
N4037: Non-Transactional Implementation of

Atomic Tree Move

Doc. No.: WG21/N4037
Date: 2014-05-26

Reply to: Paul E. McKenney
Email: paulmck@linux.vnet.ibm.com

May 26, 2014

1 Introduction

Concurrent search trees are well understood [9, 2], as are concurrent search trees
that use lightweight read-side synchronizations mechanisms [10, 11, 17, 16, 7, 1,
8] such as read-copy update (RCU) [14, 12].

However, non-transactional-memory-based algorithms that atomically move
an element from one search tree to another, while avoiding delaying lockless
readers, are lacking. Such algorithms are known for hash tables [18, 19]. A
challenge to find such an algorithm for trees was put forward at the 2014 C++
Standards Committee meeting at Issaquah, WA USA, and this document de-
scribes one solution. As such, it is a work in progress: Future work will imple-
ment multiple solutions and compare their performance and scalability.

A legitimate solution must meet a number of requirements:

1. Concurrent move operations involving elements that are not near each
other in either the source or destination search tree must proceed without
contention.

2. A reader that sees the element in its destination tree must fail to find it
during any subsequent search of the source tree.

3. A reader that fails to find the element in the source tree must find it in
any subsequent search of the destination tree.

4. A given move operation should proceed without contention even given
concurrent insertion, deletion, or other modifications, as long as these
other operations are not near the move operation in either the source or
the destination tree.

1

WG21/N4037 2

5. A given move operation should proceed without contention even given
concurrent relaxed search operations, even if the search operations are
looking for the element being moved.

6. A given move operation should proceed without contention even given
concurrent non-relaxed search operations, but only when the search oper-
ations are not near the move operation in either the source or the desti-
nation tree.

Use of a single global lock fails to meet the “proceed without contention”
requirements, as does the per-data-structure lock approach. Of course, hard-
ware transactional memory techniques can be used to elide these locks in some
cases, but the current limitations of transactional-memory implementations pre-
vent such elision from being carried out in the general case, particularly in the
presence of non-irrevocable operations.

Two-phase locking results in contention on the root/header data element,
also failing the “proceed without contention” requirements. It is possible to
combine lockless search methods through the bulk of the data structure with
two-phase locking for the area of interest, but this approach exposes the locking
state to the caller and complicates the required API.

The solution presented in this paper can easily be generalized to cover mov-
ing multiple elements, and also to multiple types of data structures, including
atomically moving an element from one type of data structure to another. For
example, this approach can be used to atomically move an element from a search
tree to a linked list.

The remainder of this paper is disorganized as follows: Section 2 gives a
very brief overview of related work and a rationale for the choice of algorithm,
Section 3 provides a conceptual overview of the chosen solution, Section 4 walks
through selected portions of the code, Section 5 outlines a few advantages and
disadvantages of this approach, and Section 6 provides concluding remarks.

2 Related Work and Rationale

There have been a great many tree algorithms put forward over the decades,
but the slide set clearly showed a binary search tree, so radix trees, B trees, B*
trees, 2-3 trees, and many others were excluded from consideration.

The Bonsai tree put forward by Clements et al. [1] was seriously considered,
but rejected because it propagates balancing information to the root of the tree
on each and every update, which conflicts with the requirement that concur-
rent atomic moves make mutual forward progress despite involving a common
tree. And indeed, while this paper permitted multiple concurrent non-conflicting
readers, it only permitted one updater to operate on a given tree at any given
point in time.

Serious consideration was also given to AVL and Red-Black trees, but the
rebalancing actions potentially taken on each update limit concurrency [10].
There is also some concern about the interactions between concurrent nearby

WG21/N4037 3

rebalancing operations. At this point, efficient and scalable rebalancing was
excluded from consideration, though it is clearly an important topic for future
work.

A number of concurrent tree algorithms were rejected because they relied on
transactional memory [5, 4, 7, 8], which was excluded from consideration based
on the nature of the challenge.

This forced the choice of a simple binary search tree without rebalancing.
Concurrency considerations led to the restriction that data lives only at the
leaves of the tree, which increases the probability that the node footprints of
concurrent updates will not overlap.

3 Conceptual Overview of Solution

Section 3.1 gives an introduction to the concept of data-element allegiance,
Section 3.2 overviews how to implement an atomic move, Section 3.3 looks at
several implementations of data-element allegiance, and Section 3.4 considers
sychronization design.

3.1 Data-Element Allegiance Concept

The solution is to introduce the notion of element allegiance, so that a given
element can physically reside in two data structures at once, but logically be part
of only one of them. Then if the element’s allegiance can be altered atomically,
it will be seen to move atomically from one enclosing data structure to another.
Although allegiance could be indicated by any number of tokens or identifiers,
we will instead use the address of the enclosing data structure. For example, in
the case of a search tree, this address might that of the root of that tree, which in
the case of a linked list, this address might be that of the list’s header. Addresses
can be written atomically on most modern systems, where “atomically” in this
case means that concurrent reads of the location being written will see either the
old value or the new value, but not a “mash-up” of the two values. This allows
a single store instruction to atomically switch a given element’s allegiance.

3.2 Atomic-Move Conceptual Overview

An atomic move is carried out using the following steps:

1. Allocate an allegiance structure, which is then initialized to the source
data structure. Associate the allegiance structure with the data element
to be moved.

2. Make a copy of the element to be moved. In cases where the element
cannot be copied, introduce a level of indirection. This allows the pointer
to the element to be copied, thus allowing external pointers to that element
to be maintained throughout the atomic move operation.

WG21/N4037 4

3. Associate the allegiance structure with the copy.

4. Insert the copy into the destination data structure. Because the copy’s
allegiance is still to the source data structure, any search for the copy in
the destination data structure will fail.

5. Update the allegiance structure to the destination data structure. At
this point, searches for the element in the source data structure will start
failing, while searches for the element in the destination data structure
will start succeeding.

6. Delete the original element from the source data structure and deallocate
it.

7. Disassociate the allegiance structure from the destination element and
deallocate it.

These steps are illustrated in Figure 1, with “step 0” being the initial state
of both data structures.

An allegiance structure could be permanently associated with each element,
in which case move-time allocation and deallocation is unnecessary. However,
we instead do move-time allocation and deallocation because it allows for more
efficient allegiance checking in the common case where a given element is not
being moved. In addition, this reduces memory overhead in the case where
atomic moves are rare.

We will also consider approaches that restrict a given data element to being
linked from at most one particular linked data structure. This data element is
then either in or out, but if it is in, the identity of the data structure that it is a
member of is implicit in the linkage from that data structure to this particalar
data element. This allows complex multi-element atomic operations to be set up
more simply. It also allows a given data element to be moved (via either copying
or indirection) from one place to another within the same data structure. As
we will see, it also permits a simple solution to the bank-transfer problem.

Note that the deallocation of the allegiance structure and the original ele-
ment must be deferred in order to avoid disrupting concurrent readers. This
deferral may be carried out via any convenient deferred-destruction mechanism,
including garbage collectors, reference counters, hazard pointers, or RCU. It
seems unlikely that many readers will be surprised to learn that RCU was cho-
sen for this effort [13].

3.3 Data-Element Allegiance Implementations

This section describes three types of allegiance implementations, with the first
being best when all data elements have the same source data structure and
the same destination data structure, the second being required when the data
elements are to move among several different data structures, and the third
using implicit allegiance conditioned by an in-or-out indicator.

