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1 Introduction

N3785 Executors and schedulers, revision 3 describes a framework for executors. Unfortunately,
this framework is built around some deliberate design choices that make it unsuited to the
execution of fine grained tasks and, in particular, asynchronous operations. Primary among
these choices is the use of abstract base classes and type erasure, but it is not the only such
issue. The sum effect of these choices is that the framework is unable to exploit the full
potential of the C++ language.

In this document, we will look at an alternative executors design that uses a lightweight,
template-based policy approach. To describe the approach in a nutshell:

An executor is to function execution as an allocator is to allocation.

This proposal builds on the type traits described in N4045 Library Foundations for
Asynchronous Operations, Revision 2 to outline a design that unifies the following areas:

*  Executors and schedulers.

* Resumable functions or coroutines.

* A model for asynchronous operations.
* A flexible alternative to std: :async().

In doing so, it takes concepts from Boost.Asio, many of which have been unchanged since its
inclusion in Boost, and repackages them in a way that is more suited to C++14 language
facilities.

2 Reference implementation

A reference implementation of the proposed library can be found at:

http://github.com/chriskohlhoff/executors

3 Design issues in N3785

Before we begin, let us briefly review some of the design choices of N3785 executors.

3.1 Use of inheritance and polymorphism

The interface is based on inheritance and polymorphism, rather than on templates, for two
reasons. First, executors are often passed as function arguments, often to functions that have no
other reason to be templates, so this makes it possible to change executor type without code
restructuring. Second, a non-template design makes it possible to pass executors across a binary
interface: a precompiled library can export a function one of whose parameters is an executor.

As we will see in this proposal, a template-based design does not preclude the inclusion of a
runtime polymorphic wrapper. Such a wrapper still allows users to write non-template code
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for use with executors, and makes it possible to pass executors across a binary interface. On
the other hand, it is not possible to undo the performance impact of a type-erased interface.

The cost of an additional virtual dispatch is almost certainly negligible compared to the other
operations involved.

This claim might be true when passing coarse-grained tasks across threads. However, use
cases for executors are not limited to this. As outlined in N4045, composition of asynchronous
operations may entail multiple layers of abstraction. The ability to leverage function inlining
is a key part of delivering a low abstraction penalty, but the compiler is unable to see through
a virtual interface.

3.1.1 Use of std::function<void()>

Most fundamentally, of course, executor is an abstract base class and add() is a virtual
member function, and function templates can’t be virtual. Another reason is that a template
parameter would complicate the interface without adding any real generality. In the end an
executor class is going to need some kind of type erasure to handle all the different kinds of
function objects with void() signature, and that’s exactly what std::function already does.

By forcing type erasure at the executor interface, an executor implementer is denied the
opportunity to choose a more appropriate form of type erasure. For example, an implementer
may wish to store pending work items in a linked list. With a template-based approach, the
function object and the “next pointer” can be stored in the same object. This is not possible if
type erasure has already occurred?.

One theoretical advantage of a template-based interface is that the executor might sometimes
decide to execute the work item inline, rather than enqueueing it for asynchronous, in which
case it could avoid the expense of converting it to a closure. In practice this would be very
difficult, however: the executor would somehow have to know which work items would execute
quickly enough for this to be worthwhile.

There is a key use case for wanting to execute work items inline: delivering the result of an
asynchronous operation, possibly across multiple layers of abstraction. Rather than relying on
the executor to “somehow have to know”, we can allow the user to choose. This is the
approach taken in this proposal.

Finally, another disadvantage of std::function is that it prevents the use of move-only
function objects.

Of course, as N3785 states, the need for a type-erased function object is itself a consequence of
the use of inheritance and polymorphism.

3.2 Scheduled work

There are several important design decisions involving that time-based functionality. First: how
do we handle executors that aren’t able to provide it? The issue is that add_at and add_after
involve significant implementation complexity. In Microsoft’s experience it’s important to
allow very simple and lightweight executor classes that don’t need such complicated
functionality.

N3785 couples timer-based operations to executors via the scheduled_executor base class.
This proposal avoids this coupling by distinguishing between the executor as a lightweight
policy object, and an execution context where the “implementation complexity” of timers can

1 Unless a small-object optimisation is employed by std: : function, but this is not guaranteed.
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be housed in a reusable way. Thus, timer operations are independent of executor types, and
can be used with any executor.

Second, how should we specify time? [..] Some standard functionality, like sleep_until and
sleep_for, is templatized to deal with arbitrary duration and time_point specializations. That’s
not an option for an executor library that uses virtual functions, however, since virtual
member functions can’t be function templates. There are a number of possible options:

1. Redesign the library to make executor a concept rather than an abstract base class.
We believe that this would be invention rather than existing practice, and that it
would make the library more complicated, and less convenient for users, for little
gain.

2. Make executor a class template, parameterized on the clock. As discussed above, we
believe that a template-based design would be less convenient than one based on
inheritance and runtime polymorphism.

3. Pick a single clock and use its duration and time_point.
We chose the last of those options, largely for simplicity.

Unfortunately, N3785 chooses system_clock as that single clock. As the system clock is
susceptible to clock changes it may be inappropriate for use cases that require a periodic
timer. In those instances, steady_timer is the better choice.

In any case, by decoupling timers from executors, this proposal provides timer operations
that are indeed templates, and can work with arbitrary clock types.

3.3 Exception handling

A more interesting question is what happens if a user closure throws an exception. The
exception will in general be thrown by a different thread than the one that added the closure or
the thread that started the executor, and may be far separated from it in time and in code
location. As such, unhandled exceptions are considered a program error because they are
difficult to signal to the caller. The decision we made is that an exception from a closure is ill-
formed and the implementation must call std::terminate.

Rather than apply a blanket rule, this proposal includes exception handling as part of an
executor’s policy. While std::terminate is likely to be the best choice for unhandled
exceptions inside a thread pool, users may prefer greater control when using something like
loop_executor. For example, the approach taken by Boost.Asio’s io_service and this
proposal’s loop_scheduler is to allow exceptions to escape from the “event loop”, where the
user can handle them as appropriate.

3.4 Inline executors and the single add function

[...] Inline executors, which execute inline to the thread which calls add(). This has no queuing
and behaves like a normal executor, but always uses the caller’s thread to execute.

Since the executor interface is defined by an abstract base class, code that calls the add()
function has to assume that the underlying executor may execute the function object inline.
As a consequence, extra care must be taken in situations such as:

* If using mutexes, avoiding calls to add () while holding the lock.
* If iterating over a container and calling add() for each element, ensuring the added
function object cannot invalidate the iterators.
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This proposal instead makes an explicit distinction between operations that can execute
inline, and those that cannot. The library user is then able to choose the appropriate operation
for their use case.

