Simplifying unique_copy

Author: Douglas Gregor, Indiana University

Document number: N2742=08-0252

Date: 2008-08-25

Project: Programming Language C++, Library Working Group
Reply-to: Douglas Gregor <dgregor@osl.iu.edu>

1 Introduction

This proposal simplifies unique_copy, by removing a mandated optimization (in the form of iterator-category—
dependent requirements) in favor of a more direct specification, while retaining implementor’s freedom to
optimize these cases.

1.1 The Problem

The unique_copy algorithm has by far the most complicated concepts specification of any algorithm, to the
point of being embarrassing. The fundamental problem is the following requirement in [alg.unique]p5:

If neither Inputlterator nor Outputlterator meets the requirements of forward iterator then the
value type of Inputlterator shall be CopyConstructible (34) and CopyAssignable (table 36).
Otherwise CopyConstructible is not required.

This requirement actually mandates three different implementations of unique_copy: one for (input, out-
put), one for (forward, output), and one for (input, forward). With the predicate/operator== distinction, we
end up with six implementations hidden behind the two unique_copy signatures shown in the specification.
With concepts, however, we need to show each signature because the requirements differ from one signature
to another, leading to the current concepts specification:

template<Inputlterator Inlter, typename Outlter>
requires Outputlterator<Outlter, Inlter::reference>
&& Outputlterator<Qutlter, const Inlter::value_type& >
&& EqualityComparable<Inlter::value_type>
& & CopyAssignable<Inlter::value_type>
&& CopyConstructible<Inlter::value_type>
&& 'Forwardlterator<Inlter>
&&: 'Forwardlterator<Outlter>
Outlter unique_copy(Inlter first, Inlter last, Outlter result);
template<Forwardlterator Inlter, Outputlterator<auto, Inlter::reference> Outlter>
requires EqualityComparable<Inlter::value_type>
Outlter unique_copy(Inlter first, Inlter last, Outlter result);
template<Inputlterator Inlter, Forwardlterator Outlter>
requires Outputlterator<Outlter, Inlter::reference>
&& HasEqualTo<Outlter::value_type, Inlter::value_type>
&& 'Forwardlterator<Inlter>
Outlter unique_copy(Inlter first, Inlter last, Outlter result);
template<Inputlterator Inlter, typename Outlter,
EquivalenceRelation<auto, Inlter::value_type> Pred>
requires Outputlterator<Outlter, Inlter::reference>
&& Outputlterator<Qutlter, const Inlter::value_type& >
&& CopyAssignable<Inlter::value_type>
&& CopyConstructible<Inlter::value_type>


mailto:dgregor@osl.iu.edu

Doc. no: N2742=08-0252 2

&& CopyConstructible<Pred>
&&: 'Forwardlterator<Inlter>
&& Forwardlterator<Outlter>
Outlter unique_copy(Inlter first, Inlter last, Outlter result, Pred pred);
template<Forwardlterator Inlter, Outputlterator<auto, Inlter::reference> Outlter,
EquivalenceRelation<auto, Inlter::value_type> Pred>
requires CopyConstructible<Pred>
Outlter unique_copy(Inlter first, Inlter last, Outlter result, Pred pred);
template<Inputlterator Inlter, Forwardlterator Outlter,
Predicate<auto, Outlter::value_type, Inlter::value_type> Pred>
requires Outputlterator<Outlter, Inlter::reference>
&& CopyConstructible<Pred>
&& 'Forwardlterator<Inlter>
Outlter unique_copy(Inlter first, Inlter last, Outlter result, Pred pred);

The concept requirements specified here state the actual operations needed to implement the various
forms of the unique_copy algorithm. The negative requirements are needed to direct overload resolution,
since there is no natural ordering among these overloads.

1.2 A Brief History

In C++98, the unique_copy algorithm was underspecified (it did not mention CopyAssignable or CopyConstructible),
but the common practice was to provide all six implementations. The resolution to DR 241 introduced the
language that mandated six implementations.

1.3 The Solution

This proposal eliminates the requirement for the Forwardlterator variants of this algorithm. Instead, the
algorithm requires CopyConstructible and CopyAssignable value types (always). Implementers are, of course,
free to add more-specialized overloads that optimize away the copy assignment and copy constructions when
a forward iterator is available.

1.4 Move-Only Types

The side effect of the simpler specification is that it no longer permits the use of move-only types in
unique_copy, since unique_copy always requires CopyConstructible and CopyAssignable. I believe this is a
reasonable trade-off for several reasons:

1. Minimizing specification complexity is extremely important, especially with the introduction of con-
cepts. Users will look to the standard for advice on how to use concepts, and we do not want them
following the lead of unique_copy as it is currently written.

2. It’s not a backward-compatibility problem: we didn’t have move-only types in C++98, so no conforming
C++98 or C++03 code will be broken by this change.

3. unique_copy doesn’t make sense for move-only types. The algorithm requires EqualityComparable, which
itself implies that you can have multiple copies of a single value. Move-only types, on the other hand,
generally represent handles to resources that are uniquely held, and hence will not have particularly
meaningful operator==. The prototypical example of a move-only type, unique_ptr, has an operator==
that is only true when both pointers are NULL. Thus, unique_copy on unique_ptrs merely removes
duplicate NULL pointers: this isn’t a strong case when weighed against the specification complexity.

2 Proposed Resolution

In the concepts-based standard library, replace the six overloads of unique_copy with the following two
signatures:



Doc. no: N2742=08-0252

template<Inputlterator Inlter, typename Outlter>
requires Outputlterator<Outlter, Inlter::reference>
&& Outputlterator<Qutlter, const Inlter::value_type& >
&& EqualityComparable<Inlter::value_type>
&& CopyAssignable<Inlter::value_type>
&& CopyConstructible<Inlter::value_type>
Outlter unique_copy(Inlter first, Inlter last, Outlter result);
template<Inputlterator Inlter, typename Outlter,
EquivalenceRelation<auto, Inlter::value_type> Pred>
requires Outputlterator<Outlter, Inlter::reference>
&& Outputlterator<Qutlter, const Inlter::value_type& >
&& CopyAssignable<Inlter::value_type>
&& CopyConstructible<Inlter::value_type>
&& CopyConstructible<Pred>
Outlter unique_copy(Inlter first, Inlter last, Outlter result, Pred pred);

In the pre-concepts standard library, modify [alg.unique|p5 as follows:
Requires: The ranges [first, Iast) and [result result-+(last-first)) shall not overlap. The expression

*result = >(<f|rst shall be valid.
>The Value type of Inputlterator shall be CopyConstructlbIe (34) and

CopyAssngnabIe (table 36).




