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Introduction 

This document proposes a language extension for vector level parallel programming (vector 

programming) as an extension to C++. It is based on both Cilk Plus and OpenMP 4.0, which 

have almost exactly the same capability in regard to vector parallelism, however with keywords-

based syntax instead of pragma-based syntax. 

Scope: This proposal is based on an earlier proposal, N3831. However, the elemental functions 

portion of that proposal encountered questions regarding the integration with the type system, 

which are still not fully resolved. In order to allow forward progress, this proposal brings 

forward only the vector loop portion of the previous proposal, while calling out future work to be 

taken into account. 

Language: The proposal does not add new “vector data types” to the language. Existing practices 

use regular, scalar data types and iterate over collections of them. There is no natural vector size 

that can be used as the size of the data, in a way that would be analogous to the sizes of scalar 

data types. 

The proposal is based on language and relies on compilers to generate vector code. Unlike in 

thread parallelism, SIMD parallelism is often provided via an instruction set which is distinct 

from the scalar instruction set and therefore use of SIMD parallelism requires reliance on code 

generation. 

Rigor vs. teaching: The semantics of vector execution presented here is with an attempt for 

mathematical rigor. It is meant for the standards committee and for implementers. It is not meant 

for developers. This duality is similar to that of the memory model. While most programmers 

would not pass a test on the nuances of the memory model, they are comfortable declaring data 

objects and manipulating them. The precise semantics is irrelevant for teaching programmers 

how to use SIMD parallelism. 

Countable loops: Both parallel loops and SIMD loops, in OpenMP and in Cilk Plus, require that 

the loops are “countable loops”. While the proposal does not suggest adding countable loops to 

the language as a distinct feature, the document presents the concept separately, so that it can be 

reused for both parallel loops and SIMD loops.  

Loop grammar modifications 

Change the grammar of iteration-statement as follows: 

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2014/n3831.pdf


iteration-statement: 

while ( condition ) statement 

do statement while ( expression ) ; 

for loop-qualifiersopt ( for-init-statement conditionopt ; expressionopt ) statement 

for loop-qualifiersopt ( for-range-declaration : for-range-initializer ) statement 

Add the following grammar rules: 

loop-qualifiers: 

simd safelen-clauseopt 

safelen-clause: 

safelen ( constant-expression ) 

Countable Loops 

A countable loop is a for statement or range-based for statement that is required to satisfy 

additional constraints. The purpose of these constraints is to ensure that the loop's iteration count 

can be computed before the loop body is executed. 

In a countable range-based for loop ([stmt.ranged] 6.5.4), the type of the __begin variable, 

as determined from the begin-expr, shall satisfy the requirements for a random access iterator. [ 

Note: Intel has implemented most of the features in this proposal, but has not yet implemented 

support for a vector range-based for statement. — end note ] 

All the following constraints apply to a countable for loop. When a constraint limits the form 

of an expression, parentheses are allowed around the expression or any required subexpression. 

Constraints on the form of the control clauses 

The condition shall be an expression. [ Note: A condition with declaration form is useful in a 

context where a value carries more information than just whether it is zero or nonzero. This is 

not believed to be useful in a countable loop. — end note ] This expression shall be a comparison 

expression with one of the following forms: 

relational-expression < shift-expression 

relational-expression > shift-expression 

relational-expression <= shift-expression 

relational-expression >= shift-expression 

equality-expression != relational-expression 

 

Exactly one of the operands of the comparison operator shall be an identifier that designates an 

induction variable, as described below. This induction variable is known as the control variable. 



The operand that is not the control variable is called the limit expression. Any implicit 

conversion applied to that operand is not considered part of the limit expression. 

The final expression of the control clause of the loop is called the loop-increment; it shall be an 

expression with the following form: 

loop-increment: 

single-increment 

loop-increment , single-increment 

single-increment: 

identifier ++ 

identifier -- 

++ identifier 

-- identifier 

identifier += initializer-clause 

identifier -= initializer-clause 

identifier = identifier + multiplicative-expression 

identifier = identifier - multiplicative-expression 

identifier = additive-expression + identifier 

Each comma in the grammar of loop-increment shall represent a use of the built-in comma 

operator. The identifier in each grammatical alternative for single-increment is called an 

induction variable. If identifier occurs twice in a grammatical alternative for single-increment, 

the same variable shall be named by both occurrences. If a grammatical alternative for single-

increment contains a subexpression that is not an identifier for the induction variable,  that is 

called the stride expression for that induction variable. 

An induction variable shall not be designated by more than one single-increment. 

 [ Note: The control variable is identified by considering the loop's condition and loop-increment 

together. If exactly one operand of the condition comparison is a variable, it is the control 

variable, and must be incremented. If both operands of the condition comparison are variables, 

only one is allowed to be incremented; that one is the control variable. It is an error if neither 

operand of the condition comparison is a variable. — end note ] 

[ Note: There is no additional constraint on the form of the initialization clause of a countable 

loop. — end note ] 

 

Other statically-checkable constraints 

There shall be no return, break, goto or switch statement that might transfer control 

into or out of the loop. 