4 Library overview

The central concept of this library is the executor as a policy. An executor embodies a set of
rules about where, when and how to run a function object. For example:

Type of executor | Where, when and how

System Any thread in the process.

Thread pool Any thread in the pool, and nowhere else.

Strand Not concurrent with any other function object sharing the strand, and in
FIFO order.

Future / Promise | Any thread. Captures any exception that is thrown by the function
object and stores it in the promise.

Executors are ultimately defined by a set of type requirements, so the set of executors isn't
limited to those listed here. Like allocators, library users can develop custom executor types
to implement their own rules.

To submit a function object to an executor, we can choose from one of three fundamental
operations: dispatch, post and defer. These operations differ in the eagerness with which they
run the submitted function.

A dispatch operation is the most eager, and used when we want to run a function object
according to an executor’s rules, but in the cheapest way available:

void f1()
{
std::cout << "Hello, world!\n";
}
//

dispatch(ex, f1);

By performing a dispatch operation, we are giving the executor ex the option of having
dispatch() run the submitted function object before it returns. Whether an executor does
this depends on its rules:

Type of executor | Behaviour of dispatch

System Always runs the function object before returning from dispatch().

Thread pool If we are inside the thread pool, runs the function object before returning
from dispatch(). Otherwise, adds to the thread pool's work queue.

Strand If we are inside the strand, or if the strand queue is empty, runs the
function object before returning from dispatch(). Otherwise, adds to

the strand's work queue.
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Future / Promise | Wraps the function object in a try/catch block, and runs it before
returning from dispatch().

The consequence of this is that, if the executor’s rules allow it, the compiler is able to inline
the function call.

A post operation, on the other hand, is not permitted to run the function object itself.
post(ex, f1);

A posted function is scheduled for execution as soon as possible, but according to the rules of
the executor:

Type of executor | Behaviour of post

System Adds the function object to an unspecified system-wide thread pool's
work queue.

Thread pool Adds the function object to the thread pool's work queue.

Strand Adds the function object to the strand's work queue.

Future / Promise | Wraps the function object in a try/catch block, and delegates the post
operation to the system executor.

Finally, the defer operation is the least eager of the three.
defer(ex, f1);

A defer operation is similar to a post operation, except that it implies a relationship between
the caller and the function object being submitted. It is intended for use when submitting a
function object that represents a continuation of the caller.

Type of executor | Behaviour of defer

System If the caller is executing within the system-wide thread pool, saves the
function object to a thread-local queue. Once control returns to the
system thread pool, the function object is scheduled for execution as
soon as possible.

If the caller is not inside the system thread pool, behaves as a post
operation.

Thread pool If the caller is executing within the thread pool, saves the function object
to a thread-local queue. Once control returns to the thread pool, the
function object is scheduled for execution as soon as possible.

If the caller is not inside the specified thread pool, behaves as a post
operation.

Strand Adds the function object to the strand's work queue.

Future / Promise | Wraps the function object in a try/catch block, and delegates to the
system executor for deferral.
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4.1 Posting functions to a thread pool

As a simple example, let us consider how to implement the Active Object design pattern
using the library. In the Active Object pattern, all operations associated with an object are run
on its own private thread.

class bank_account

{
int balance_ = 0;
std::experimental::thread_pool pool_{1};
mutable std::experimental::thread_pool::executor_type ex_
= pool_.get_executor();

public:
void deposit(int amount)

{

std: :experimental::post(ex_, [=]

{

balance_ += amount;

s

void withdraw(int amount)

{
std: :experimental::post(ex_, [=]
{
if (balance_ >= amount)
balance_ -= amount;

1)
}
}s

First, we create a private thread pool with a single thread:
std::experimental::thread_pool pool_{1};

A thread pool is an example of an execution context. An execution context represents a place
where function objects will be executed. This is distinct from an executor, which, as an
embodiment of a set of rules, is intended to be a lightweight policy object that is cheap to
copy and wrap for further adaptation.

Therefore, to inject function objects into the thread pool, we must obtain an executor for it
using the member function get_executor():

mutable std::experimental::thread_pool::executor_type ex_ =
pool .get_executor();

To add the function to the queue, we then use a post operation:
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std: :experimental::post(ex_, [=]
{
if (balance_ >= amount)
balance_ -= amount;

1)

4.2 Waiting for function completion

When implementing the Active Object pattern, we will normally want to wait for the
operation to complete. To do this we can re-implement our bank_account member functions
to pass an additional completion token to the free function post(). A completion token
specifies how we want to be notified when the function finishes2. For example:

void withdraw(int amount)

{

std::future<void> fut = std::experimental::post(ex_, [=]

{

if (balance_ >= amount)

balance_ -= amount;
¥
std: :experimental::use_future);
fut.get();

}

Here, the use_future completion token is specified. When passed the use_future token, the
free function post () returns the result via a std: : future object.

Other types of completion token include plain function objects (used as callbacks), resumable
functions or coroutines, and even user-defined types. If we want our active object to accept
any type of completion token, we simply change the member functions to accept the token as
a template parameter:

template <class CompletionToken>
auto withdraw(int amount, CompletionToken&& token)

{
return std::experimental::post(ex_, [=]
{
if (balance_ >= amount)
balance_ -= amount;

¥

std: :forward<CompletionToken>(token));
}

The caller of this function can now choose how to receive the result of the operation, as
opposed to having a single strategy hard-coded in the bank_account implementation. For
example, the caller could choose to receive the result via a std: : future:

bank_account acct;

/...
std::future<void> fut = acct.withdraw(10, std::experimental::use_future);
fut.get();

or callback:

2 See N4045 for a complete description of completion tokens.
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acct.withdraw(10, []{ std::cout << "withdraw complete\n"; });
or any other type that meets the completion token requirements. This approach also works

for functions that return a value:

class bank_account

{
/7

template <class CompletionToken>
auto balance(CompletionToken&& token) const

{
return std::experimental::post(ex_, [=]
{
return balance_;
¥
std: :forward<CompletionToken>(token));
}
}s5

When using use_future, the future's value type is determined automatically from the
executed function's return type:

std::future<int> fut = acct.balance(std::experimental::use_future);
std::cout << "balance is " << fut.get() << "\n";

Similarly, when using a callback, the function's result is passed as an argument:

acct.balance([](int bal){ std::cout << "balance is " << bal << "\n"; 1});

4.3 Limiting concurrency using strands

Clearly, having a private thread for each bank_account object is not going to scale well to
thousands or millions of objects. We may instead want all bank accounts to share a thread
pool. The system_executor object provides access to a system thread pool that we can use
for this purpose:

std: :experimental::system_executor ex;
std: :experimental::post(ex, []{ std::cout << "Hello, world!\n"; });

However, the system thread pool uses an unspecified number of threads, and the posted
function could run on any of them. The original reason for using the Active Object pattern
was to limit the bank_account object's internal logic to run on a single thread. Fortunately,
we can also limit concurrency by using the strand<> template.

