promise needs to 

be relaxed to be able to take a value of an arbitrary error type E and not be limited to just the values of 

type std::exception_ptr. In exception-less environment, not only std::exception_ptr type may not be 

supported, but even if it were supported it is impossible to extract an error from it without relying on 

throw and catch mechanics. 

Await expression: Unwrapping of an eventual value 
As described earlier await cast-expression expands into an expression equivalent of: 

{ 
    auto && __expr = cast-expression; 
    if ( !await-ready-expr ) { 
       await-suspend-expr; 
       suspend-resume-point 
    } 
    cancel-check; 
    return await-resume-expr; 
} 
 

Where cancel-check is expanded as 

if ( promise-expr.cancellation_requested() ) goto end-label; 

 

A straightforward implementation of await_resume() for getting an eventual value from the future<T> 

will call .get() that will either return the stored value or throw an exception. If unhandled, an exception 
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will be caught by a catch(…) handler of the resumable function and stored as an eventual result in a 

coroutine return object. 

In the environments where exceptions are not allowed, implementation can probe for success or failure 

of the operation prior to resuming of the coroutine and use <promise>.set_exception to convey the 

failure to the promise. Coroutine promise, in this case, need to have cancellation_requested() to return 

true if an error is stored in the promise. 

Here is how await_suspend may be defined for our hypothetical kernel_future<T> as follows: 

template <typename Promise> 
void kernel_future::await_suspend(std::coroutine_handle<Promise> p) { 
   this->then([p](kernel_future<T> const& result) { 
      if (result.has_error()) 
      { 
         p.promise().set_exception(result.error()); 
      } 
      p(); // resume the coroutine 
   }); 
} 
 

Appendix D demonstrates a complete implementation of adapters for boost::future, utilizing exception-
less propagation technique described above.  
 

Await expression: Failure to launch an asynchronous operation 
If an await_suspend function failed to launch an asynchronous operation, it needs to prevent suspension 

of a resumable function at the await point. Normally, it would have thrown an exception and would 

have avoided suspend-resume-point. In the absence of exceptions, we can require that await_suspend 

must return false, if it failed to launch an operation and true otherwise. If false is returned from 

await_suspend, then coroutine will not be suspended and will continue execution. Failure can be 

indicate via set_exception mechanism as described in the previous section. 

With all of the changes described in this section, await expr will be expanded into equivalent of: 

{ 
    auto && __expr = cast-expression; 
    if ( ! await-ready-expr && await-suspend-expr) 
       suspend-resume-point 
    } 
    cancel-expression; 
    return await-resume-expr; 
} 
 

With the extensions described above it is possible to utilize await and resumable functions in the 

environment where exceptions are banned or not supported. 

Asynchronous cancellation 
An attempt to cancel a coroutine that is currently suspended awaiting completion of an asynchronous 

I/O, can race with the resumption of a coroutine due to I/O completion. The coroutine model described 

in this paper can be extended to tackle asynchronous cancellation. Here is a sketch. 
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A coroutine promise can expose set_cancel_routine(Fn) function, where Fn is a function or a function 

object returning a value convertible to bool. A set_cancel_routine function should return true if 

cancel_routine is set and there is no cancellation in progress and false otherwise. 

await_suspend(std::coroutine_handle<Promise> rh), in addition to subscribing to get a completion of an 

asynchronous operation can use rh.promise().set_cancel_routine(Fn) to provide a callback that can 

attempt to cancel an asynchronous operation.  

If a coroutine needs to be cancelled, it invokes a cancel_routine if one is currently associated with the 

coroutine promise. If cancel_routine returns true, it indicates that the operation in progress was 

successfully cancelled and the coroutine will not be resumed by the asynchronous operation. Thus, the 

execution of the coroutine is under full control of the caller. If cancel_routine returns false, it means that 

an asynchronous operation cannot be cancelled and coroutine may have already been resumed or will 

be resumed at some point in the future. Thus, coroutine resources cannot be released until pending 

asynchronous operation resumes the coroutine. 