Each induction variable shall have unqualified integral, pointer, or copy-constructible class type, 

shall have automatic storage duration. 

Each stride expression shall have integral or enumeration type. 

The loop count is computed as follows.  In the following table, “var” stands for an expression 

with the type and value of the loop control variable, “limit” stands for an expression with the 

type and value of the limit expression, and “stride” stands for an expression with the type and 

value of the stride expression. The loop count is computed after the loop initialization is 

performed, and before the control variable is modified by the loop. Operators used within the 

loop count expression are looked up in namespace scope. 

Loop count expression and value 

Form of 

condition 
Form of increment 

 

var++ 

++var 

var-- 

--var 

var += stride 

var = var + stride 

var = stride + var 

var -= stride 

var = var - stride 

var < limit 

limit > var 

((limit)-

(var)) 
n/a 

((limit)-(var)-

1)/(stride)+1 

((limit)-(var)-1)/-

(stride)+1 

var > limit 

limit < var 
n/a 

((var)-

(limit)) 

((var)-(limit)-1)/-

(stride)+1 

((var)-(limit)-

1)/(stride)+1 

var <= limit 

limit >= var 

((limit)-

(var))+1 
n/a 

((limit)-

(var))/(stride)+1 

((limit)-(var))/-

(stride)+1 

var >= limit 

limit <= var 
n/a 

((var)-

(limit))+1 

((var)-(limit))/-

(stride)+1 
((var)-(limit))/(stride)+1 

var != limit 

limit != var 

((limit)-

(var)) 

((var)-

(limit)) 

((stride)<0) ? 

((var)-(limit)-1)/-

(stride)+1 : 

((limit)-(var)-

1)/(stride)+1 

((stride)<0) ? 

((limit)-(var)-1)/-

(stride)+1 : 

((var)-(limit)-

1)/(stride)+1 

The loop count expression shall be well-formed. When a stride expression is present, if the 

divisor of the division is not greater than zero, the behavior is undefined. 

The type of the difference between the limit expression and the control variable is the 

subtraction type, which shall be integral. When the condition operation is !=, (limit)-(var) and 

(var)-(limit) shall have the same type. Each stride expression shall be convertible to the 

subtraction type. The loop odr-uses whatever operator- functions are selected to compute 

these differences. 

For each induction variable V, one of the expressions from the following table shall be well-

formed, depending on the operator used in its single-increment: 



Operator ++ += + -- -= - 

Expression V += X V -= X 

where X is some expression with the same type as the subtraction type. The appropriate 

operator+= or operator-= function is looked up in namespace scope and the loop odr-

uses whatever operator functions are selected by these expressions. 

Dynamic constraints 

If an induction variable is modified within the loop other than as the side effect of its single-

increment operation, the behavior of the program is undefined. 

If evaluation of the iteration count, or a call to a required operator+= or operator-= 

function, terminates with an exception, the behavior of the program is undefined. 

If X and Y are values of the control variable that occur in consecutive evaluations of the loop 

condition in the serialization, then the behavior is undefined if ((limit) - X) - ((limit) - Y) 

evaluated in infinite integer precision, does not equal the stride. [Note: in other words, the 

control variable must obey the rules of normal arithmetic. Unsigned wraparound is not allowed. 

– end note] If the condition expression is true on entry to the loop, then the behavior is undefined 

if the computed loop count is not greater than zero. If the computed loop count is not 

representable as a value of type unsigned long long, the behavior is undefined.  

Evaluation relaxations 

The stride expressions shall not be evaluated if the loop count is zero; otherwise, it is unspecified 

how many times the stride and limit expressions are evaluated. If execution of a loop iteration 

alters the value of the increment or limit expression, the behavior is undefined. 

Within each iteration of the loop body, the name of each induction variable refers to a local 

object, as if the name were declared as an object within the body of the loop with automatic 

storage duration and with the type of the original object. If the loop body throws an exception 

that is not caught within the same iteration of the loop, the behavior is undefined, unless 

otherwise specified.  

SIMD loops 

Description 

This section describes the SIMD loop portion of the vector programming extension. A SIMD 

loop is syntactically similar to a for loop, with the addition of the contextual keyword simd 

after the keyword for. The loop shall be a countable loop, as described above. 

The serialization of a SIMD loop is the loop obtained by omitting the contextual keyword simd 

or simd_safelen.  