The strand<> template is an executor that acts as an adapter for other executors. In addition
to the rules of the underlying executor, a strand adds a guarantee of non-concurrency. That is,
it guarantees that no two function objects submitted to the strand will run in parallel.

We can convert the bank_account class to use a strand very simply:
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class bank_account

{
int balance_ = 0;
mutable std::experimental: :strand<
std: :experimental::system_executor> ex_;

public:
//
}s

4.4 Lightweight, immediate execution using dispatch

As noted above, a post operation always submits a function object for later execution. This
means that when we write:

template <class CompletionToken>
auto withdraw(int amount, CompletionToken&& token)

{
return std::experimental::post(ex_, [=]
{
if (balance_ >= amount)
balance_ -= amount;

¥

std: :forward<CompletionToken>(token));
}

we will always incur the cost of a context switch (plus an extra context switch if we wait for
the result using a future). This cost can be avoided if we use a dispatch operation instead. The
system executor's rules allow it to run a function object on any thread in the process, so if we
change the withdraw function to:

template <class CompletionToken>
auto withdraw(int amount, CompletionToken&& token)

{
return std::experimental::dispatch(ex_, [=]
{
if (balance_ >= amount)
balance_ -= amount;
¥
std: :forward<CompletionToken>(token));
}

then the enclosed lambda object can be executed before dispatch() returns. The only
condition where it will run later is when the strand is already busy on another thread. In this
case, in order to meet the strand's non-concurrency guarantee, the function object must be
added to the strand's work queue. In the common case there is no contention on the strand
and the cost is minimised.

4.5 Composition using variadic dispatch and wrap

Let us now modify the bank_account class to add a function to transfer balance from one
bank account to another. To implement this function we must coordinate code on two distinct
executors: the strand<> executors that belong to each of the bank accounts.

A first attempt at solving this might use a std: : future:
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class bank_account

{
/7

template <class CompletionToken>
auto transfer(bank_account& to_acct, CompletionToken&& token)

{
return std::experimental::dispatch(ex_, [=, &to_acct]
{
if (balance_ >= amount)
{
balance_ -= amount;
std: :future<void> fut = to_acct.deposit(
amount, std::experimental::use_future);
fut.get();
}
¥
std: :forward<CompletionToken>(token));
}
}s

While correct, this approach has the side effect of blocking the thread until the future is ready.
If the to_acct object's strand is busy running other function objects, this might take some
time.

In the examples so far, you might have noticed that sometimes we call post() or dispatch()
with just one function object, and sometimes we call them with both a function object and a
completion token.

The dispatch(), post() and defer() functions are variadic templates that can accept a
number of completion tokens. For example, the library specifies the dispatch() function as:

template <class... CompletionTokens>
auto dispatch(CompletionTokens&&... tokens);

template <class Executor, class... CompletionTokens>
auto dispatch(Executor e, CompletionTokens&&... tokens);

When we call dispatch(), the library turns each completion token into a function object? and
calls these functions in sequence. The return value of any given function is passed as an
argument to the next one. For example:

std::future<std::string> fut = std::experimental::dispatch(ex_,
[1{ return 1; },
[1(¢(int i) { return 1 + 1; },
[1(int i) { return 1 * 2; },
[J(int i) { return std::to_string(i); },
[J(std::string s) { return "value is " + s; },
std: :experimental::use_future);
std::cout << fut.get() << std::endl;

will output the string value is 4.

3 Using N4045’s handler_type trait.

10
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For our bank account example, what is more important is that the variadic dispatch(),
post() and defer() functions let you run each function object on a different executor. This is
accomplished using the executor's wrap() member function, which associates the executor
with a function object. We can then write our transfer () function as follows:

template <class CompletionToken>
auto transfer(int amount, bank_account& to_acct, CompletionToken&& token)
{
return std::experimental::dispatch(
ex_.wrap([=]

{
if (balance_ >= amount)
{
balance_ -= amount;
return amount;
}
return 0;
1

to_acct.ex_.wrap(
[&to_acct](int deducted)

{

to_acct.balance_ += deducted;

1

std: :forward<CompletionToken>(token));

}

Here, the first function object:

ex_.wrap([=]

{ if (balance_ >= amount)
{
balance_ -= amount;
return amount;
}
return 0;
3>

is run on the source account's strand ex_. We wrap the function object using ex_.wrap(...)
to tell dispatch() which executor to use.

The amount that is successfully deducted is then passed to the second function object:

to_acct.ex_.wrap(
[&to_acct](int deducted)

{

to_acct.balance_ += deducted;

1)

which, again thanks to wrap(), is run on the to_acct object's strand. By running each
function object on a specific executor, we ensure that both bank_account objects are updated
in a thread-safe way.

11
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When an executor is not explicitly specified, a function object defaults to the
unspecified_executor. The unspecified executor delegates its dispatch, post and defer
operations to the system executor.

4.6 Composition using resumable functions

Variadic dispatch(), post() and defer() are useful for strictly sequential task flow, but for
more complex control flow the executors library is extensible to other approaches, including
resumable functions, or coroutines. To illustrate them we will now add a function to find the
bank account with the largest balance.

Stackful coroutines are identified by a last argument of type yield_context®:

template <class Iterator, class CompletionToken>
auto find_largest_account(
Iterator begin, Iterator end,
CompletionToken&& token)
{
return std::experimental::dispatch(
[=](std::experimental::yield_context yield)

{
auto largest_acct = end;
int largest_balance;
for (auto i = begin; i != end; ++i)
{
int balance = i->balance(yield);
if (largest_acct == end || balance > largest_balance)
{
largest_acct = i;
largest_balance = balance;
}
}
return largest_acct;
¥

std: :forward<CompletionToken>(token));
}

The yield object is a completion token that means that, when the call out to a bank account
object is reached®:

int balance = i->balance(yield);

the library implementation automatically suspends the current function. The thread is not
blocked and remains available to process other function objects. Once the balance()
operation completes, the find_largest_account function resumes execution at the
following statement.

These stackful resumable functions are implemented entirely as a library construct, and
require no alteration to the language in the form of new keywords. Consequently, they can

4 Detected using a SFINAE-enabled handler_type trait specialisation.
5 The yield_context completion token type is discussed in N4045.

12
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utilise arbitrarily complex control flow constructs, including stack-based variables, while still
retaining concise, familiar C++ language use.

4.7 Polymorphic executors

Up to this point, our bank_account class's executor has been a private implementation detail.
However, rather than limit ourselves to the system executor, we will now alter the class to be
able to specify the executor on a case-by-case basis.