WG21/N4037 5

0)

1)

Source
Data Structure

Destination
Data Structure

3

1

Original

Source
Data Structure

Destination
Data Structure

Original

Allegiance

Source
Data Structure

Destination
Data Structure

CopyOriginal

Allegiance
2)

Source
Data Structure

Destination
Data Structure

CopyOriginal

Allegiance
3)

3

Source
Data Structure

Destination
Data Structure

CopyOriginal

Allegiance4)

3

Source
Data Structure

Destination
Data Structure

CopyOriginal

Allegiance5)

1

3

1
Source

Data Structure
Destination

Data Structure

Copy

7)

1

1

3

Source
Data Structure

Destination
Data Structure

Copy

Allegiance6)

1

3

Figure 1: Conceptual Allegiance-Mediated Move

WG21/N4037 6

Data
Element A

Data
Structure A

Data
Structure B

AllegianceAllegiance

Data
Element B

Allegiance Allegiance
Switch

Allegiance

Figure 2: Single Source/Destination Allegiance Structure

3.3.1 Single Source/Destination Allegiance Implementations

In the same-source/same-destination case, each data structure has a self-referencing
allegiance pointer, illustrated by the box labelled “Allegiance” above both Data
Structure A and Data Structure B.

A data element’s allegiance linkage can take on one of two forms. The first
form, exemplified by Data Element A in Figure 2, directly references the as-
sociated data structure’s allegiance pointer. This is the normal state of data
elements that are not in the process of being moved. The second form, which is
used to atomically move elements, is exemplified by Data Element B in the fig-
ure. Here, the data element’s allegiance pointer references an allegiance switch,
which is a location that can be overwritten in order to atomically switch the
allegiance of a group of data elements, in this case, from Data Structure A to
Data Structure B.

Note that the self-referencing nature of the allegiance pointers of the two data
structures means that software need not distinguish between the two forms of
data-element allegiance. In both cases, the software can proceed as follows:

1. Fetch the data element’s allegiance pointer. In the first form, the result
is a pointer to the enclosing data structure’s allegiance field, while in the
second form, the result is a pointer to the allegiance switch.

2. Dereference the pointer fetched in the preceding step. In the first form,
the result is still a pointer to the enclosing data structure’s allegiance field,
and in the second form, the result is also a pointer to the enclosing data
structure’s allegiance field.

One useful optimization is to first compare the data element’s allegiance
pointer to the pointer to the suspected enclosing data structure’s allegiance
field. This optimization can eliminate cache misses that might otherwise be
incurred by repeatedly fetching the enclosing data structure’s allegiance field.

WG21/N4037 7

Given this optimization, it would in some cases be possible to make the
data structure’s allegiance fields be NULL pointers rather than self-referencing
pointers, however, doing so prevents quick allegiance switches in overlapping
data structures. For example, if several tree root data structures referenced
the same set of nodes, then allegiance switches could provide the appearance of
switching among these several trees, but without the need to undertake actual
insertion, deletion, or rebalancing operations. We therefore use self-referencing
allegiance fields for the enclosing data structures.1

This implementation fits into the atomic-move conceptual procedure de-
scribed in Section 3.2, with the allegiance switch in Figure 2 taking the role of
Section 3.2’s allegiance structure.

Note that any number of data elements may reference the same allegiance
structure, in which case all of them will atomically change allegiance simultane-
ously. The procedure described in Section 3.2 takes advantage of this property
to simultaneously change the allegiance of the original data element and its copy,
effecting an atomic move from the source data structure to the destination data
structure. This can easily be elaborated in order to atomically move multiple
data elements, as long as they are all moving from the same source and to the
same destination.

3.3.2 Multiple Source/Destination Allegiance Implementations

Atomically moving multiple data elements among multiple data structures re-
quires a couple additional levels of indirection, as shown in Figure 3. The first
additional level of indirection is the allegiance/offset structure that selects the
offset of the pointer from the offset table. This offset table is the second addi-
tional level of indirection.

Note that it is possible to place the offset directly into the data element, but
doing so requires that expensive read-side memory barriers be used both when
reading and updating the data element’s allegiance pointer and offset. This
overhead will typically only be acceptable only when the common case is opti-
mized, that is where the data element’s allegiance pointer directly references the
enclosing data structure’s allegiance field. However, an alternative optimization
places the allegiance offsets, the allegiance switch, and the offset tables into
the same memory block. This alternative optimization minimizes the impact
of the separate allegiance-offset pointers, and furthermore reduces the memory
footprint of the data elements. We therefore use this alternative optimization,
so that the data layout is as shown in the figure.

As with the single source/destination scheme discussed in the previous sec-
tion, the self-referencing nature of the allegiance pointers if the two data struc-
tures means that software need distinguish between the steady-state case repre-
sented by Data Element A and the in-motion case represented by Data Element
B. In both cases, software can proceed as follows:

1 However, frequent testing with NULL-valued allegiance fields for the enclosing data struc-
tures is a valuable validation measure.

WG21/N4037 8

Data
Element A

Data
Structure A

Data
Structure B

AllegianceAllegiance

Data
Element B

Allegiance Allegiance

Offset=2

Allegiance
Switch

Offset: 0

Offset: 1

Offset: 2

Offset: 3

...

Allegiance

Offset: 0

Offset: 1

Offset: 2

Offset: 3

...

Offset=0

Offset=0

Figure 3: Multple Source/Destination Allegiance Structure

WG21/N4037 9

1. Fetch the data element’s allegiance pointer. In the first form, the result
is a pointer to the enclosing data structure’s allegiance field, while in the
second form, the result is a pointer to the allegiance-offset structure.

2. Given the allegiance pointer from the previous step, fetch the offset and
the pointer to the allegiance switch. In the first form, the offset is zero and
the pointer still references the enclosing data structure’s allegiance field,
while in the second form, the pointer references the allegiance switch.

3. Given the allegiance switch pointer from the previous step, fetch the alle-
giance switch. In the first form, the pointer still references the enclosing
data structure’s allegiance field, while in the second form it references the
current offset table.

4. Given the offset table pointer from the previous step and the offset from
the step before that, fetch the ultimate allegiance pointer. In the first
form, the offset was zero, so the result still references the enclosing data
structure’s allegiance field, while in the second form it is the allegiance
pointer, which at long last references the allegiance field of the enclosing
data structure.

Given the large number of levels of indirection, the optimization of first
comparing the data element’s allegiance pointer to the address of the suspected
enclosing data structure’s allegiance field is especially valuable. The merits of a
NULL pointer in this allegiance field are similar to those for single source/desti-
nation allegiance implementations. Also, as before, this implementation fits into
the atomic-move conceptual procedure described in Section 3.2, but with the
combination of the allegiance offsets, allegiance switch, and offset tables playing
the role of the allegiance structure. Steps 2-4 and 6-7 of that procedure must
of course be carried out for each data element being moved.

3.3.3 In-Or-Out Allegiance Implementations

An example layout for the in-or-out implementation is shown in Figure 4. A
data element will normally have a NULL allegiance pointer, indicating that it
is a member of the data structure that it is linked into. Therefore, if Data
Elements A and B were to be considered to be in Data Structures A and B,
respectively, both of their allegiance-pointer fields would be NULL.

