
Minimal Support for Garbage
Collection and Reachability-

Based Leak Detection

Hans Boehm
Mike Spertus

WG21/N2585 = J16/08-0095
2008-03-16

Goal

• Support
– Conservative Garbage Collection
– Reachability-based leak detection

• Which becomes more critical with quick_exit()

• By
– Giving undefined behavior to programs that hide

pointers.
– Providing a small API to “unhide” pointers.
– Providing a small API to make collection less

conservative.

Charter
• Kona motion 1:

WG21 Resolves that for this revision of the C++
standard (aka "C++0x") the scope of the memory
management extensions shall be constrained as
follows:

• Include making some uses of disguised pointers undefined,
and providing a small set of functions to exempt specific
objects from this restriction and to designate pointer-free
regions of memory (where these functions would have trivial
implementations in a non-collected conforming
implementation).

• Exclude explicit syntax or functions for garbage collection or
related features such as finalization.

Hiding pointers

• The real issue is dereferencing previously
disguised pointers:

T *p = new ...;

intptr_t x = (intptr_t)(p) ^ 0x555;

a: T *q = (T *)(x ^ 0x555);

T y = *q;

• *p is reachable everywhere.
• But if collection occurs at a, *p may be

reclaimed, since p is dead.

Hidden pointers

• Proposed wording classifies pointers as
– Reconstituted, or
– Safely derived

• This is a property of how the pointer is
computed, not the bit representation of the
pointer.
– In the preceding example:

• p is safely derived.
• q is reconstituted
• they are likely to be bitwise identical

New constraint

• Reconstituted pointers may not be
dereferenced.

• More precisely:
A pointer to storage obtained from an
allocation function shall be dereferenced or
passed to a deallocation function only if it was
either safely derived, or the referenced object
was previously declared reachable (see
[library:declare_reachable])

This does not:

• Preserve correctness of all current C++
programs.
– We really can’t if we want to move usefully

closer to GC support.
– Code that encodes pointers either has to

break or leak.
• Require GC support in the implementation.

– Vendors can trivially provide implementations
that conform to the standard and don’t break
old code.

Issues

• Where can we store pointers without making
them “reconstituted”?
– Currently in T*, intptr_t, and sufficiently aligned

sections of char arrays.
• Might it be OK to dereference a reconstituted

pointer if a safely derived pointer is stored in a
non-stack location?
– Eliminates need for part of API, but has optimization

consequences for GC-based implementations.
– We’re leaning against.

Issues contd.

• Do the rules apply to malloc’ed memory,
as opposed to just memory allocated with
default operator new (and the default STL
allocator)?
– Pro: More useful.
– Con: Low-level OS code sometimes hides

pointers. Would need fixing for GC
implementation.

– Con: Arguably infringes on WG14 territory.
– Currently: No.

“Unhiding” API

void declare_reachable(void* p)

throw(std::bad_alloc)

– p is a safely derived pointer.
– Allows reconstituted copies of p to be

dereferenced.
template < typename T > T*
undeclare_reachable(T* p) throw()

– Undoes declare_reachable.
– Returns safely derived pointer.

Intended usage

• Calls bracket code that hides pointers.
• E.g. declare_reachable() before

inserting node into xor-list,
undeclare_reachable() on removal.

• Note that we need a safely derived pointer
to the node after removal.

• Implementation:
– Insert into global/thread-local multiset.

Issues

• void * vs. template: inconsistency is
ugly.

• Should undeclare_reachable return safely
derived pointer, or make argument safely
derived?

• We allow non-heap pointers, disallow null.
Is this right?

Pointer-location API

void declare_no_pointers(char* p,

size_t n) throw()

– Declares [p, p+n) to contain no pointers.
(Pointers stored there become reconstituted.)

void undeclare_no_pointers(char* p,

size_t n) throw()

– Undoes the effect of the above call.
Arguments must match exactly. Calls on the
same arguments don’t nest.

Declare_no_pointers()
purpose

• Prevent the collector from needlessly tracing
data known to not contain pointers.
– Can significantly reduce extra memory retention by

conservative collector
• Especially in dense address spaces.

– Can sometimes substantially reduce tracing time.

Implementation: A bit tricky, but we believe we can
get it to a dozen or so memory operations for
small regions.

Issues

• Combined declare_no_pointers() +
operator new call?
– More efficiently implementable.
– Supported by existing collectors.
– Con: Widens API.

• What’s the lifetime of a
declare_no_pointers() call?
– Currently until inverse call or object collection.

