
Lambda Expressions and Closures:

Wording for Monomorphic Lambdas (Revision 3)

Document no: N2529=08-0039

Jaakko Järvi∗

Texas A&M University
John Freeman

Texas A&M University
Lawrence Crowl

Google Inc.

2008-02-04

1 Introduction

This document describes lambda expressions, reflecting the specification that was agreed upon within the
evolution working group of the C++ standards committee in the 2007 Kona meeting. The document is
a revision of N2487 [JFC07b], N2413 [JFC07a], and N2329 [JFC07c]. N2329 was a major revision of the
document N1968 [WJG+06], and draw also from the document N1958 [Sam06] by Samko. The differences
to N2487 are:

• Added wording that specifies the nested function template—type of closures that store all local variables
by reference.

• Corrected erroneous specification of closure’s move constructor, suggested by Howard Hinnant.

• Small disambiguating change to grammar suggested by Clark Nelson [Nel08].

We use the following terminology in this document:

• Lambda expression or lambda function: an expression that specifies an anonymous function object

• Closure: An anonymous function object that is created automatically by the compiler as the result of
evaluating a lambda expression. Closures consists of the code of the body of the lambda function and
the environment in which the lambda function is defined. In practice this means that variables referred
to in the body of the lambda function are stored as member variables of the anonymous function object,
or that a pointer to the frame where the lambda function was created is stored in the function object.

The specification (not necessarily the implementation) of the proposed features relies on several future
additions to C++, some of which are already in the working draft of the standard, others likely candidates.
These include the decltype [JSR06b] operator, new function declaration syntax [JSR06a, Section 3][Mer07],
and changes to linkage of local classes [Wil07].

The proposed wording in this document is partial in that the library sections of the specification of the
nested function class template are not yet written.

2 In a nutshell

The use of function objects as higher-order functions is commonplace in calls to standard algorithms. In the
following example, we find the first employee within a given salary range:

∗jarvi@cs.tamu.edu

Doc. no: N2529=08-0039 2

class between {
double low, high;

public:
between(double l, double u) : low(l), high(u) { }
bool operator()(const employee& e) {

return e.salary() >= low && e.salary() < high;
}

}
....
double min salary;
....
std::find if(employees.begin(), employees.end(),

between(min salary, 1.1 ∗ min salary));

The constructor call between(min salary, 1.1 ∗ min salary) creates a function object, which is comparable to
what, e.g., in the context of functional programming languages is known as a closure. A closure stores the
environment, that is the values of the local variables, in which a function is defined. Here, the environment
stored in the between function object are the values low and high, which are computed from the value of the
local variable min salary.

The syntactic requirement of defining a class with its member variables, function call operator, and
constructor, and then constructing an object of that type is very verbose and thus not well-suited for
creating function objects “on the fly” to be used only once. The essence of this proposal is a concise syntax
for defining such function objects—indeed, we define the semantics of lambda expressions via translation to
function objects. With the proposed features, the above example becomes:

double min salary =
....
double u limit = 1.1 ∗ min salary;
std::find if(employees.begin(), employees.end(),

<&>(const employee& e) (e.salary() >= min salary && e.salary() < u limit));

3 About non-generic and generic lambda functions

The lambda expression:

<&>(const employee& e) (e.salary() >= min salary && e.salary() < u limit)

is monomorphic because the types of its parameters are explicitly specified. Here, the type of the only
parameter e has type const employee&. A polymorphic of generic version of the same expression would be
written as:

<&>(e) (e.salary() >= min salary && e.salary() < u limit)

The latter form requires that the parameter types are deduced (from the use of the lambda expression),
and have a substantially higher implementation cost, as discussed in [JFC07c]. We do not propose generic
lambda functions for C++0x.

4 Proposal

In the following, we introduce the proposed features informally using examples of increasing complexity.

4.1 Lambda functions with no external references

We first discuss lambda functions that have no references to variables defined outside of its parameter list.
We demonstrate with a binary lambda function that invokes operator+ on its arguments. The most concise
way to define that lambda function is as follows:

Doc. no: N2529=08-0039 3

<>(int x, int y) (x + y)

This lambda function can only be called with arguments that are of type int or convertible to type int. In
this example, the body of the lambda function is a single expression, enclosed in parentheses. The return
type does not have to be specified; it is deduced to be the type of the expression comprising the body.
Return type deduction is defined with the help of the decltype operator. Above, the return type is defined
as decltype(x + y).