Instead, Data Element A is leaving its data structure, and Data Element B is
entering its data structure. Each therefore links to an allegiance-offset structure,
each of which links to a common allegiance switch, which links two one of
two allegiance-state arrays. As shown in the diagram, Data Element A has
offset zero, which indexes the zero-valued element of the allegiance-state array
currently indexed by the allegiance switch. This zero value indicates that Data
Element A is currently to be considered a member of its data structure, namely
Data Structure A. Similarly, Data Element B has offset one, which indexes the
-ENOENT-valued element of the allegiance-state array currently indexed by the

WG21/N4037 10

Data
Element A

Data
Structure A

Data
Structure B

Allegiance

Data
Element B

Allegiance Allegiance

Offset=1

Allegiance
Switch

0

-ENOENTOffset=0

Allegiance

-ENOENT

0

Figure 4: In-Or-Out Allegiance Structure

WG21/N4037 11

Alice's
Balance: $50

Allegiance

Bob's
Balance: $50

Bob's
Balance: $25

Allegiance

Allegiance

Offset=1

Allegiance
Switch

0

-ENOENTOffset=0

Allegiance

-ENOENT

0

Alice's
Balance: $75

Allegiance

Allegiance

Figure 5: Transfer Using In-Or-Out Allegiance Structure

allegiance switch, which means that B is not to be considered a member of Data
Structure B.

Updating the allegiance switch to reference the allegiance-state array at the
lower right will atomically swap the status of the two data elements, in other
words, it will atomically remove Data Element A and add Data Element B. Once
this switch has taken place, Data Element A may be unlinked from Data Struc-
ture A and Data Element B’s allegiance pointer may be set to NULL. The five
allegiance structures are then available for reuse once all pre-existing traversals
through them have completed.

Suppose that we want to use in-or-out allegiance structures to implement
an atomic bank-balance transfer of $25 from Bob to Alice. This could be set
up as shown in Figure 5. The records containing the old balances are linked to
the upper allegiance-offset structure and those containing the new balances are
linked to the lower allegiance-offset structure. The allegiance switch can then
be updated to reference the allegiance array at the lower right, which atomically
increases Alice’s balance to $75 and decreases Bob’s balance to $25.

The in-or-out allegiance approach is therefore capable of effecting surpris-
ingly comprehensive data-structure changes, albeit at the expense of added copy
operations. The amount of copying can of course be reduced by segmenting the
data elements, permitting piecewise replacement/update of each data element.

Alert readers will note that this in-or-out allegiance approach bears some
similarity to greatly simplified versions of some object-based software transac-
tional memory (OSTM) commit mechanisms [4]. This simplification is made

WG21/N4037 12

...

...
RCU

Locking

...

...
RCU

Locking

Allegiance

Figure 6: Locking Regions

possible by bringing multiple synchronization mechanisms to bear on this prob-
lem, and placing each such mechanism into a role for which it is well suited.

3.4 Synchronization Considerations

Although partitionable data structures can scalably use fully locked updates,
attempts to take this approach with trees or linked lists will result in debilitating
bottlenecks on the locks associated with the root or header nodes. Therefore,
concurrent updates, including concurrent atomic moves, clearly require that
locking be augmented with some other synchronization mechanism.

Fortunately, updates to these data structures are typically localized, so that
the update can be divided into a search phase that locates the area to be updated
and the actual update itself. We therefore use read-friendly synchronization
mechanisms such as RCU to protect the search and locking to protect the up-
date. Because the data structure can change while the locks are being acquired,
there is also a validation step once the locks are acquired. If the validation
step fails, the locks are released and the update is retried from the beginning.
This division of responsibility between locking and RCU is depicted in Figure 6:
Insertion and deletion can be carried out by locking at most the affected leaf

WG21/N4037 13

...

...
RCU

Locking

...

...
RCU

Locking

Allegiance

Figure 7: Locking Regions Overlap For Unbalanced Trees

WG21/N4037 14

Linux Kernel C11

smp mb() atomic thread fence(memory order seq cst)

a=ACCESS ONCE(x) a=atomic load explicit(&x,memory order relaxed)

ACCESS ONCE(x)=a atomic store explicit(&x,a,memory order relaxed)

rcu dereference(x) atomic load explicit(memory order consume)

Table 1: Approximate Correspondence Between Linux Kernel and C11

node and its parent. However, if the tree is unbalanced, the locking and RCU
regions can overlap, as shown in Figure 7, where the rightmost non-leaf node is
protected by RCU for updates to its left-hand descendants and by locking for
updates to its right-hand descendants.

One strength of the procedure outlined in Section 3.2 is that locks need not
be held across steps, which greatly simplifies usage and deadlock considerations.
Nevertheless, evaluation of approaches based on two-phase locking, which would
hold locks across steps, is important future work.

4 Code Walkthrough

This code walkthrough focuses on the atomic-move aspects of the invention.
The source code is available for those wishing to dig more deeply.

Section 4.1 describes relevant data structures, Section 4.2 covers the atomic-
move functions, Section 4.3 looks at allegiance, Section 4.4 examines lookup,
and Section 4.5 covers insertion and deletion.

Note that the code uses Linux-kernel primitives. These map roughly to C11
primitives as shown in Table 1. I do apologize for inflicting this alternate syntax
on the committee, and future versions will use C11.

4.1 Data Structures

Figure 8 shows the C-language data structures used in the example implemen-
tation. These provide a binary search tree, but as noted earlier, this approach
works on other linked data structures as well.

The allegiance structure is shown on lines 1-4 of the figure. This is the
simple single source/destiation version, so it consists only of a pointer and an
rcu head structure used for deferred freeing of the structure, which is necessary
to avoid disrupting concurrent readers.

Each treenode structure, shown on lines 6-17 of the figure, represents a node
in the search tree. This has a key, left child, right child, and pointer to user data,
as is conventional for a binary search tree. Line 11 shows the allegiance pointer,
and line 12 shows the eventual intended allegiance. These fields allow other
operations to detect that a given node is coming or going, so that these other
operations will refrain from acting on the transient node. The ->deleted flag

WG21/N4037 15

1 struct allegiance {
2 void *allegiance;
3 struct rcu_head rh;
4 };
5
6 struct treenode {
7 int key;
8 struct treenode *lc;
9 struct treenode *rc;

10 void *data;
11 void **allegiance;
12 void *newallegiance;
13 int deleted;
14 spinlock_t lock;
15 struct rcu_head rh;
16 int mark;
17 };
18
19 struct treeroot {
20 void *allegiance;
21 struct treenode *r;
22 spinlock_t lock;
23 };

Figure 8: Data Structures

on line 13 allows other operations to detect a lockless race with node deletion.
These fields are all protected by the ->lock field. Line 15 defines the rcu head

structure used for the deferred deletion that is necessary to avoid disrupting
concurrent readers, and finally the ->mark field defined on line 16 is used for
internal consistency checking.

The treeroot structure, shown on lines 19-23 of the figure, represents the
root of the tree. This contains a self-referencing ->allegiance pointer on
line 20, a pointer to the root node on line 21, and the lock used to guard
these fields on line 22.

4.2 Atomic Move

The tree atomic move() function, which orchestrates an atomic move, is shown
in Figure 9. Line 4 allocates an allegiance structure having allegiance to the
source data structure, exemplified in this case by a binary search tree. If line 8
determines that line 4’s allocation attempted failed, line 9 returns -ENOMEM to
indicate memory-allocation failure. Lines 10 and 11 then invoke tree change

allegiance start() to associate the newly allocated allegiance structure with
the data element corresponding to the specified key. (Another option is to also
pass in a data pointer in order to distinguish among potentially many data
elements having the same key.) If line 12 finds that tree change allegiance

start() returns non-zero, indicating an error, line 13 transfers to label free ret

to free up the unused allegiance structure and return the failure indication to
the caller. Failure causes include the source data structure containing no such
element and some other thread having already initiated a move for this data
element.