Ultimately, executors are defined by a set of type requirements, and each of the executors we
have used so far is a distinct type. For optimal performance we can use compile-time
polymorphism, and specify the executor as a template parameter:

template <class Executor>
class bank_account

{
int balance_ = 0;
mutable std::experimental::strand<Executor> ex_;

public:
explicit bank_account(const Executor& ex)
: ex_(ex)

//
}s
On the other hand, in many situations runtime polymorphism will be preferred. To support
this, the library provides the executor class, a polymorphic wrapper:

class bank_account
{
int balance_ = 0;
mutable std::experimental::strand<
std: :experimental::executor> ex_;

public:
explicit bank_account(
const std::experimental::executor& ex =
std: :experimental::system_executor())
: ex_(ex)

//
s

The bank_account class can then be constructed using an explicitly specified thread pool:

std::experimental::thread_pool pool;
bank_account acct(pool.get_executor());

or any other object that meets the executor type requirements.

13
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4.8 Coordinating concurrent operations

To illustrate the tools that this library provides for managing parallelism and concurrency, let
us now turn our attention to a different use case: sorting large datasets. Consider an example
where we want to sort a very large vector of doubles:

std::vector<double> vec(a_very_large_number);

std::sort(vec.begin(), vec.end());

If we are running this code on a system with two at least CPUs then we can cut the running
time by splitting the array into halves, sorting each half in parallel, and finally merging the
two now-sorted halves into a sorted whole. This executors library lets us do this easily using
the copost () function:

std: :experimental: :copost(
[&]{ std::sort(vec.begin(), vec.begin() + (vec.size() / 2)); },
[&]{ std::sort(vec.begin() + (vec.size() / 2), vec.end()); },
std::experimental::use_future).get();

std::inplace_merge(vec.begin(), vec.begin() + (vec.size() / 2), vec.end());

The function name copost() is short for concurrent post. In the above example, it posts the
two lambda objects:

[&]{ std::sort(vec.begin(), vec.begin() + (vec.size() / 2)); },
[&]{ std::sort(vec.begin() + (vec.size() / 2), vec.end()); },

to the system thread pool, where they can run in parallel. When both have finished, the caller
is notified via the final completion token (in this case, use_future).

Like post(), copost() (and its counterparts codispatch() and codefer()) is a variadic
template function that can accept a number of completion tokens. In pseudo-code, the library
declares copost() as:

auto copost(te, ti, ..., twi, tn);
auto copost(executor, te, ti, ..., ty-1, ty);

where tg to ty are completion tokens. When we call copost(), the library turns each of the

tokens into the function objects fp to fy. The functions fg to fy-1 are then posted for
execution, and only when all are complete will fy be invoked. The return values of fg to fy.1
are passed as arguments to fy as in the following example:

std: :experimental: :copost(ex_,
[1{ return 1; },
[1{ return "hello"s; },
[1{ return 123.0; },
[J(int a, std::string b, double c) { ... });

4.9 Composition using chain

To facilitate reusability, we will now wrap our parallel sort implementation in a function and
let the user choose how to wait for completion. However, once the two halves have been
sorted we now need to perform two separate actions: merge the halves, and deliver the
completion notification according to the user-supplied completion token. We can combine
these two actions into a single operation using chain():

14
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template <class Iterator, class CompletionToken>
auto parallel sort(Iterator begin, Iterator end, CompletionToken&& token)
{
const std::size_t n = end - begin;
return std::experimental::copost(
[=]{ std::sort(begin, begin + (n / 2)); },
[=]{ std::sort(begin + (n / 2), end); },
std: :experimental: :chain(
[=]{ std::inplace_merge(begin, begin + (n / 2), end); },
std: :forward<CompletionToken>(token)));

}
Here, the call to chain():

std: :experimental::chain(
takes the two completion tokens:

[=]{ std::inplace_merge(begin, begin + (n / 2), end); },
std: :forward<CompletionToken>(token)));

turns them into their corresponding function objects, and then combines these into a single
function object. This single function object meets the requirements for a final argument to
copost().

The chain() function is a variadic template similar to dispatch(), post() and defer():

template <class... CompletionTokens>
auto chain(CompletionTokens&&... tokens);

template <class Signature, class... CompletionTokens>
auto chain(CompletionTokens&&... tokens);

When we call chain(), the library turns the completion tokens into their corresponding
handler objects. These are chained such that they execute serially, and the return value of any
given function in the chain is passed as an argument to the next one. However, unlike
dispatch(), post() or defer(), the chained functions are not executed immediately, but
are instead returned as a function object which we can save for later execution. For example,
the continuation created by:

auto ¢ = std::experimental::chain(
[1{ return 1; },
[J(int i) { return i + 1; },
[J(int i) { return i * 2; },
[J(int i) { return std::to_string(i); },
[J(std::string s) { std::cout << "value is " << s << "\n"; });

can be called directly like this:
std: :move(c)();

taking care to note that is only safe to invoke the function once, as the call may have resulted
in c being in a moved-from state.

A more typical way to invoke the continuation would be to pass it to an operation like
dispatch(), post() or defer():

std: :experimental::dispatch(std::move(c));

Unlike a direct call, this has the advantage of preserving completion token behaviour with
respect to the deduced return type. This means that the following works as expected:
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auto ¢ = std::experimental::chain(
[1{ return 1; },
[1(int i) { return 1 + 1; },
[1(int i) { return 1 * 2; },
[J(int i) { return std::to_string(i); },
[J(std::string s) { return "value is " + s; },
std::experimental::use_future);
std::future<std::string> fut = std::experimental::dispatch(std::move(c));
std::cout << fut.get() << std::endl;

and outputs the string value is 4.

4.10 Convenience functions for timer operations

When working with executors, we will often need to schedule functions to run at, or after, a
time. This library provides several high-level operations we can use for this purpose.

First of these is the post_after() function, which we can use to schedule a function to run
after a delay:

std: :experimental::post_after(std::chrono::seconds(1),
[]{ std::cout << "Hello, world!\n"; });

If we want to be notified when the function has finished, we can specify a completion token
as well:

std::future<void> fut = std::experimental::post_after(
std::chrono::seconds(1),
[]{ std::cout << "Hello, world!\n"; },
std: :experimental::use_future);

fut.get();

Both of the above examples use the system executor. We can of course specify an executor of
our own:

std::experimental::thread_pool pool;

auto ex = pool.get_executor();

std: :experimental::post_after(ex, std::chrono::seconds(1),
[]{ std::cout << "Hello, world!\n"; });

The post_at () function can instead be used to run a function object at an absolute time:

auto start_time = std::chrono::steady_clock: :now();

/...

std: :experimental::post_after(start_time + std::chrono::seconds(1),
[]{ std::cout << "Hello, world!\n"; });

The library also provides dispatch_after() and dispatch_at() as counterparts to
post_after() and post_at() respectively. As dispatch operations, they are permitted to
run the function object before returning, according to the rules of the underlying executor.
Likewise, defer_after() and defer_at() may be used to schedule function objects that
represent a continuation of the caller.