Semantics 

This specification relies on identifying an expression as being the same as it executes in different 

iterations of the loop. This includes the possibility that an expression executes in some but not all 

iterations of the vector loop, and the possibility that an expression executes a different number of 

times in different iterations of the vector loop. Although intuitively easy to grasp, linguistically 

we must devise a way of numbering expressions (including expressions in multiple iterations of 

inner loops) such that it is always possible to identify “corresponding” steps from separate 

iterations of the outer vector loop. For a loop without branches, steps are simply numbered 

consecutively. At the start of an inner loop, we start appending a sub-step number comprising the 

iteration number (starting from zero) and a step number within the loop (also starting at zero). 

Two steps in different lanes correspond to each other if they have the same step number. One 

step precedes another step if its step number is lexicographically smaller. For example, the code 

below is shown with numbers assigned to each step. (Note that same numbers apply to each lane 

executing this code.): 

0         a += b; 

1         c *= a; 

2.i.0    for (int i = 0; 

2.i.1           i < c; 

2.i.3            ++i) 

2.i.2            x[b] += f(i); 

3          y[b] = g(x[b]); 

With this numbering scheme, step 2.1.1 (first step in the second iteration of the loop) precedes 

step 2.1.3 (third step in the same iteration) but comes after 2.0.1 (first step in the first iteration). 

The compiler is permitted to interleave steps from different lanes anyway it wants, provided that 

the wavefront respects these relationships. 

A SIMD loop has logical iterations numbered 0, 1, … , N-1 where N is the number of loop 

iterations, and the logical numbering denotes the sequence in which the iterations would execute 

in the serialization of the SIMD loop. 

 

The order of evaluation of expression in a vector loops is a modification of the order of 

evaluation in a scalar and sequential loop. We assume that if an expression X is sequenced 

before an expression Y in some iteration of the loop, then there is no iteration of the loop in 

which Y is sequenced before X. With computed control flow, writing such a loop is not 

impossible. Vectorizing such a loop is most likely to yield results that are different from those of 

the scalar loop, and we specify that vectorization of loops with that behavior is an undefined 

behavior. 



The order of evaluation of the expressions in a SIMD loop is a partial order and a relaxation of 

the order specified for sequential loops. Let Xi denote evaluation of an expression X in the i
th

 

logical iteration of the loop.  The partial order is: 

0. For all expressions X and Y evaluated as part of a SIMD loop, if X is sequenced before Y in any 

iteration of the loop and i ≤ j then Xi is sequenced before Yj in the SIMD loop. 

Alternatively, the single rule can be describe in two parts, one for the order of evaluation within 

a single iteration of the vector loop, and a second rule for the order of evaluation of expressions 

across different iterations: 

1. If there is an iteration k of the serialization of the vector loop in which Xk is sequenced before Yk, 

for all iterations n, Xn is sequenced before Yn  

2. For all expressions X and Y evaluated as part of a SIMD loop, if X is sequenced before Y in any 

iteration of the loop and i < j then Xi is sequenced before Yj in the SIMD loop. 

SIMD loop with safelen 

 The constant-expression in simd_safelen(constant-expression) shall be an integer constant 

expression with a value greater than zero. 

The value of the argument to the constant-expression is the maximum chunk size, c, for a SIMD 

loop. The order of evaluation of expressions within a simd loop with safelen is the same 

partial ordering as for a simd loop without safelen (above), with the following additional 

constraint: 

3. For a SIMD loop with a maximum chunk size of c, for every pair of expressions X and Y, if there 

is an iteration k in which Xk is sequenced before YK then for each i<N-c, Yi is sequenced before 

Xi+c.  

Restrictions on SIMD loops 

The behavior is undefined if any of the following language constructs appears within the body of 

a SIMD loop: 

1. a try statement 

2. a call to setjmp or longjmp 

Note: Because the iterations of a SIMD loop are implicitly allowed to overlap, modifying any 

non-atomic non-local object carries the potential for unsequenced side effects and value 

computations (1.9 clause 15), and therefore undefined behavior. 

Future Extensions 

This proposal is valuable and would form a useful and useable addition to the standard. It is also 

consistent with some potential further additions which may be proposed later. The proposal 



allows writing vector loops, as long as either all the code is in the static scope of the loop. It does 

not support calling vector functions with vector interfaces. Elemental functions are functions 

with vector variants. They allow modular programming and shipping of functions in libraries, 

where the vector variants have vector interfaces, so performance is not lost through the 

interfaces. 

The proposal allows writing of vector loops where the code applies the same operations on all 

“vector lanes” and it allows “forward” dependence pattern where a value computed within a 

certain iteration depend on a value that was computed in an earlier iteration. Vector execution is 

capable of more patterns. In fact, most of the interesting growth on the hardware side is in 

supporting a growing set of dependence pattern. At a minimum, practitioners expect support for 

reductions and probably partial sums. New developments on the hardware side will necessitate 

support for vector compression and expansion. 

We expect that these patterns will be supported via libraries, similar to the library support for 

hyper objects and reductions in Cilk Plus. In order for these libraries to have vector semantics, 

they will be written in elemental functions. 

 