WG21/N4037 16

1 int tree_atomic_move(struct treeroot *srcp, struct treeroot *dstp,
2 int key, void **data_in)
3 {
4 struct allegiance *ap = alloc_allegiance(&srcp->allegiance);
5 void *data;
6 int ret, ret1;
7
8 if (ap == NULL)
9 return -ENOMEM;

10 ret = tree_change_allegiance_start(srcp, key, ap,
11 &dstp->allegiance, &data);
12 if (ret)
13 goto free_ret;
14 ret = tree_insert_allegiance(dstp, key, data, &ap->allegiance, 0);
15 if (ret)
16 goto allegiance_end_ret;
17 smp_mb();
18 ACCESS_ONCE(ap->allegiance) = &dstp->allegiance;
19 smp_mb();
20 (void)tree_delete_allegiance(srcp, key, &data, &dstp->allegiance, 1);
21 (void)tree_change_allegiance_end(dstp, key, 0);
22 goto free_ret;
23
24 allegiance_end_ret:
25 (void)tree_change_allegiance_end(srcp, key, 1);
26 free_ret:
27 free_allegiance(ap);
28 if (data_in != NULL)
29 *data_in = ret ? NULL : data;
30 return ret;
31 }

Figure 9: Atomic Move Function

WG21/N4037 17

Line 14 then invokes tree insert allegiance(), which inserts the element
into the destination data structure, but with allegiance to the source structure.
This means that subsequent lookups in the destination structure will fail to
find the newly inserted element due to allegiance mismatch. This insertion
can fail for several reasons, including that an element with that key is already
present in the destination structure, or that there was insufficient memory to
allocate any needed intermediate nodes. Either way, if line 15 detects an error,
line 16 transfers to label allegiance end ret in order to set the data element’s
allegiance back to normal, free, and return the error.

Lines 17-19 then atomically change the allegiance of the data element in
both the source and destination structures. After this, the data element will no
longer be accessible through the source structure, but will now be accessible via
the destination structure. Note that a pair of lookups wishing to see the move
as being atomic must also be separated by a memory barrier, for example, a
memory order acqrel barrier in C11 or C++11. In C11 or C++11 implemen-
tations, both sets of memory barriers could be dispensed with if each element
had an associated allegiance structure at all times, as the cache-coherence or-
dering implicit in memory order relaxed accesses would suffice. However, such
an implementation would rule out atomic movement of multiple data elements,
so the we include the memory barriers.

Line 20 deletes the data element from the old structure and line 21 disas-
sociates the allegiance structure from the data element remaining in the new
structure. Any errors from the deletion indicate bugs such as some other thread
removing a structure undergoing an atomic move. Errors from the disassocation
are normal, and can happen if some other thread deletes the element just after
we move it. This situation is harmless: The other thread will deferred-free the
data element, and we will deferred-free the allegiance structure.

Line 25 disassociates the allegiance structure from the source data element.
This disassociation cannot fail because other operations cannot modify an ele-
ment slated for a move operation.

Line 27 frees the allegiance structure, lines 28 and 29 pass back the user-data
pointer, if desired, and line 30 returns status.

4.2.1 Starting The Allegiance-Change Process

Figure 10 shows the tree change allegiance start() function, which starts
the atomic move by associating a full-fledged allegiance structure with the data
element to be moved.

Line 9 invokes tree change allegiance find() locates the data element
to be moved within the source tree. If line 10 determines that no such data
element was available (perhaps because it is already in the process of being
moved), line 11 returns the error indication to the caller.

Otherwise, line 12 assigns the allegiance structure supplied by the caller to
the data element, and line 13 records its intended new allegiance. If line 14
determines that the caller wants the data element’s user-supplied data pointer,
line 15 assigns it to the location specified by the caller. Line 16 releases the lock

WG21/N4037 18

1 static int tree_change_allegiance_start(struct treeroot *trp, int key,
2 struct allegiance *ap,
3 void *newallegiance, void **data)
4 {
5 struct treenode *cur;
6 spinlock_t *lockp;
7 int ret = 0;
8
9 ret = tree_change_allegiance_find(trp, key, &cur, &lockp, 0);

10 if (ret)
11 return ret;
12 cur->allegiance = &ap->allegiance;
13 cur->newallegiance = newallegiance;
14 if (data)
15 *data = cur->data;
16 spin_unlock(lockp);
17 rcu_read_unlock();
18 return ret;
19 }

Figure 10: Atomic Move Start

1 static int tree_change_allegiance_end(struct treeroot *trp, int key, int bkout)
2 {
3 struct treenode *cur;
4 spinlock_t *lockp;
5 int ret;
6
7 ret = tree_change_allegiance_find(trp, key, &cur, &lockp, bkout);
8 if (ret)
9 return ret;

10 cur->allegiance = &trp->allegiance;
11 cur->newallegiance = &trp->allegiance;
12 spin_unlock(lockp);
13 rcu_read_unlock();
14 return 0;
15 }

Figure 11: Atomic Move End

that was acquired by tree change allegiance find(), line 17 exits the RCU
read-side critical section that was entered by tree change allegiance find(),
and line 18 indicates success to the caller.

4.2.2 Completing the Allegiance-Change Process

Figure 11 show the tree change allegiance end() function, which disassoci-
ates the allegiance structure from the specified data element. Note that this
element might well have been deleted after its allegiance switched to the desti-
nation tree, so it is possible for this function to fail, and such failure is OK.

Line 7 looks up the old element in the source tree, and if line 8 detects a
lookup failure, line 9 returns the failure indication to the caller.

Otherwise, lines 10 and 11 reset the allegiance to the destination tree. Line 12
releases the lock that was acquired by tree change allegiance find(), line 13
exits the RCU read-side critical section that was entered by tree change

allegiance find(), and line 14 indicates success to the caller.

WG21/N4037 19

1 static int
2 tree_change_allegiance_find(struct treeroot *trp, int key,
3 struct treenode **cur_ap,
4 spinlock_t **lockp, int bkout)
5 {
6 struct treenode *cur;
7 struct treenode *par;
8 int ret;
9

10 retry:
11 rcu_read_lock();
12 cur = _tree_lookup(trp, key, &par);
13 if (cur == NULL) {
14 rcu_read_unlock();
15 return -ENOENT;
16 }
17 *lockp = &cur->lock;
18 spin_lock(*lockp);
19 if (unlikely(cur->deleted)) {
20 spin_unlock(*lockp);
21 rcu_read_unlock();
22 goto retry;
23 }
24 if (!tree_leaf_node(cur) || cur->key != key) {
25 ret = -ENOENT;
26 goto unlock_ret;
27 }
28 if (bkout ||
29 (!tree_allegiance_changing(trp, cur) &&
30 !tree_wrong_cur_allegiance(trp, &trp->allegiance, cur))) {
31 *cur_ap = cur;
32 return 0;
33 }
34 ret = -EINVAL;
35 unlock_ret:
36 spin_unlock(*lockp);
37 rcu_read_unlock();
38 return ret;
39 }

Figure 12: Atomic Move: Allegiance-Based Lookup

4.2.3 Allegiance-Based Lookup

Figure 12 shows the tree change allegiance find() function, which looks
up a node in the specified tree with the specified key, but with the specified
allegiance, which might not match that of the tree. This special-case lookup
allows finding the node that was inserted into the destination tree, but with the
allegiance to the source tree.