4.10.1 Timer operations in resumable functions

These high-level convenience functions can easily be used in resumable functions to provide
the resumable equivalent of std: :this_thread: :sleep():
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std: :experimental::dispatch(
[J(std::experimental::yield_context yield)

{
auto start_time = std::chrono::steady_clock: :now();
for (int i = @; i < 10; ++i)
{
std: :experimental::dispatch_at(
start_time + std::chrono::seconds(i + 1), yield);
std::cout << i << std::endl;
}
})s

Here, the yield object is passed as a completion token to dispatch_at(). The resumable
function is automatically suspended and resumes once the absolute time is reached.

4.11 Timer objects and cancellation of timer operations

The convenience functions do not provide a way to cancel a timer operation. For this level of
control we want to use one of the timer classes provided by the library: steady_timer,
system_timer or high_resolution_timer. To support arbitrary clock types, the class
template basic_timer<> may also be used directly.

A timer object has an associated expiry time, which can be set using either a relative value:
timer.expires_after(std::chrono::seconds(60));

or an absolute one:

timer.expires_at(start_time + std::chrono::seconds(60));

Once the expiry time is set, we then wait for the timer to expire:
timer.wait([](std::error_code ec){ std::cout << "Hello, world!\n"; });
Finally, if we want to cancel the wait, we simply use the cancel() member function:
timer.cancel();

If the cancellation was successful, the function object is called with an error_code equivalent
to the condition std: :errc: :operation_canceled.

4.12 Execution context as a container of services

As an implementation detail of the library, pending timers may be managed using a timer
queue, such as a heap or wheel. This timer queue is implemented as a service that is associated
with an execution context.

The base class execution_context implements an extensible, type-safe, polymorphic set of
services, indexed by service type. Services exist to manage the resources that are shared
across an execution context, a timer queue being one such example.

Access to the services of an execution_context is via free function templates,
use_service(), add_service() and has_service().

In this example:
Service& service = use_service<Service>(my_context);

the Service type argument chooses a service, and a reference to the corresponding service
object is returned. If Service is not present in an execution_context, an object of type
Service is created and added to the context. A program can check if the
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execution_context already implements a particular service with the function
has_service<Service>(), or explicitly add a service instance using add_service().

When constructing a timer object, we can choose whether it uses the system-wide execution
context:

std::experimental::steady_timer timer;
or a specific execution context, such as a thread pool:

std::experimental::thread_pool pool;
std::experimental::steady_timer timer(pool);

In the latter case, the timer cannot be used once its execution context ceases to exist.

4.13 Developing an executor-aware asynchronous operation

N4045 includes an example of a simple wrapper around the Windows API function
RegisterWaitForSingleObject. This function registers a callback to be invoked once a
kernel object is in a signalled state, or if a timeout occurs. The callback is invoked from the
system thread pool.

In N4045, the example shows how to convert this wrapper from a simple callback-based one
into one that supports arbitrary completion tokens. In this paper, we will look at the
additional changes required to make the wrapper executor-aware.

The minimal changes shown in this example are:

* Acallto get_executor() to obtain the completion handler’s associated executor.

* Anexecutor_work object to record pending work against the executor.

* Rather than invoking the handler directly, use of defer() and dispatch() to ensure
that the handler is correctly executed via the executor.

18
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Traits-enabled wrapper

template <class Handler>

struct wait_op {
atomic<HANDLE> wait_handle_;
Handler handler_;

explicit wait_op(Handler handler)
: wait_handle_(@),
handler_(move(handler)) {}

I

template <class Handler>
void CALLBACK wait_callback(
void* param, BOOLEAN timed_out)

unique_ptr<wait_op<Handler>> op(
static_cast<wait_op<Handler>*>(param));

while (op->wait_handle_ == 0)
SwitchToThread();

const error_code ec = timed_out
? make_error_code(errc::timed_out)
: error_code();

op->handler_(ec);

template <class CompletionToken>
auto wait_for_object(
HANDLE object, DWORD timeout,
DWORD flags, CompletionToken&& token)

async_completion<CompletionToken,
void(error_code)> completion(token);

typedef handler_type_t<CompletionToken,
void(error_code)> Handler;

unique_ptr<wait_op<Handler>>
op(new wait_op<Handler>(
move(completion.handler)));

HANDLE wait_handle;
if (RegisterWaitForSingleObject(
&wait_handle, object,
&wait_callback<Handler>,
op.get(), timeout,
flags | WT_EXECUTEONLYONCE))
{
op->wait_handle_ = wait_handle;
op.release();
¥
else
{
DWORD last_error = GetLastError();
const error_code ec(
last_error, system_category());

op->handler_(ec);

return completion.result.get();

19

Executor-aware wrapper

template <class Handler, class Executor>
struct wait_op {
atomic<HANDLE> wait_handle_;
Handler handler_;
typedef decltype(get_executor(
declval<Handler>())) Executor;
executor_work<Executor> work_;
explicit wait_op(Handler handler)
: wait_handle_(@),
handler_(move(handler)),
work_(get_executor(handler_)) {}

I

template <class Handler>
void CALLBACK wait_callback(
void* param, BOOLEAN timed_out)
{
unique_ptr<wait_op<Handler>> op(
static_cast<wait_op<Handler>*>(param));

while (op->wait_handle_ == 0)
SwitchToThread();

const error_code ec = timed_out
? make_error_code(errc::timed_out)
: error_code();

dispatch(op->work_.get_executor(),
[h=move(op->handler_), ec]{ h(ec); });

template <class CompletionToken>
auto wait_for_object(
HANDLE object, DWORD timeout,
DWORD flags, CompletionToken&& token)

async_completion<CompletionToken,
void(error_code)> completion(token);

typedef handler_type_t<CompletionToken,
void(error_code)> Handler;

unique_ptr<wait_op<Handler>>
op(new wait_op<Handler>(
move(completion.handler)));

HANDLE wait_handle;

if (RegisterWaitForSingleObject(
&wait_handle, object,
&wait_callback<Handler>,
op.get(), timeout,
flags | WT_EXECUTEONLYONCE))

{
op->wait_handle_ = wait_handle;
op.release();
¥
else
{
DWORD last_error = GetLastError();
const error_code ec(
last_error, system_category());
defer(op->work_.get_executor(),
[h=move(op->handler_), ec]{ h(ec); });
¥

return completion.result.get();
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5 Impact on the standard

This proposal consists only of library additions and does not require any language features
beyond those that are already available in C++14.