The explicit specification of the return type is also allowed; the syntax is as follows:

<>(int x, int y) -> int (x + y)

It is possible to define lambda functions where the body is a block of statements rather than a single
expression. In that case, the return type must be specified explicitly:

<>(int x, int y) -> int { int z; z = x + y; return z; }

There are several reasons for requiring the return type to be specified explicitly in the case where the
body consist of a block statement. First, the body of a lambda function could contain more than one
return statement, and the types of the expressions in those return statements could differ. Such definitions
would likely have to be flagged out as ambiguous, or rules similar to those of the conditional operator
could be applied, which is potentially complicated. Second, implementing return type deduction from a
statement block may be non-trivial. The return type is no longer dependent on a single expression, but
rather requires analyzing a series of statements, possibly including variable declarations etc. Third, if a
lambda expression is passed as an argument to an overloaded function, and its return type expression
contains template parameters, the return type expression may have to be instantiated to determine whether
a particular function matches. To avoid hard errors during overload resolution, certain errors in the return
type expression should fall under the SFINAE rules. Whether an arbitrary block type checks or not as a
SFINAE condition is not feasible, nor desirable.

The semantics of lambda functions are defined by a translation to function objects. For example, the
last lambda function above behaves as the function object below. The proposed translation, described in
Section 5, is somewhat more involved.

class F {
public:

F() {}
auto operator()(int x, int y) const -> int {

int z; z = x + y; return z;
}

};
F() // create the closure

We summarize the rules this far:

• Each parameter slot in the parameter list of a lambda function must be a function parameter declaration
with a non-abstract declarator; a type without a parameter name is disallowed to preserve upwards
compatibility to polymorphic lambda functions, where a single identifier is interpreted as the name of
the parameter, not a type.

• The body of the lambda function can either be a single expression enclosed in parenthesis or a block.

• If the body of the lambda function is a block, the return type of the lambda function must be explicitly
specified.

• If the body of the lambda function is a single expression, the return type of the lambda function may
be explicitly specified. If it is not specified, it is defined as decltype(e), where e is the body of the
lambda expression.

Doc. no: N2529=08-0039 4

4.2 External references in lambda function bodies

References to local variables declared outside of the lambda function bodies have been the topic of much
debate. Any local variable referenced in a lambda function body must somehow be stored in the resulting
closure. Such variables are commonly called free variables. An earlier proposal [WJG+06] called for storing
free variables by copy and required an explicit declaration to instruct that a variable should be stored by
reference instead. Another proposal by Samko [Sam06] suggested the opposite. However, neither alternative
gained wide support as both approaches have notable safety problems. By-reference can lead to dangling
references, by-copy to unintentional slicing of objects, expensive copying, invalidating iterators, and other
surprises.

In N2329 [JFC07c] we proposed that neither approach is the default and require the programmer to
explicitly declare for each free variable whether by-reference or by-copy is desired. We keep this as the
most basic form of lambda expressions—two other forms, a “by-reference” and “by-copy” as the default
for the entire lambda expression, are additionally provided for more succinct definition of certain lambda
expressions. We discuss the basic form first.

All local variables referred to in the body of the lambda function (but defined outside of it) must be
declared alongside the parameters of the lambda function. These declared local variables are what are stored
in the closure. The following example defines a lambda function where the closure stores a reference to the
local variable sum, and stores a copy of a local variable factor:

double array[] = { 1.0, 2.1, 3.3, 4.4 };
double sum = 0; int factor = 2;
for each(array, array + 4, <>(double d) : [&sum, factor] (sum += factor ∗ d));

We refer to the part of the function signature that declares the member variables of the closure as the
lambda expression’s local variable clause. The local variable clause is a comma separated list of unqualified
identifiers, optionally preceded with &, that name a variable with a non-static storage duration. The closure
stores references to objects whose identifiers are declared with & and copies of objects whose identifiers are
declared without &. The optional return type of the lambda expression precedes the local variable clause.

To clarify how local variables are handled, the above lambda function behaves as the following function
object:

struct F {
double& sum;
mutable int factor;

F(int& sum, int factor) : sum(sum), factor(factor) {}
auto operator()(double d) const -> decltype(fake<double&>() += fake<int&>() ∗ d) {

return sum += factor ∗ d;
}

};
F(sum, factor); // create the closure

The return type expression cannot simply be decltype(sum += factor ∗ d) because the member variables
sum and factor cannot be used outside the body of the operator()1. We thus replace each use of sum and
factor, respectively, with expressions that have the same types as these variables — the expression fake<T>()
has the type T for any type T. The fake function can be defined as:

template <typename T> T fake();

4.2.1 Handling this pointer

If a lambda function is defined in a member function, the body of the lambda function may contain oc-
currences of this (either implicit or explicit). After the translation, these occurrences should refer to the

1An id-expression that denotes a non-static member variable or function of a class can appear outside of a class body as an
operand to decltype, but not as a proper subexpression of an operand to decltype (see [Bec07, §5.1(11)]).

