Toward a concept-enabled standard library

Matt Austern, Gabriel Dos Reis, Eric Niebler, Bjarne Stroustrup,
Herb Sutter, Andrew Sutton, Jeffrey Yasskin

N4263

2014-11-04

Now that the Concepts Lite TS is (almost) done, the next step is a version of the standard
library that uses Concepts. Here are some informal notes on what we might want from such a
library and what some of the incremental steps are for getting there.

Overall goals:

We want to define and apply concepts to all parts of the Standard Library where they
make sense.

We want to define a relatively small number of concepts, and we want constraints on
individual classes and functions to be simple. We don’t want to have algorithms where
the constraint clause is longer than the implementation. We want to avoid all of the
has_* concepts that were present in the C++0x concepts attempt.

Desirable property: it shouldn’t be necessary to use any of the traits classes anywhere
in a standard library implementation.

We will not attempt to make the concept-enabled library fully compatible with the
library described by the C++14 standard. The existing constraints are very
complicated, a fact that becomes more obvious when the constraints are spelled out in
code. Some features should be simplified or eliminated as necessary to reduce the
number and complexity of concepts. Example: in a pre-concepts world it's natural to
allow implicit conversion (in C++98 forbidding them would have required a lot of extra
effort) but in a world with concepts allowing them is extra complexity.

We do want to limit incompatibilities to areas where the damage to existing code is
limited and the benefits significant. For example, the Palo Alto design (N3351)
provides common_type to handle "well behaved" comparisons (etc.) that would
otherwise require implicit conversions.

Delivery vehicle

A concept-enabled standard library will be delivered as a TS by SG8 in consultation
with the appropriate WGs.

Since the TS will describe an incompatible version of the standard library, it's
essentially certain that people will see “std2” as an opportunity to make design
changes even if those fixes aren’t directly related to concepts. We won'’t attempt to
fight that temptation; trying to limit the scope will probably just lead to a lot of scope
arguments. We'll just accept in advance that this TS will be open to a variety of
proposals and we’ll judge each on its merits.

Initial milestones


http://www.google.com/url?q=http%3A%2F%2Fwww.open-std.org%2Fjtc1%2Fsc22%2Fwg21%2Fdocs%2Fpapers%2F2012%2Fn3351.pdf&sa=D&sntz=1&usg=AFQjCNES_qU82ZSJKiQfYG5Yubf9ZyynXw

The obvious place to start is the STL, i.e. algorithms, iterators, and containers. That’s
where people have thought the most about concepts.

Although we’re not attempting to make the concepts-enabled library 100% compatible
with the C++14 standard library, we want a concepts-enabled STL that’s at least
broadly similar to the existing STL.

We can use N3351, the “Palo Alto TR,” as the starting point. N3351 defines concepts
for the complete set of STL algorithms. It has been implemented.

Some work required to turn N3351 intoa TS

N3351 covers iterators and algorithms, but not containers. At the very least we need to
say what containers’ constraints are, and we may also want to define some container
concepts.

Verifying that N3351 completely addresses proxy iterators, e.g. N3851’s array_view,
or vector<bool>::iterator. (We may not want to have the vector<bool>
specialization in a concept-enabled STL, but we probably still don’t want to preclude
something like it.)

Verifying that N3351 has sufficient support for rvalue references and movable types.
Stripping out the appendices, and perhaps making minor changes to take account of
changes in Concepts Lite during the standardization process.

Some open technical issues

Ranges. There are several active proposals for range-based algorithms, including
N4128, which has considerable overlap with a concepts-enabled STL. Proposal:
decouple these two pieces of work to the extent possible so that progress can be
made on both independently. We believe that ranges will never replace iterators: we
will layer range-based algorithms on top of iterator-based algorithms, so there is value
in defining concept-enabled iterator-based algorithms as done in N3351. Similarly,
there’s value in defining a version of range-based algorithms that isn’t blocked while
waiting for concepts to be added to the whole library.

Allocators. We won’t be able to avoid thinking about them; they’ll affect concepts as
applied to containers, both constraints that containers obey and those that they
impose on element types. We want the same thing for containers as we do for
algorithms: the concepts shouldn’t be too numerous or too complicated. One
possibility is to leave allocators out entirely; another is keep them, but purely as
run-time polymorphic machinery without support for alternative memory models and
without any kind of interaction with containers’ template parameter lists or element
types.

Container concepts. Container or container-like concepts may be useful for
container-based algorithms, ranges, iterator adaptors, and container adaptors. It may,
however, be possible to achieve many of these goals using weaker concepts that don’t
deal with element ownership; the range proposal in N4128, for example, hasn’t
needed container concepts yet.


http://www.google.com/url?q=http%3A%2F%2Fwww.open-std.org%2Fjtc1%2Fsc22%2Fwg21%2Fdocs%2Fpapers%2F2012%2Fn3351.pdf&sa=D&sntz=1&usg=AFQjCNES_qU82ZSJKiQfYG5Yubf9ZyynXw
http://www.google.com/url?q=http%3A%2F%2Fwww.open-std.org%2Fjtc1%2Fsc22%2Fwg21%2Fdocs%2Fpapers%2F2014%2Fn3851.pdf&sa=D&sntz=1&usg=AFQjCNEIeD1oteL0KfdU2ZFlvsOk6TdxhQ
http://www.google.com/url?q=http%3A%2F%2Fwww.open-std.org%2Fjtc1%2Fsc22%2Fwg21%2Fdocs%2Fpapers%2F2014%2Fn4128.html&sa=D&sntz=1&usg=AFQjCNHbrU8Hr_F_Sdl01PfSgDGVC-1kRQ