Line 11 enters an RCU read-side critical section in order to prevent any of
the tree’s nodes from being freed while undertaking a lockless traversal. Line 12
looks up the specified node, ignoring allegiance, returning a pointer to the de-
sired node, and also placing a pointer to the node’s parent in local variable par.
If line 13 sees that tree lookup() could not find any such node, line 14 exits
the RCU read-side critical section and line 15 returns to the caller.

Line 17 then records the address of the current node’s lock for the benefit of
the caller, who is responsible for releasing it. Line 18 acquires this lock. Line 18
checks to see if the current node has been concurrently deleted, and if so, line 20

WG21/N4037 20

1 static int tree_allegiance_changing(struct treeroot *trp, struct treenode *cur)
2 {
3 return get_cur_allegiance(get_allegiance(&trp->allegiance),
4 ACCESS_ONCE(cur->allegiance)) !=
5 cur->newallegiance;
6 }
7
8 static int tree_wrong_cur_allegiance(struct treeroot *trp,
9 void *allegiance, struct treenode *cur)

10 {
11 return allegiance !=
12 get_cur_allegiance(get_allegiance(&trp->allegiance),
13 ACCESS_ONCE(cur->allegiance));
14 }
15
16 void *get_cur_allegiance(void *p, void **ap)
17 {
18 if ((void *)ap == p)
19 return p;
20 return rcu_dereference(*ap);
21 }

Figure 13: Allegiance Helper Function

releases the lock, line 21 exits the RCU read-side critical section, and line 22
branches back to line 10 to retry the lookup.

Otherwise, the node has not been deleted. Line 24 then checks that the
current node is in fact a leaf with the correct key2 If not, line 25 sets the error
code to -ENOENT to indicate that there is no data element to move and and
line 26 transfers control to line 35 to clean up and return.

Otherwise, the node is a leaf with the correct key. Line 28 therefore checks
whether this is a backout operation in response to a failed move and lines 29
and 30 check whether the allegiance is unchanging adn the allegiance is what
was specified by the caller. If so, line 31 stores the node address for the caller’s
benefit and line 32 returns indicating success. Note that in the case of success,
this function returns with the node’s lock held within an RCU read-side critical
section. It is the caller’s responsibility to release this lock and exit the RCU
read-side critical section.

Otherwise, although the node is a leaf with the correct key, it’s allegiance is
either changing or wrong and this is not a backout operation. Line 34 therefore
sets the return value to -EINVAL to indicate the error and control falls through
to the cleanup code. Line 36 releases the lock, line 37 exits the RCU read-side
critical section, and line 38 returns to the caller.

4.3 Allegiance Implementation

Figure 13 shows the allegiance helper functions for the single source/desti-
nation variant. The tree allegiance changing() function on lines 1-6 of
the figure compares the treenode structure’s current allegiance (via get cur

2 The tree lookup() function also serves for insertion, in which case the cur and par

variables will find not the node, but rather the place in the tree to insert the node.

WG21/N4037 21

1 static struct treenode *_tree_lookup(struct treeroot *trp, int key,
2 struct treenode **parent)
3 {
4 struct treenode *cur;
5 struct treenode *l;
6 struct treenode *next;
7 struct treenode *par = NULL;
8 struct treenode *r;
9

10 cur = rcu_dereference(trp->r);
11 if (cur == NULL) {
12 *parent = NULL;
13 return NULL;
14 }
15 for (;;) {
16 *parent = par;
17 l = rcu_dereference(cur->lc);
18 r = rcu_dereference(cur->rc);
19 if (cur->key == key && l == NULL && r == NULL)
20 return cur;
21 if (key <= cur->key) {
22 if (l == NULL)
23 return cur;
24 par = cur;
25 cur = l;
26 } else {
27 if (r == NULL)
28 return cur;
29 par = cur;
30 cur = r;
31 }
32 }
33 /* NOTREACHED */
34 }

Figure 14: Lookup Helper Function

allegiance()) with its ->newallegiance field, returning true if these differ.
The tree wrong cur allegiance function on lines 8-14 of the figure instead
compares the treenode structure’s allegiance with the caller-specified allegiance.

The get cur allegiance() function on lines 16-21 of the figure first does a
fast-path check for the expected allegiance on lines 18 and 19, and if that check
fails, fetches the allegiance on line 20.

4.4 Lookup

The implementation of lookups is quite typical. The following code walkthrough
will therefore only point out differences from a typical tree-lookup implementa-
tion.

4.4.1 Lookup Helper Function

The only non-typical code in the tree lookup() function shown in Figure 14
are the rcu dereference() invocations on lines 10, 17, and 18. The rcu

dereference() primitive constrains both the compiler and the CPU to avoid
misorderings that might otherwise allow the subsequent code to see pre-initialization

WG21/N4037 22

values of the fields referenced off of the returned pointer [12, 3, 15]. These con-
straints allow an RCU reader to operate correctly in the face of concurrent
updates that insert new data elements into the tree. In a sequentially con-
sistent environment, rcu dereference() would simply return the value of its
argument.

Other than the use of rcu dereference(), the tree lookup() function is
a straightforward loop-based binary tree search function.

4.4.2 Lookup Function

Figure 15 shows the tree lookup() function. This function uses tree lookup()

to locklessly search the specified tree for the specified key, then acquires the
node’s lock and checks allegiance. If these checks succeed, it invokes the user-
supplied function, which might acquire locks on the caller-supplied data refer-
enced by this node.

Line 10 enters an RCU read-side critical section and line 11 does a lockless
lookup. If line 12 determines that the lookup failed, line 13 exits the RCU
read-side critical section, and line 14 returns a NULL pointer to the caller as a
failure indication.

Otherwise, tree lookup() found a node. Line 16 records the address of
this node’s lock and line 17 acquires it. If line 18 finds that the node has been
deleted, line 19 branches out in order to retry the lookup.

Otherwise, if line 20 finds that the node is either not a leaf or does not have
the desired key, line 21 sets the return value to NULL and line 22 jumps down to
clean up and return. On the other hand, if line 24 determines that the node’s
allegiance will soon be changing, line 25 branches out in order to retry after
undergoing an appropriate delay that gives the conflicting allegiance-change
operation a chance to complete. If the allegiance is not changing, line 26 checks
allegiance and if it does not match that of the enclosing tree, line 27 NULLs out
the node and line 28 branches out in order to clean up and return the error
to the caller. Otherwise, if line 27 sees that a non-NULL function was specified,
line 28 invokes it.

The unlock-return cleanup is on lines 33-37. Line 33 releases the lock and
line 34 exists the RCU read-side critical section. If line 35 sees that the return
value is NULL, line 36 returns NULL. Otherwise, line 37 returns a pointer to the
user data.

The unlock-retry cleanup is on lines 39-46. This code releases the lock and
exits the RCU read-side critical section, followed by an optional delay and a
branch back to the beginning of the function.

4.4.3 Relaxed Lookup Function

Figure 16 shows tree lookup relaxed(), which does a point-in-time unsyn-
chronized lookup. This function Takes the same series of decisions as does the
tree lookup() function shown in Figure 15, but avoids the locking.