6 Relationship to other proposals

This proposal builds on the type traits defined in N4045 Library Foundations for Asynchronous
Operations. This paper is intended as an alternative proposal to N3785 Executors and schedulers.

7 Conclusion

The type traits introduced in N4045 Library Foundations for Asynchronous Operations define an
extensible asynchronous model that can support:

* Callbacks, where minimal runtime penalty is desirable.
* Futures, and not just std: : future but also future classes supplied by other libraries.
*  Coroutines or resumable functions, without adding new keywords to the language.

The library introduced in this paper applies this asynchronous model, and its design
philosophy, to executors. Rather than a design that is restricted to runtime polymorphism, we
can allow users to choose the approach that is appropriate to their use case.

Future work will aim to develop guidance on the development of asynchronous operations
that participate in an executor-aware model, such as those that integrate operating system
services, for example networking support.
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9 Proposed text

Note: This is not intended as complete proposed text, but rather as a brief sketch of the library’s key
components.

9.1 Executors

Executor type requirements
An archetype for the executor type requirements looks like:

class Executor

{
public:
Executor(const Executor&) noexcept; — #1

execution_context& context() noexcept; — #2

void work_started() noexcept; 43
void work_finished() noexcept;

template <class Function, class Allocator> .
void dispatch(Function&& f, const Allocator& a);
template <class Function, class Allocator>

- #4
void post(Function&& f, const Allocator& a);
template <class Function, class Allocator>
void defer(Function&& f, const Allocator& a); J

template <class T>
auto wrap(T&& t) const;
}s
The key elements of the executor type requirements are:

1. Like allocators, executors are CopyConstructible, and the copy and move
constructors shall not exit via an exception.

2. All executors have an associated execution context. This may be used to access the
execution context’s services, such as a timer queue.

3. The work_started() and work_finished() functions are used to inform the
executor of outstanding work. An example of outstanding work is a pending receive
operation on a socket.

4. The dispatch(), post() and defer() functions submit function objects for
execution according to the executor’s rules. The executor may use the supplied
allocator to allocate any objects required for bookkeeping, e.g. a linked-list element to
store the function object in a queue.

continuation_of trait

template <class> continuation_of; // not defined

template <class _Func, class... _Args>
struct continuation_of<_Func(_Args...)>
{

typedef see below signature;

template <class _F, class _C> static auto chain(_F&& __ f, _C&& _ c);
s
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continuation_of::signature

Type:
e If _Func and decay_t<_Func> are different types, continuation_of<
decay_t<_Func>(_Args...)>::signature;
* Let R be the type produced by result_of_t<_Func(_Args...)>. If R is void,
void(). If R is non-void, void(R).
*  Otherwise, if result_of<_Func(_Args...)> does not contain a nested type named
type, the program is ill formed.

continuation_of::chain

template <class _F, class _C> static auto chain(_F&& __ f, _C&& _ c);

If _Func and decay_t<_Func> are different types, returns:
continuation_of<decay_t<_Func>(_Args...)>::chain(forward<_F>(__f), forward<_C>(__c)).

Otherwise, returns a function object that, when invoked, calls a copy of __f, and then passes
the result to a copy of __c.

Class execution_context

class execution_context

public:
class service;

// construct / copy / destroy:

execution_context();

execution_context(const execution_context&) = delete;
execution_context& operator=(const execution_context&) = delete;
virtual ~execution_context();

protected:
// execution context operations:

void shutdown_context();
void destroy_context();

3

class service_already_exists;

template <class _Service> _Service& use_service(execution_context& _ c);

template <class _Service, class... _Args> _Service&
make_service(execution_context& __c, _Args&&... __args);

template <class _Service> bool has_service(execution_context& __c) noexcept;

A collection of services, indexed by type.

Class execution_context::service

class execution_context::service

{

protected:
explicit service(execution_context& _ c);
virtual ~service();

execution_context& context();
private:

virtual void shutdown_service() = 0;

3
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The class execution_context: :service is the base class for all services within an execution
context.

is_executor trait

template <class _T> struct is_executor : false_type {};

Executor argument tag

struct executor_arg_t {};
constexpr executor_arg_t executor_arg = executor_arg_t{};

The executor_arg_t struct is an empty structure type used as a unique type to disambiguate
constructor and function overloading.

uses_executor trait

template <class _T, class _Executor> struct uses_executor : false_type {};

Class template executor_wrapper

template <class _T, class _Executor> class executor_wrapper
{
public:

typedef _Executor executor_type;

// construct / copy / destroy:

executor_wrapper(const executor_wrapper& _ w);
executor_wrapper(executor_wrapper&& _ w);
template <class _U> executor_wrapper(const executor_wrapper<_U, _Executor>& _ w);
template <class _U> executor_wrapper(executor_wrapper<_U, _Executor>&& _ w);
template <class _U> executor_wrapper(executor_arg_t, const _Executor& __ e, _U&& _ u);
executor_wrapper(executor_arg_t, const _Executor& __e, const executor_wrapper& _ w);
executor_wrapper(executor_arg_t, const _Executor& __e, executor_wrapper&& _ w);
template <class _U> executor_wrapper(executor_arg_t, const _Executor& _ e,
const executor_wrapper<_U, _Executor>& _ w);
template <class _U> executor_wrapper(executor_arg_t, const _Executor& _ e,
executor_wrapper<_U, _Executor>&& _ w);

~executor_wrapper();
// executor wrapper operations:

executor_type get_executor() const noexcept;
template <class... _Args> result_of_t<_T(_Args&&...)> operator()(_Args&&...);
s

template <class _T, class _Executor>
struct uses_executor<executor_wrapper<_T, _Executor>, _Executor> : true_type {};

template <class _T, class _Executor, class _Signature>
struct handler_type<executor_wrapper<_T, _Executor>, _Signature>;

template <class _T, class _Executor>
class async_result<executor_wrapper<_T, _Executor>>;

Class template executor_work

template <class _Executor>
class executor_work

{
public:
typedef _Executor executor_type;

// construct / copy / destroy:
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explicit executor_work(const executor_type& __e) noexcept;
executor_work(const executor_work& __w) noexcept;
executor_work(executor_work& __w) noexcept;

executor_work operator=(const executor_type&) = delete;

~executor_work();

// executor work operations:

executor_type get_executor() const noexcept;
void reset() noexcept;

3

Class system_executor

class system_executor

{
public:

// executor operations:

execution_context& context();

void work_started() noexcept;
void work_finished() noexcept;

template
template
template

template
s

<class _Func,
<class _Func,
<class _Func,

<class _Func>

class _Alloc> void dispatch(_Func&& __f, const _Alloc& a);
class _Alloc> void post(_Func&& _ f, const _Alloc& a);
class _Alloc> void defer(_Func& __f, const _Alloc& a);

auto wrap(_Func&& __ f) const;

template <> struct is_executor<system_executor> : true_type {};