Doc. no: N2529=08-0039 5

object in whose member function the lambda was defined, not to the just generated closure object. First,
to allow references to this, one includes this in the local variable clause. The effect is that some unique
member variable, call it this, will be added to the closure object to store the value of this. All references to
this, including implicit member access operator calls that do not mention this explicitly, are then translated
to references to this. The type of this will be appropriately qualified depending on the cv-qualifiers of
the member function the lambda is defined in. Also, the newly generated closure should have access to
the private members of its enclosing class. The following example demonstrates the use of this in the local
variable clause:

class A {
vector<int> v;
....

public:
void change sign all(const vector<int>& indices) {

for each(indices.begin(), indices.end(), <>(int i) : [this] (this-> v[i] = v[i]));
}

};

After translating the lambda expression to a function object the above code becomes:

class A {
vector<int> v;
....

public:
void change sign all(const vector<int>& indices) {

class G {
A∗ this;

public:
G(A∗ this) : this(this) {}
auto operator()(int i) const -> decltype(fake<A∗&>()-> v[i] = fake<A∗&>()-> v[i]) {

return this-> v[i] = v[i];
}

};
for each(indices.begin(), indices.end(), G(this));

}
};

4.2.2 Alternative forms of lambda expressions

Requiring the programmer to explicitly declare the variables to be stored in the closure has the benefit that
the programmer is forced to express his or her intention on what storage mechanism to use for each local
variable. The disadvantage is verbosity. We suspect a common use of lambda functions is as function objects
to standard algorithms and other similar functions where the lifetime of the lambda function does not extend
beyond the lifetime of its definition context. In such cases, it is safe to store the environment into a closure
by reference. Thus, we suggest syntax that allows the “by-reference” declaration to be made for the entire
lambda at once, instead of explicitly listing variable names in a local variable clause. Rewriting our previous
example some, the two calls to for each below are equivalent:

double array[] = { 1.0, 2.1, 3.3, 4.4 };
double sum = 0; int factor = 2;
for each(array, array + 4, <>(double d) : [&sum, &factor] (sum += factor ∗ d));
for each(array, array + 4, <&>(double d) (sum += factor ∗ d));

The <&> form establishes “by-reference” as the default mode for storing local variables in the closure, which
can be overridden in the local variable clause for individual variables. A third form is also provided, with

Doc. no: N2529=08-0039 6

<=> starting the lambda definition. This form is opposite to the <&> form in that “by-copy” is the default
mode for storing local variables, and can be overridden in the local variable clause. For example, the following
three lambda expressions are all equivalent:

<>(double d) : [sum, &factor] (sum += factor ∗ d)
<&>(double d) : [sum] (sum += factor ∗ d)
<=> (double d) : [&factor] (sum += factor ∗ d)

Note that when the closure stores no free variables as copies, a different translation is possible: the
closure function object can store a single pointer to the stack frame where the lambda function is defined,
and arrange access to individual free variables via that pointer. Section 6.1 discusses this implementation
in more detail. We continue, however, to describe the semantics of lambda functions via a translation to
function objects with one member variable for each distinct free variable.

We summarize the rules regarding free variables:

• The body of the lambda function can refer to the parameters of the lambda function, to variables
declared in the local variable clause, and to any variable with static storage duration.

• If the lambda function is defined in a member function of some class, call it A, and the local variable
clause contains the keyword this, the body of the lambda function can additionally refer to members
of A and contain occurrences of this.

• If the lambda function is declared with the <&> or <=> form, its body can additionally refer to local
variables with automatic storage duration that are in scope where the lambda function is defined.

5 Translation semantics

We define the semantics of lambda functions via a translation to function objects. Implementations should
not, however, be required to literally carry out the translations. We first explain the translation in a case
where the body of the lambda function is a single expression and the return type is not specified. Variations
are discussed later.

The left-hand side of Figure 1 shows a lambda function, the right-hand side its translation. For concrete-
ness of presentation, we fix the example to use two parameters and two free variables. The translation of a
lambda function consists of the closure class unique (line b3), generated immediately before the statement
or declaration where the lambda expression appears, and a call to the constructor of unique to replace the
lambda function definition (on line b21). The following list describes the specific points of the translation:

1. The closure object stores the necessary data of the enclosing scope in its member variables. In the
example, two variables are stored in the closure: var1 and var2. The types vtype1−t and vtype2−t are
the types of var1 and var2, respectively, in the enclosing scope of the lambda expression, augmented
respectively with amp1 and amp2 which are either & or empty. Non-reference non-const members are
to be declared mutable—this is to allow modifications to member variables stored in the closure even
though the function call operator of the closure is declared const.

2. The closure’s constructor has one parameter for each member variable, whose types vtypeN−t−par
are obtained from vtypeN−t types by adding const and reference to all non-reference types. This
constructor should not be exposed to the user.

