Null Coalescing Conditional Operator

2014-07-02 N4120

Alexander Bock alex@gimpel.com

1 Introduction

Checking if a value is null before use to substitute another value in its place is a very common program-
ming pattern. This can be achieved with the current conditional operator only through duplicating the
expression in question or using a temporary variable to prevent side effects from being evaluated twice.
Many languages with the conditional operator have implemented a null coalescing operator, most no-
tably C#; it is also already implemented in geec and clang as a GNU extension. This proposal essentialy
entails standardizing the null coalescing conditional operator as implemented in gcc and clang, with the
syntax a ? : b.

2 Rationale and Implementation

Expressions equivalent to x ? x : y are common, and when x is a non-trivial expression, lead to code
duplication or require a temporary variable. The standard method of using a temporary variable to
prevent multiple evaluations is similar to the proposed operational definition of the new null coalescing
conditional syntax.

In effect, the implementation defines

a?:b;

to be equivalent to

auto&& temp = a;
temp 7 temp : b;

except that each of the two uses of temp is regarded as having the same value category as a.

Note: Despite being used in over.built, 7: does not appear as a single operator token in lex.operators,
and it is intended that a 7: b also be permittable syntax for this operation.

3 Proposed Standard Wording



To the grammar definition in expr.cond, make the second expression optional:

conditional-expression:
logical-or-expression
logical-or-expression ? expressiongy : assignment-expression

In expr.cond, insert the following as 5.16.7:

If the second expression is not present, a binary conditional is formed, and the first expression shall be
evaluated without performing contextual conversion to bool. The result of this evaluation shall then
used as both the first and second expressions of a ternary conditional. The third expression of this
ternary conditional shall be the unevaluated original third expression. The result the original binary
conditional expression shall be the result of evaluating this ternary conditional.