The following is an example of extending sleep_for awaiter from Appendix C to support asynchronous 

cancellation. 

 template <typename Promise> 
 bool await_suspend(std::coroutine_handle<Promise> resume_cb)  { 
    auto & promise = resume_cb.promise(); 
    if (promise.begin_suspend())  
          { 
       timer = CreateThreadpoolTimer(TimerCallback, resume_cb.to_address(), 0); 
       if (timer) 
       { 
           promise.set_cancel_routine(timer, TimerCancel); 
     SetThreadpoolTimer(timer, (PFILETIME)&duration, 0, 0); 
     promise.done_suspend(); 
     return true; 
       } 
             else { 
                 promise.set_exception( 
                    std::system_error(std::system_category(), GetLastError()); 
             } 
          } 
    promise.cancel_suspend(); 
    return false; 
 } 

Where begin_suspend, cancel_suspend and done_suspend are used to help to solve races when 

cancellation is happening concurrently with invocation of await_suspend. 

We do not propose this mechanism yet as we would like to gain more experience with developing 

libraries utilizing resumable functions described in this paper. 

Stateful Allocators Support 
Current proposal allows coroutines to be used with stackless and stackful allocators. To use a stateful 

allocator, coroutine traits’s get_allocator need to select which parameters to a resumable function that 

carry an allocator to be used to allocate the coroutine state. Library designer can choose different 
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strategies, he/she could use be std::allocator_arg_t tag argument followed by an allocator, or decide that 

allocator, if present, should be the first or the last parameter to a resumable function. 

For example, using a generator coroutine from Appendix A and providing the following coroutine traits 

will enable stateful allocator use. 

       namespace std { 
     template <typename R, typename Alloc, typename... Ts> 
     struct coroutine_traits<generator<R>, allocator_tag_t, Alloc, Ts...> { 
           template <typename... Us> 
  static auto get_allocator(allocator_tag, Alloc a, Us&&...) { 

return a;  
              } 
  using promise_type = generator<R>::promise_type; 
     }; 
       }  

       template <typename Alloc> 

       generator<int> fib(allocator_tag_t, Alloc, int n) 

       { 

     int a = 0; 

    int b = 1; 

 while (n-- > 0) 
 { 
  yield a; 
  auto next = a + b; 
  a = b; 
  b = next; 
 } 
} 
 
extern MyAlloc g_MyAlloc; 
 
int main() 
{ 
 for (auto v : fib(allocator_tag, g_MyAlloc, 35)) { 
  std::cout << v << std::endl; 
  if (v > 10) 
   break; 
 } 
} 

Override Selection of Coroutine Traits 
In Urbana, several people asked for a way to select coroutine traits to use with the resumable function 

without altering the function signature. One possible syntax for coroutine_traits selection override could 

be as follows:  

generator<int> fib() using(my_coroutine_traits) 
{  

body  
       } 
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Proposed Standard Wording 
No wording is provided at the moment.  

Acknowledgments 
Great thanks to Artur Laksberg, Chandler Carruth, Gabriel Dos Reis, Deon Brewis, James McNellis, 

Stephan T. Lavavej, Herb Sutter, Pablo Halpern, Robert Schumacher, Michael Wong, Niklas Gustafsson, 

Nick Maliwacki, Vladimir Petter, Slava Kuznetsov, Oliver Kowalke, Lawrence Crowl, Nat Goodspeed, 

Christopher Kohlhoff for your review and comments and Herb, Artur, Deon and Niklas for trailblazing, 

proposing and implementing resumable functions v1.  

References 
[N3936] Working Draft, Standard for Programming Language C++  

[Revisiting 
Coroutines] 

Moura, Ana Lúcia De and Ierusalimschy, Roberto. "Revisiting coroutines". 
ACM Trans. Program. Lang. Syst., Volume 31 Issue 2, February 2009, Article 
No. 6 

[N3328] Resumable Functions  
[N3977] Resumable Functions: wording  
[N3985] A proposal to add coroutines to the C++ standard library (Revision 1) 

[Boost.Context] Boost.Context Overview  
 

[Boost.Coroutine]  Boost.Coroutine Overview 
[SplitStacks] Split Stacks in GCC 

[JSF] Join Strike Fighter C++ Coding Standards 
[GoLang] http://golang.org/doc/ 
[N3872]   A Primer on Scheduling Fork-Join Parallelism with Work Stealing 

 
 

[Rx] http://rx.codeplex.com/ 
[ReactiveX] http://reactivex.io/ 

[RxAtNetflix] http://techblog.netflix.com/2013/01/reactive-programming-at-netflix.html 
[FRP] http://en.wikipedia.org/wiki/Functional_reactive_programming 

  
[PythonGenExprs] http://legacy.python.org/dev/peps/pep-0289/ 

[BoostRangeAdapter] http://www.boost.org/doc/libs/1_49_0/libs/range/doc/html/range/reference
/adaptors/introduction.html 
 