WG21/N4037 23

1 void *tree_lookup(struct treeroot *trp, int key, void (*func)(void *data))
2 {
3 void *allegiance = &trp->allegiance;
4 struct treenode *cur;
5 struct treenode *par;
6 spinlock_t *lockp = NULL;
7 int wantdelay = 0;
8
9 retry:

10 rcu_read_lock();
11 cur = _tree_lookup(trp, key, &par);
12 if (cur == NULL) { /* Empty tree */
13 rcu_read_unlock();
14 return NULL;
15 }
16 lockp = &cur->lock;
17 spin_lock(lockp);
18 if (cur->deleted)
19 goto unlock_retry;
20 if (!tree_leaf_node(cur) || cur->key != key) {
21 cur = NULL;
22 goto unlock_ret;
23 }
24 if (tree_allegiance_changing(trp, cur))
25 goto unlock_retry_delay;
26 if (tree_wrong_cur_allegiance(trp, allegiance, cur)) {
27 cur = NULL;
28 goto unlock_ret;
29 }
30 if (func)
31 func(cur->data);
32 unlock_ret:
33 spin_unlock(lockp);
34 rcu_read_unlock();
35 if (cur == NULL)
36 return NULL;
37 return cur->data;
38 unlock_retry_delay:
39 wantdelay = 1;
40 unlock_retry:
41 spin_unlock(lockp);
42 rcu_read_unlock();
43 if (wantdelay)
44 poll(NULL, 0, 1);
45 wantdelay = 0;
46 goto retry;
47 }

Figure 15: Lookup Function

WG21/N4037 24

1 void *tree_lookup_relaxed(struct treeroot *trp, int key)
2 {
3 struct treenode *cur;
4 struct treenode *par;
5
6 cur = _tree_lookup(trp, key, &par);
7 if (cur == NULL || cur->deleted)
8 return NULL;
9 if (tree_leaf_node(cur) && cur->key == key &&

10 !tree_wrong_cur_allegiance(trp, &trp->allegiance, cur)) {
11 return cur->data;
12 }
13 return NULL;
14 }

Figure 16: Relaxed Lookup Function

4.5 Insertion and Deletion

4.5.1 Insertion

The tree insert allegiance() function is shown in Figures 17 and 18. This
is a typical binary search-tree insertion, with a few changes required to accom-
modate the lockless search and the allegiances. It uses the tree lookup()

helper function, and determines the insertion strategy based on the value of the
current node (cur) and the parent node (par).

If cur is NULL, insertion into an empty tree is handled by lines 18-26 of
Figure 17. The only embellishment over a textbook tree insertion is the check
on lines 22-23, which handles the case where a concurrent insertion rendered
the tree non-empty while the needed lock was being acquired by line 21. In
this case, the search is retried, hopefully avoiding concurrent interference on
the next try.

If cur is non-NULL, but par is NULL, the insertion involves the (existing)
root node of the tree, which is handled by lines 27-54. This code fragment re-
quires embellishments for both check-after-lock and allegiance. Lines 31 and 32
check to see if the root node was deleted or if some other node was interposed
between the root node and the treeroot data structure while the locks were
being acquired by line 30, and if so the search is retried, again, hopefully avoid-
ing concurrent interference. The spin lock mult() function avoids deadlock
by sorting the list of locks into address order before attempting to acquire any
of them. The allegiance checks are in insert check allegiance() on line 35,
which is executed in the case that a leaf node with the same key is already
present in the tree. If this pre-existing leaf node has the enclosing tree’s alle-
giance and its allegiance is not slated to change, an -EEXIST error is returned
to the caller, otherwise the search is retried after a delay—unless the wait pa-
rameter was specified, in which case -EBUSY is returned.

If both cur and par are non-NULL, the insertion is to take place mid-tree,
which is handled by lines 55-78 of Figure 18. This code fragment also requires
embellishments for both check-after-lock and allegiance. The lock-check code on
lines 58 and 59 retries if, while line 57 was acquiring the locks, either cur or par

WG21/N4037 25

1 int tree_insert_allegiance(struct treeroot *trp, int key, void *data,
2 void **node_allegiance, int wait)
3 {
4 struct treenode *cur;
5 struct treenode *new = NULL;
6 struct treenode *newint;
7 struct treenode *old;
8 struct treenode *par;
9 int ret = 0;

10 spinlock_t *lockp[2];
11 int wantdelay = 0;
12
13 BUG_ON(data == NULL);
14 new = alloc_treenode(trp, key, data, node_allegiance);
15 retry:
16 rcu_read_lock();
17 cur = _tree_lookup(trp, key, &par);
18 if (cur == NULL) {
19 lockp[0] = &trp->lock;
20 lockp[1] = NULL;
21 spin_lock_mult(lockp, 1);
22 if (trp->r != NULL)
23 goto unlock_retry;
24 rcu_assign_pointer(trp->r, new);
25 goto unlock_ret;
26 }
27 if (par == NULL) {
28 lockp[0] = &trp->lock;
29 lockp[1] = &cur->lock;
30 spin_lock_mult(lockp, 2);
31 if (cur->deleted || trp->r != cur)
32 goto unlock_retry;
33 if (tree_leaf_node(cur)) {
34 if (cur->key == key) {
35 ret = insert_check_allegiance(trp, cur, wait);
36 if (ret == -EAGAIN)
37 goto unlock_retry_delay;
38 goto unlock_ret;
39 }
40 newint = new_internal_node(trp, key, node_allegiance,
41 cur, new);
42 if (!newint) {
43 ret = -ENOMEM;
44 goto unlock_ret;
45 }
46 rcu_assign_pointer(trp->r, newint);
47 goto unlock_ret;
48 }
49 if ((key <= cur->key && cur->lc != NULL) ||
50 (key > cur->key && cur->rc != NULL))
51 goto unlock_retry;
52 ret = parent_insert(trp, key, cur, new);
53 goto unlock_ret;
54 }

Figure 17: Insertion Function, 1 of 2

WG21/N4037 26

55 lockp[0] = &par->lock;
56 lockp[1] = &cur->lock;
57 spin_lock_mult(lockp, 2);
58 if (par->deleted || cur->deleted || (par->lc != cur && par->rc != cur))
59 goto unlock_retry;
60 if (tree_empty_node(cur)) {
61 if (replace_leaf(trp, cur, par, new))
62 goto unlock_retry;
63 goto unlock_ret;
64 }
65 if (tree_leaf_node(cur)) {
66 if (cur->key == key) {
67 ret = insert_check_allegiance(trp, cur, wait);
68 if (ret == -EAGAIN)
69 goto unlock_retry_delay;
70 goto unlock_ret;
71 }
72 ret = parent_insert(trp, key, par, new);
73 goto unlock_ret;
74 }
75 if ((key <= cur->key && cur->lc != NULL) ||
76 (key > cur->key && cur->rc != NULL))
77 goto unlock_retry;
78 ret = parent_insert(trp, key, cur, new);
79
80 unlock_ret:
81 spin_unlock_mult(lockp, 2);
82 rcu_read_unlock();
83 if (ret != 0)
84 free_treenode_cache(new);
85 return ret;
86
87 unlock_retry_delay:
88 wantdelay = 1;
89 unlock_retry:
90 spin_unlock_mult(lockp, 2);
91 rcu_read_unlock();
92 if (wantdelay) {
93 poll(NULL, 0, 1);
94 wantdelay = 0;
95 }
96 ret = 0;
97 goto retry;
98 }

Figure 18: Insertion Function, 2 of 2

WG21/N4037 27

were deleted on the one hand, or if cur is no longer an immediate descendant
of par. The allegiance checks on line 67 operates similarly to those in the
insert-at-root case discussed previously.

A one-liner wrapper function named tree insert() invokes tree insert

allegiance() passing in the tree’s allegiance for the node allegiance param-
eter and 1 for the wait parameter.