Class unspecified_executor

class unspecified_executor

{
public:

// executor operations:

execution_context& context();

void work_started() noexcept;
void work_finished() noexcept;

template
template
template

template
s

<class _Func,
<class _Func,
<class _Func,

<class _Func>

class _Alloc> void dispatch(_Func&& __f, const _Alloc& a);
class _Alloc> void post(_Func& _ f, const _Alloc& a);
class _Alloc> void defer(_Func& __f, const _Alloc& a);

auto wrap(_Func&& __ f) const;

template <> struct is_executor<unspecified_executor> : true_type {};

get_executor

template <class _T> auto get_executor(const _T&) noexcept;

The get_executor function is used to obtain an object's associated executor. For function

objects, this is the executor that should be used to invoke the given function. This default

implementation behaves as follows:
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* if the object type has a nested type executor_type, returns the result of the object's
get_executor() member function;

* if the object is callable, returns an unspecified_executor object;

* otherwise, this function does not participate in overload resolution.

Polymorphic executor wrapper

class bad_executor;

class executor
{
public:
// construct / copy / destroy:

executor() noexcept;
executor(nullptr_t) noexcept;
executor(const executor& __e) noexcept;
executor(executor&& __e) noexcept;
template <class _Executor> executor(_Executor __e);
template <class _Alloc> executor(allocator_arg_t, const _Alloc&) noexcept;
template <class _Alloc> executor(allocator_arg_t, const _Alloc&, nullptr_t) noexcept;
template <class _Alloc> executor(allocator_arg_ t, const _Alloc&, const executor& _ e);
template <class _Alloc> executor(allocator_arg_t, const _Alloc&, executor&& _ e);
template <class _Executor, class _Alloc>
executor(allocator_arg_t, const _Alloc& __a, _Executor __e);

executor& operator=(const executor& __e) noexcept;

executor& operator=(executor& __e) noexcept;

executor& operator=(nullptr_t) noexcept;

template <class _Executor> executor& operator=(_Executor&& _ e);
~executor();

// executor operations:

execution_context& context();

void work_started() noexcept;
void work_finished() noexcept;

template <class _Func, class _Alloc> void dispatch(_Func& __f, const _Alloc& a);
template <class _Func, class _Alloc> void post(_Func&& _ f, const _Alloc& a);
template <class _Func, class _Alloc> void defer(_Func& __f, const _Alloc& a);
template <class _Func> auto wrap(_Func&& __f) const;

// executor capacity:

explicit operator bool() const noexcept;

// executor target access:

const type_info& target_type() const noexcept;

template <class _Executor> _Executor* target() noexcept;
template <class _Executor> const _Executor* target() const noexcept;

s

template <> struct is_executor<executor> : true_type {};
bool operator==(const executor& __e, nullptr_t) noexcept;
bool operator==(nullptr_t, const executor& __e) noexcept;
bool operator!=(const executor& __e, nullptr_t) noexcept;

bool operator!=(nullptr_t, const executor& __e) noexcept;

template<class _Alloc>
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struct uses_allocator<executor, _Alloc>
. true_type {};

chain
template <class... _CompletionTokens>
auto chain(_CompletionTokens&&... __ tokens);
template <class _Signature, class... _CompletionTokens>
auto chain(_CompletionTokens&&... __ tokens);
dispatch
template <class... _CompletionTokens>

auto dispatch(_CompletionTokens&&... __ tokens);
template <class _Executor, class... _CompletionTokens>

auto dispatch(const _Executor& __e, _CompletionTokens&&... __ tokens);
post
template <class... _CompletionTokens>

auto post(_CompletionTokens&&... _ tokens);
template <class _Executor, class... _CompletionTokens>

auto post(const _Executor& __e, _CompletionTokens&&... __ tokens);
defer
template <class... _CompletionTokens>

auto defer(_CompletionTokens&&... __ tokens);
template <class _Executor, class... _CompletionTokens>

auto defer(const _Executor& __e, _CompletionTokens&&... __tokens);
codispatch
template <class... _CompletionTokens>

auto codispatch(_CompletionTokens&&... __ tokens);
template <class _Executor, class... _CompletionTokens>
auto codispatch(const _Executor& __e, _CompletionTokens&&... _ tokens);

copost
template <class... _CompletionTokens>
auto copost(_CompletionTokens&&... __ tokens);

template <class _Executor, class... _CompletionTokens>
auto copost(const _Executor& __e, _CompletionTokens&&... __ tokens);

codefer

template <class... _CompletionTokens>
auto codefer(_CompletionTokens&&... __ tokens);
template <class _Executor, class... _CompletionTokens>
auto codefer(const _Executor& __e, _CompletionTokens&&... _ tokens);

Class template strand

template <class _Executor>
class strand

{
public:
typedef _Executor executor_type;

// construct / copy / destroy:
strand();
explicit strand(_Executor __e);

strand(const strand& __s);
strand(strand&& __s);
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template <class _OtherExecutor> strand(const strand<_OtherExecutor>& _ s);
template <class _OtherExecutor> strand(strand<_OtherExecutor>&& __s);

strand& operator=(const strand& __s);

strand& operator=(strand&& __s);

template <class _OtherExecutor> strand& operator=(const strand<_OtherExecutor>& __s);
template <class _OtherExecutor> strand& operator=(strand<_OtherExecutor>&& __s);

~strand();
// executor operations:

executor_type get_executor() const noexcept;
execution_context& context();

void work_started() noexcept;
void work_finished() noexcept;

template <class _Func, class _Alloc> void dispatch(_Func&& __f, const _Alloc& a);
template <class _Func, class _Alloc> void post(_Func&& _ f, const _Alloc& a);
template <class _Func, class _Alloc> void defer(_Func& __f, const _Alloc& a);

template <class _Func> auto wrap(_Func&& __f) const;

3

template <class _Executor> struct is_executor<strand<_Executor>> : true_type {};

9.2 Thread pools

Class thread_pool

class thread_pool
: public execution_context

{
public:
class executor_type;

// construct / copy / destroy:

thread_pool();

explicit thread_pool(size_t _ num_threads);
thread_pool(const thread_pool&) = delete;
thread_pool& operator=(const thread_pool&) = delete;
~thread_pool();

// thread pool operations:

executor_type get_executor() const noexcept;
void stop();

void join();

3

Class thread_pool::executor_type

class thread_pool::executor_type

{
public:
// construct / copy / destroy:

executor_type(const executor_type& __e) noexcept;
executor_type& operator=(const executor_type& __e) noexcept;

~executor_type();