  

http://open-std.org/jtc1/sc22/wg21/prot/14882fdis/n3936.pdf
http://www.inf.puc-rio.br/~roberto/docs/MCC15-04.pdf
http://www.inf.puc-rio.br/~roberto/docs/MCC15-04.pdf
http://www.inf.puc-rio.br/~roberto/docs/MCC15-04.pdf
http://open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3858.pdf
http://open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3977.pdf
http://open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3985.pdf
http://www.boost.org/doc/libs/1_56_0/libs/context/doc/html/context/overview.html
http://www.boost.org/doc/libs/1_56_0/libs/coroutine/doc/html/coroutine/overview.html
http://gcc.gnu.org/wiki/SplitStacks
http://www.stroustrup.com/JSF-AV-rules.pdf
http://golang.org/doc/
http://open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3872.pdf
http://rx.codeplex.com/
http://reactivex.io/
http://techblog.netflix.com/2013/01/reactive-programming-at-netflix.html
http://en.wikipedia.org/wiki/Functional_reactive_programming
http://legacy.python.org/dev/peps/pep-0289/
http://www.boost.org/doc/libs/1_49_0/libs/range/doc/html/range/reference/adaptors/introduction.html
http://www.boost.org/doc/libs/1_49_0/libs/range/doc/html/range/reference/adaptors/introduction.html


25 
 

Appendix A: An example of generator coroutine implementation 
 
#include <resumable> 
#include <iterator> 
 
template <typename _Ty> 
struct generator 
{ 
    struct promise_type  
    { 
       enum class _StateT {_Active, _Cancelling, _Closed}; 
 
       _Ty const * _CurrentValue; 
       _StateT _State = _StateT::_Active; 
 

promise_type& get_return_object() { return *this; } 
suspend_always initial_suspend() { return {}; } 
 

       suspend_always final_suspend() { 
           _State = _StateT::_Closed; 
           return {}; 

} 
 

bool cancellation_requested() const { return _State == _StateT::_Cancelling; } 
void set_result() {} 

 
suspend_always yield_value(_Ty const& _Value)  
{ 

           _CurrentValue = addressof(_Value); 
            return {}; 
       } 
    }; // struct generator::promise_type 
 
    struct iterator : std::iterator<input_iterator_tag, _Ty> 
    { 
       coroutine_handle<promise_type> _Coro; 
 
       iterator(nullptr_t): _Coro(nullptr) {} 
       iterator(coroutine_handle<promise_type> _CoroArg) : _Coro(_CoroArg) {} 
 

iterator& operator++(){ 
           _Coro(); 
           if (_Coro.promise()._State == promise_type::_StateT::_Closed) 
              _Coro = nullptr; 
           return *this; 
       } 
 
       iterator operator++(int) = delete; 
            // generator iterator’s current_value is a reference to a temporary  
            // on the coroutine frame. Implementing postincrement will require  
            // storing a copy of the value in the iterator.  
 
      bool operator==(iterator const& _Right) const { return _Coro == _Right._Coro;} 
      bool operator!=(iterator const& _Right) const { return !(*this == _Right); } 
 

_Ty const& operator*() const { 
           auto& _Prom = _Coro.promise(); 
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           return *_Prom._CurrentValue; 
       } 
       _Ty const* operator->() const { return std::addressof(operator*()); } 
 
   }; // struct generator::iterator 
 
   iterator begin() { 
      if (_Coro) { 
         _Coro(); 
         if (_Coro.promise()._State == promise_type::_StateT::_Closed) 
             return {nullptr}; 
      } 
      return {_Coro}; 
   } 
   iterator end() { return {nullptr}; } 
 
   explicit generator(promise_type& _Prom) 
            : _Coro(coroutine_handle<promise_type>::from_promise(_STD addressof(_Prom))) 
   {} 
 
   generator() = default; 
   generator(generator const&) = delete; 
   generator& operator = (generator const&) = delete; 
 
   generator(generator && _Right): _Coro(_Right._Coro) { _Right._Coro = nullptr; } 
 
   generator& operator = (generator && _Right) { 
       if (&_Right != this) { 
           _Coro = _Right._Coro; 
           _Right._Coro = nullptr; 
       } 
   } 
   ~generator() { 
       if (_Coro) { 
           auto& _Prom = _Coro.promise(); 
           if (_Prom._State == promise_type::_StateT::_Active) { 
                    // Note: on the cancel path, we resume the coroutine twice. 
                    // Once to resume at the current point and force cancellation. 
                    // Second, to move beyond the final_suspend point. 