Figure 19 shows several helper functions invoked by tree insert allegiance().
The insert check allegiance() function is shown on lines 1-14. Line 7 checks
to see if the current node’s allegiance is slated to change, and line 8 checks to
see if the current node’s allegiance does not match the current specified tree.
If line 9 sees that the allegiance matches the tree and is not changing, line 10
returns -EEXIST to indicate that there is already a node with the desired key.
Otherwise, either -EBUSY or -EAGAIN, depending on whether or not the caller
is willing to wait.

The parent insert() function shown on lines 16-43 matches its textbook
counterpart, other than the use of rcu assign pointer() on lines 24, 28, and 41
in place of the conventional assignment statement. The purpose of these rcu

assign pointer() invocations is to enforce the needed memory ordering to
allow the concurrent lockless reads to function correctly.

The replace leaf() function shown on lines 45-61 also matches its textbook
counterpart, again with rcu assign pointer() replacing assignment statements,
this time on lines 49 and 55.

The new internal node() function is not show, as it exactly matches its
textbook counterpart. It allocates a new internal node with the specified alle-
giance and with the the specified pair of nodes hanging off of it.

4.5.2 Deletion

Figure 20 shows tree delete allegiance(), which deletes a node of the spec-
ified key and allegiance, returning an error code and passing back the private
data through the data argument. This function is quite similar to its textbook
counterpart, but adds checks for changes after acquiring locks. Line 23 verifies
that the data element has not be deleted and is still attached to the treeroot

structure, while line 39 verifies that neither the data element nor its parent have
been deleted and that the parent still links to the data element.

There is also a tree delete() function that invokes tree delete allegiance()

with the tree’s allegiance and with the wait parameter set.
Allegiance checks are carried out in tree delete leaf() which is shown

lines 1-13 of Figure 21. The allegiance checks are on lines 4-7, and report
-EAGAIN or -ENOENT on changing or wrong allegiance, respectively. The only
other difference from a textbook algorithm is the use of rcu assign pointer()

in place of assignment on line 8.
The tree grew() function checks to see if the tree grew while acquiring the

locks, which provokes a retry in tree delete allegiance().

WG21/N4037 28

1 static int
2 insert_check_allegiance(struct treeroot *trp, struct treenode *cur, int wait)
3 {
4 int c;
5 int w;
6
7 c = tree_allegiance_changing(trp, cur);
8 w = tree_wrong_cur_allegiance(trp, &trp->allegiance, cur);
9 if (!c && !w)

10 return -EEXIST;
11 if (!wait)
12 return -EBUSY;
13 return -EAGAIN;
14 }
15
16 static int parent_insert(struct treeroot *trp, int key,
17 struct treenode *par, struct treenode *new)
18 {
19 struct treenode *newint;
20 struct treenode *old;
21 struct treenode **curp;
22
23 if (par->lc == NULL && key <= par->key) {
24 rcu_assign_pointer(par->lc, new);
25 return 0;
26 }
27 if (par->rc == NULL && key > par->key) {
28 rcu_assign_pointer(par->rc, new);
29 return 0;
30 }
31 if (key <= par->key) {
32 old = par->lc;
33 curp = &par->lc;
34 } else {
35 old = par->rc;
36 curp = &par->rc;
37 }
38 newint = new_internal_node(trp, key, par->allegiance, old, new);
39 if (!newint)
40 return -ENOMEM;
41 rcu_assign_pointer(*curp, newint);
42 return 0;
43 }
44
45 static int replace_leaf(struct treeroot *trp, struct treenode *cur,
46 struct treenode *par, struct treenode *new)
47 {
48 if (par->lc == cur) {
49 rcu_assign_pointer(par->lc, new);
50 cur->deleted = 1;
51 call_rcu(&cur->rh, tree_rcu_free_cb);
52 return 0;
53 }
54 if (par->rc == cur) {
55 rcu_assign_pointer(par->rc, new);
56 cur->deleted = 1;
57 call_rcu(&cur->rh, tree_rcu_free_cb);
58 return 0;
59 }
60 return -EINVAL;
61 }

Figure 19: Insertion Helper Functions

WG21/N4037 29

1 static int tree_delete_allegiance(struct treeroot *trp, int key,
2 void **data, void *allegiance, int wait)
3 {
4 struct treenode *cur;
5 struct treenode **p;
6 struct treenode *par;
7 spinlock_t *lockp[2];
8 int ret = -ENOENT;
9 int wantdelay = 0;

10
11 retry:
12 rcu_read_lock();
13 cur = _tree_lookup(trp, key, &par);
14 *data = NULL;
15 if (cur == NULL) {
16 rcu_read_unlock();
17 return ret;
18 }
19 if (par == NULL) {
20 lockp[0] = &trp->lock;
21 lockp[1] = &cur->lock;
22 spin_lock_mult(lockp, 2);
23 if (cur->deleted || trp->r != cur)
24 goto unlock_retry;
25 if (tree_leaf_node(cur) && cur->key == key) {
26 ret = tree_delete_leaf(trp, &trp->r, cur,
27 data, allegiance);
28 if (ret == -EAGAIN) {
29 if (!wait)
30 goto unlock_ret;
31 goto unlock_retry_delay;
32 }
33 }
34 goto unlock_ret;
35 }
36 lockp[0] = &par->lock;
37 lockp[1] = &cur->lock;
38 spin_lock_mult(lockp, 2);
39 if (par->deleted || cur->deleted || (par->lc != cur && par->rc != cur))
40 goto unlock_retry;
41 if (tree_empty_node(cur))
42 goto unlock_ret;
43 if (!tree_leaf_node(cur) || cur->key != key) {
44 if (tree_grew(cur, key))
45 goto unlock_retry;
46 } else {
47 if (par->lc == cur)
48 p = &par->lc;
49 else if (par->rc == cur)
50 p = &par->rc;
51 else
52 goto unlock_retry;
53 ret = tree_delete_leaf(trp, p, cur, data, allegiance);
54 if (ret == -EAGAIN && wait)
55 goto unlock_retry_delay;
56 }
57 unlock_ret:
58 spin_unlock_mult(lockp, 2);
59 rcu_read_unlock();
60 return ret;
61 unlock_retry_delay:
62 wantdelay = 1;
63 unlock_retry:
64 ret = -ENOENT;
65 spin_unlock_mult(lockp, 2);
66 rcu_read_unlock();
67 if (wantdelay) {
68 poll(NULL, 0, 1);
69 wantdelay = 0;
70 }
71 goto retry;
72 }

Figure 20: Deletion Function

WG21/N4037 30

1 static int tree_delete_leaf(struct treeroot *trp, struct treenode **p,
2 struct treenode *cur, void **data, void *allegiance)
3 {
4 if (tree_allegiance_changing(trp, cur))
5 return -EAGAIN;
6 if (tree_wrong_cur_allegiance(trp, allegiance, cur))
7 return -ENOENT;
8 rcu_assign_pointer(*p, NULL);
9 cur->deleted = 1;

10 call_rcu(&cur->rh, tree_rcu_free_cb);
11 *data = cur->data;
12 return 0;
13 }
14
15 static int tree_grew(struct treenode *cur, int key)
16 {
17 return (key <= cur->key && cur->lc != NULL) ||
18 (key > cur->key && cur->rc != NULL);
19 }

Figure 21: Deletion Helper Functions

5 Advantages and Drawbacks

5.1 Reliability

This code is quite new, so although it passes significant stress testing, it likely
contains numerous bugs. I do not yet recommend its use in production.