// executor operations:
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execution_context& context();

void work_started() noexcept;
void work_finished() noexcept;

template <class _Func, class _Alloc> void dispatch(_Func&& __f, const _Alloc& a);
template <class _Func, class _Alloc> void post(_Func&& _ f, const _Alloc& a);
template <class _Func, class _Alloc> void defer(_Func& __f, const _Alloc& a);

template <class _Func> auto wrap(_Func&& __f) const;

3

template <> struct is_executor<thread_pool::executor_type> : true_type {};
9.3 Loop schedulers

Class loop_scheduler

class loop_scheduler

: public execution_context
{
public:

class executor_type;

// construct / copy / destroy:

loop_scheduler();

explicit loop_scheduler(size_t __concurrency_hint);
loop_scheduler(const loop_scheduler&) = delete;
loop_scheduler& operator=(const loop_scheduler&) = delete;
~loop_scheduler();

// scheduler operations:
executor_type get_executor() const noexcept;

size_t run();
size_t run_one();
template <class _Rep, class _Period>

size_t run_for(const chrono::duration<_Rep, _Period>& _ rel_time);
template <class _Clock, class _Duration>

size_t run_until(const chrono::time_point<_Clock, _Duration>& __abs_time);
size_t poll();
size_t poll_one();

void stop();
bool stopped() const;
void reset();

3

Class loop_scheduler::executor_type

class loop_scheduler: :executor_type

{

public:
// construct / copy / destroy:
executor_type(const executor_type& __e) noexcept;
executor_type& operator=(const executor_type& __e) noexcept;
~executor_type();

// executor operations:

execution_context& context();
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void work_started() noexcept;
void work_finished() noexcept;

template <class _Func, class _Alloc> void dispatch(_Func&& __f, const _Alloc& a);
template <class _Func, class _Alloc> void post(_Func&& _ f, const _Alloc& a);
template <class _Func, class _Alloc> void defer(_Func& __f, const _Alloc& a);

template <class _Func> auto wrap(_Func&& __f) const;

3

template <> struct is_executor<loop_scheduler::executor_type>
9.4 Timers

timer_traits trait

template <class _Clock>
struct timer_traits
{
static typename _Clock::duration to_duration(
const typename _Clock::duration& __d);

static typename _Clock::duration to_duration(
const typename _Clock::time_point& __t);

3

Class template basic_timer

. true_type {};

template <class _Clock, class _TimerTraits = timer_traits<_Clock>>

class basic_timer

{

public:
typedef _Clock clock_type;
typedef typename clock_type::duration duration;
typedef typename clock_type::time_point time_point;
typedef _TimerTraits traits_type;

// construct / copy / destroy:

basic_timer();

explicit basic_timer(const duration& __d);

explicit basic_timer(const time_point& __ t);

explicit basic_timer(execution_context& _ c);
basic_timer(execution_context& __c, const duration& __d);
basic_timer(execution_context& __c, const time_point& _ t);
basic_timer(const basic_timer&) = delete;
basic_timer(basic_timer&& __t);

basic_timer& operator=(const basic_timer&) = delete;
basic_timer& operator=(basic_timer&& _ t);

~basic_timer();
// timer operations:
execution_context& context();

void cancel();
void cancel_one();

time_point expiry() const;

void expires_at(const time_point& __t);
void expires_after(const duration& __d);
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void wait();
void wait(error_code& __ec);
template <class _CompletionToken> auto wait(_CompletionToken&& _ token);

3

typedef basic_timer<chrono::system_clock> system_timer;
typedef basic_timer<chrono::steady_clock> steady_timer;
typedef basic_timer<chrono::high_resolution_clock> high_resolution_timer;

dispatch_at

template <class _Clock, class _Duration, class... _CompletionTokens>
auto dispatch_at(const chrono::time_point<_Clock, _Duration>& __abs_time,
_CompletionTokens&&... __ tokens);

template <class _Clock, class _Duration, class _Executor, class... _CompletionTokens>
auto dispatch_at(const chrono::time_point<_Clock, _Duration>& __abs_time,
const _Executor& __e, _CompletionTokens&&... __ tokens);
post_at

template <class _Clock, class _Duration, class... _CompletionTokens>
auto post_at(const chrono::time_point<_Clock, _Duration>& __abs_time,
_CompletionTokens&&... __ tokens);
template <class _Clock, class _Duration, class _Executor, class... _CompletionTokens>
auto post_at(const chrono::time_point<_Clock, _Duration>& __abs_time,
const _Executor& __e, _CompletionTokens&&... __ tokens);

defer_at

template <class _Clock, class _Duration, class... _CompletionTokens>
auto defer_at(const chrono::time_point<_Clock, _Duration>& __abs_time,
_CompletionTokens&&... __ tokens);

template <class _Clock, class _Duration, class _Executor, class... _CompletionTokens>
auto defer_at(const chrono::time_point<_Clock, _Duration>& __abs_time,
const _Executor& __e, _CompletionTokens&&... __ tokens);

dispatch_after

template <class _Rep, class _Period, class... _CompletionTokens>
auto dispatch_after(const chrono::duration<_Rep, _Period>& _ rel_time,
_CompletionTokens&&... __ token);
template <class _Rep, class _Period, class _Executor, class... _CompletionTokens>
auto dispatch_after(const chrono::duration<_Rep, _Period>& _ rel_time,

const _Executor& __e, _CompletionTokens&&... __ tokens);
post_after
template <class _Rep, class _Period, class... _CompletionTokens>

auto post_after(const chrono::duration<_Rep, _Period>& __rel_time,
_CompletionTokens&&... __ token);
template <class _Rep, class _Period, class _Executor, class... _CompletionTokens>
auto post_after(const chrono::duration<_Rep, _Period>& _ _rel_time,
const _Executor& __e, _CompletionTokens&&... __ tokens);

defer_after

template <class _Rep, class _Period, class... _CompletionTokens>
auto defer_after(const chrono::duration<_Rep, _Period>& __rel_time,
_CompletionTokens&&... __ token);
template <class _Rep, class _Period, class _Executor, class... _CompletionTokens>
auto defer_after(const chrono::duration<_Rep, _Period>& __rel_time,
const _Executor& __e, _CompletionTokens&&... __ tokens);
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9.5 Resumable Functions

Class template basic_yield_context

template <class _Executor>
class basic_yield_context

{
public:
typedef _Executor executor_type;

// construct / copy / destroy:

template <class _OtherExecutor>
basic_yield_context(const basic_yield_context<_OtherExecutor>&);

// basic_yield_context operations:
executor_type get_executor() const noexcept;
basic_yield_context operator[](error_code& __ec) const;

3

template <class _Executor, class _R, class... _Args>
struct handler_type<basic_yield_context<_Executor>, _R(_Args...)>;

typedef basic_yield_context<executor> yield_context;
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