_Prom._State = promise_type::_StateT::_Cancelling; 
              _Coro(); 

    } 
           _Coro(); 
        } 
    } 
 private: 
        coroutine_handle<promise_type> _Coro = nullptr; 
 }; 
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Appendix B: boost::future adapters 
#include <resumable> 
#define BOOST_THREAD_PROVIDES_FUTURE_CONTINUATION 
#include <boost/thread/future.hpp> 
 
namespace boost { 

   template <class T> 

   bool await_ready(unique_future<T> & t) { return t.is_ready();} 

 
   template <class T, class Callback> 

   void await_suspend(unique_future<T> & t, Callback cb)  
   {  

t.then( [cb](auto&){ cb(); } );  

     } 

 
   template <class T> 

   auto await_resume(unique_future<T> & t) { return t.get(); } 

} 

 

namespace std { 

    template <class T, class... Whatever> 
    struct coroutine_traits<boost::unique_future<T>, Whatever...> { 
     struct promise_type 
       { 
           boost::promise<T> promise; 
 
           auto get_return_object() { return promise.get_future(); } 
           suspend_never initial_suspend() { return{}; } 
           suspend_never final_suspend() { return{}; } 
 
           template <class U = T, class = enable_if_t< is_void<U>::value >> 
           void set_result() { 
             promise.set_value(); 
           } 
 
           template < class U, class U2 = T,  
                      class = enable_if_t < !is_void<U2>::value >> 
           void set_result(U&& value) { 
            promise.set_result(std::forward<U>(value)); 
           } 
 
           void set_exception(std::exception_ptr e){promise.set_exception(std::move(e));} 
 
           bool cancellation_requested() { return false; } 
       }; 
    }; 
}  
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Appendix C: Awaitable adapter over OS async facilities 
 
#include <resumable> 
#include <threadpoolapiset.h> 
 
// usage:  await sleep_for(100ms); 
auto sleep_for(std::chrono::system_clock::duration duration)  { 
   class awaiter { 
      static void TimerCallback(PTP_CALLBACK_INSTANCE, void* Context, PTP_TIMER) { 
         std::coroutine_handle<>::from_address(Context)(); 
      } 
      PTP_TIMER timer = nullptr; 
      std::chrono::system_clock::duration duration; 
   public: 
      awaiter(std::chrono::system_clock::duration d) : duration(d){} 
      bool await_ready() const { return duration.count() <= 0; } 
      void await_suspend(std::coroutine_handle<> resume_cb)  { 
         int64_t relative_count = -duration.count(); 
         timer = CreateThreadpoolTimer(TimerCallback, resume_cb.to_address(), nullptr); 
         if (timer == 0) throw std::system_error(GetLastError(), std::system_category()); 
         SetThreadpoolTimer(timer, (PFILETIME)&relative_count, 0, 0); 
      } 
      void await_resume() {} 
      ~awaiter() { 
         if (timer) CloseThreadpoolTimer(timer); 
      } 
   }; 
   return awaiter{ duration }; 
} 
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Appendix D: Exceptionless error propagation with boost::future 
#include <boost/thread/future.hpp> 
 

namespace boost { 

   template <class T> 

   bool await_ready(unique_future<T> & t) { return t.is_ready();} 

 
   template <class T, class Promise> 

   void await_suspend( 

      unique_future<T> & t, std::coroutine_handle<Promise> rh)  

   { 

       t.then([=](auto& result){ 

          if(result.has_exception())  

            rh.promise().set_exception(result.get_exception_ptr()); 

          rh(); 

       }); 

   } 

 
   template <class T> 

   auto await_resume(unique_future<T> & t) { return t.get(); } 

} 

namespace std { 

  template <typename T, typename… anything> 

  struct coroutine_traits<boost::unique_future<T>, anything…> { 

     struct promise_type { 

        boost::promise<T> promise; 
        bool cancelling = false; 

        auto get_return_object() { return promise.get_future(); } 

        suspend_never initial_suspend() { return{}; } 

        suspend_never final_suspend() { return{}; } 

        template <class U> void set_result(U && value) {                           

            promise.set_value(std::forward<U>(value));  

        } 

        void set_exception(std::exception_ptr e) {              
           promise.set_exception(std::move(e));  
           cancelling = true; 

        } 

        bool cancellation_requested() { return cancelling; } 

    }; 

}; 
 

 

 