5.2 Ease of Use

Although allegiance-mediated update does require some modifications to stan-
dard algorithms, these changes are localized and fit well within textbook algo-
rithms. For example, the overall flow of the tree update and search operations
remained the same, but with allegiance-based code added at strategic intervals.
In addition, and more important, the API for normal tree operations remains
unchanged. In particular, lock acquisitions and releases are confined to individ-
ual operations, greatly simplifying deadlock avoidance compared to approaches
such as two-phase locking where the locking state leaks out.

Nevertheless, allegiance-mediated update is clearly more complex than a
sequential sequential implementation, so we clearly should be looking for some
sort of return on the incremental investment of time and effort. The next section
therefore takes a quick look at performance and scalability.

5.3 Performance and Scalability

Figure 22 shows the performance and scalability of an operation mix that is 90%
lookups, 6% insertions and deletions, 3% full tree scans, and 1% moves, oper-
ating on a tree containing 256 elements. This operations mix follows Gramoli
et al. [6]. Nearly linear scalability is achieved in this mix, with a throughput
of 10,091 operations per millisecond at eight CPUs vs. an ideal throughput of
10,650 based on the single-CPU throughput.

WG21/N4037 31

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1 2 3 4 5 6 7 8

O
pe

ra
tio

ns
 P

er
 M

ill
is

ec
on

d

Number of CPUs/Threads

Figure 22: Performance and Scalability of Mixed Operations

Figure 23 focuses strictly on the move operation, again on a 256-element
tree. Although this update-only workload does not scale as well as the read-
mostly workload, its eight-CPU throughput is a semi-respectable 3.7x that of
a single CPU. Note that achieving this result required a fully parallel random-
number generator with per-thread state as well as (crude) per-thread caches
imposed over the system implementation of malloc(). Further tuning would
likely uncover other bottlenecks, both in the system library and in the atomic-
move implementation itself.

5.4 Other Issues

Because allegiance-mediated update increases the number of memory-allocation
operations, a high-quality memory allocator is critically important to its per-
formance and scalability. Similarly, high-quality read-mostly synchronization
mechanisms are also critically important.

The allegiance operations need a formal API in order to make their usage
easier and less error-prone.

6 Summary

This paper has demonstrated a prototype solution to the Issaquah challenge
of atomically moving data between two search trees without unnecessary con-
tention.

Future work includes efficiently balancing the trees, evaluating other non-
TM implementations, and comparing against TM implementations.

WG21/N4037 32

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5 6 7 8

M
ov

es
 P

er
 M

ill
is

ec
on

d

Number of CPUs/Threads

Figure 23: Performance and Scalability of Moves

References

[1] Clements, A., Kaashoek, F., and Zeldovich, N. Scalable address
spaces using RCU balanced trees. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2012) (London, UK, March
2012), ACM, pp. 199–210.

[2] Cormen, T., Leiserson, C., Rivest, R., and Stein, C. Introduction
to Algorithms, Second Edition. MIT electrical engineering and computer
science series. MIT Press, 2001.

[3] Desnoyers, M., McKenney, P. E., Stern, A., Dagenais, M. R.,
and Walpole, J. User-level implementations of read-copy update. IEEE
Transactions on Parallel and Distributed Systems 23 (2012), 375–382.

[4] Fraser, K., and Harris, T. Concurrent programming without locks.
ACM Trans. Comput. Syst. 25, 2 (2007), 1–61.

[5] Fraser, K. A. Practical Lock-Freedom. PhD thesis, King’s College, Uni-
versity of Cambridge, 2003.

[6] Gramoli, V., and Guerraoui, R. Democratizing transactional pro-
gramming. Commun. ACM 57, 1 (Jan. 2014), 86–93.

[7] Howard, P. W., and Walpole, J. A relativistic enhancement to soft-
ware transactional memory. In Proceedings of the 3rd USENIX confer-
ence on Hot topics in parallelism (Berkeley, CA, USA, 2011), HotPar’11,
USENIX Association, pp. 1–6.

WG21/N4037 33

[8] Howard, P. W., and Walpole, J. Relativistic red-black trees. Concur-
rency and Computation: Practice and Experience (2013), n/a–n/a.

[9] Knuth, D. The Art of Computer Programming. Addison-Wesley, 1973.

[10] Kung, H. T., and Lehman, Q. Concurrent manipulation of binary search
trees. ACM Transactions on Database Systems 5, 3 (September 1980), 354–
382.

[11] Manber, U., and Ladner, R. E. Concurrency control in a dynamic
search structure. ACM Transactions on Database Systems 9, 3 (September
1984), 439–455.

[12] McKenney, P. E. Structured deferral: synchronization via procrastina-
tion. Commun. ACM 56, 7 (July 2013), 40–49.

[13] McKenney, P. E. Structured deferral: Synchronization via procrastina-
tion. Queue 11, 5 (May 2013), 20:20–20:39.

[14] McKenney, P. E., and Slingwine, J. D. Read-copy update: Using
execution history to solve concurrency problems. In Parallel and Distributed
Computing and Systems (Las Vegas, NV, October 1998), pp. 509–518.

[15] McKenney, P. E., and Walpole, J. What is RCU, fundamentally?
Available: http://lwn.net/Articles/262464/ [Viewed December 27,
2007], December 2007.

[16] Piggin, N. [patch 3/3] radix-tree: RCU lockless readside. Available:
http://lkml.org/lkml/2006/6/20/238 [Viewed March 25, 2008], June
2006.

[17] Pugh, W. Concurrent maintenance of skip lists. Tech. Rep. CS-TR-2222.1,
Institute of Advanced Computer Science Studies, Department of Computer
Science, University of Maryland, College Park, Maryland, June 1990.

[18] Triplett, J., McKenney, P. E., and Walpole, J. Scalable concurrent
hash tables via relativistic programming. ACM Operating Systems Review
44, 3 (July 2010).

[19] Triplett, J., McKenney, P. E., and Walpole, J. Resizable, scalable,
concurrent hash tables via relativistic programming. In Proceedings of the
2011 USENIX Annual Technical Conference (Portland, OR USA, June
2011), The USENIX Association, pp. 145–158.

http://lwn.net/Articles/262464/
http://lkml.org/lkml/2006/6/20/238

	1 Introduction
	2 Related Work and Rationale
	3 Conceptual Overview of Solution
	3.1 Data-Element Allegiance Concept
	3.2 Atomic-Move Conceptual Overview
	3.3 Data-Element Allegiance Implementations
	3.3.1 Single Source/Destination Allegiance Implementations
	3.3.2 Multiple Source/Destination Allegiance Implementations
	3.3.3 In-Or-Out Allegiance Implementations

	3.4 Synchronization Considerations

	4 Code Walkthrough
	4.1 Data Structures
	4.2 Atomic Move
	4.2.1 Starting The Allegiance-Change Process
	4.2.2 Completing the Allegiance-Change Process
	4.2.3 Allegiance-Based Lookup

	4.3 Allegiance Implementation
	4.4 Lookup
	4.4.1 Lookup Helper Function
	4.4.2 Lookup Function
	4.4.3 Relaxed Lookup Function

	4.5 Insertion and Deletion
	4.5.1 Insertion
	4.5.2 Deletion

	5 Advantages and Drawbacks
	5.1 Reliability
	5.2 Ease of Use
	5.3 Performance and Scalability
	5.4 Other Issues

	6 Summary