3. The closure has copy and move constructors with their canonical implementations.

4. Closure classes should not have a default constructor or an assignment operator.

5. If the lambda function is defined in a member function and its body contains references to this or
member access operations that do not explicitly mention this, the translation described in Section 4.2.1
is applied to obtain body−t from body.

Doc. no: N2529=08-0039 7

a1 <>(ptype1 par1, ptype2 par2)
a2 : [amp1 var1, amp2 var2]
a3 (body)

b1 // generated immediately before the statement
b2 // that the lambda expression appears in
b3 class unique {
b4 vtype1-t var1;
b5 vtype2-t var2;
b6
b7 public: // But hidden from user
b8 unique(vtype1-t-par var1, vtype2-t-par var2)
b9 : var1(var1), var2(var2) {}

b10 public: // Accessible to user
b11 unique(const unique& o) : var1(o.var1), var2(o.var2) {}
b12 unique(unique&& o) : var1(static cast<vtype1-t&&>(o.var1)),
b13 var2(static cast<vtype2-t&&>(o.var2)) {}
b14

b15 auto operator()(ptype1 par1, ptype2 par2) const
b16 ->decltype(body-t-ret)
b17 { return body-t; }
b18 };
b19

b20 // generated to exactly where the lambda function is defined
b21 unique(init1, init2)

Figure 1: Example translation of lambda functions.

6. The parameter types of the function call operator are those defined in the lambda function’s parameter
list. The return type is defined as decltype(body−t−ret) where body−t−ret is obtained from body−t
by translating all occurrences of free variables to some expressions that have the same type and the
same l-/r-valueness as the variable the occurrence refers to. With the help of, for example, the fake
function (see Section 4.2), a variable of type T is translated to fake<T&>(). Occurrences of this are
subject to this translation as well.

7. The names of all the classes generated in the translation should be unique, different from all other
identifiers in the entire program, and not exposed to the user.

The above example translation was a case where the body of the lambda function is a single expression
and the return type is not specified. If the return type is specified explicitly, that return type is used as the
return type of the function call operator of the closure, except that member access operations and references
to variables is in the local variable clause are translated as described above in items 5 and 6. The case where
the body of the lambda function is a compound statement instead of a single expression is only trivially
different to the translation described above.

6 Binary interface

A closure object is of some compiler generated class type the programmer cannot directly write. The type
can only be obtained via template argument deduction. To bind a lambda function to a parameter of a
non-template function or a variable, the variable’s or parameter’s type must thus have some other type to
which the lambda expression’s type is convertible. For example, instances of the std::function can serve as
such types.

All instances of the std::function template have a fixed size and can be constructed from any MoveConstructible
function object which satisfies the callability requirement of the particular instance of std::function. A typical
implementation of function uses so called “small buffer optimization” to store small function objects in a
buffer in the function itself, and allocate space for larger ones dynamically, storing a pointer in the buffer.

Doc. no: N2529=08-0039 8

The doit function below demonstrates how std::function can be used with lambda functions. The argument
to doit can be any function or function object F—such as a closure object—that satisfies the requirement
Callable<F, int, int> and whose return type is convertible to int: The doit function is non-generic, and could
thus be placed, e.g., in a dynamically linked library.

void doit(std::function<int (int, int)>);

The following shows a call that passes a lambda function to doit:

int i;
....

doit(<>(int x, int y) : [i] (x + i∗y));

6.1 Closures with no by-copy variables

Access to variables declared in the lexical scope of a lambda function can be implemented by storing a single
pointer to the stack frame of the function enclosing the lambda. This lends to representing closures using
two pointers: one to the code of the lambda function, one to the enclosing stack frame (known as the “static
link”). As mentioned in Section 4.2.2, this representation is safe for lambda functions that do not outlive
the functions they are defined in.

If the “two-pointer” representation is mandatory, lambda functions can be given a light-weight and
efficient binary interface, even more so than with std::function; lambda functions can be passed in registers,
and they can be copied bitwise. Closures that do not store any free variables by copy are required to use
this representation. Their types are instances of a “magic” template “std::nested function”. To extend the
C++ type system with a full-fledged new “lambda-function” type would be rather drastic, which is why we
suggest std::nested function.

The definition of std::nested function can be similar to that of std::function:

template<MoveConstructible R, MoveConstructible... ArgTypes>
class nested function<R(ArgTypes...)> {

R operator()(ArgTypes...) const;
// copy and move constructors

};

A function expecting an std::function parameter accepts any function pointer or function object type,
assuming the function or function object is callable with the required signature; a function expecting a
std::nested function only matches lambda functions that store no free variables by copy. A binary library
interface can provide overloads for both types. For example:

void doit(std::function<int(int, int)> f);
void doit(std::nested function<int(int, int)> f);

This overload sets allows calls with a function, function object, or lambda function, and takes advantage of
the latter overload when called with a lambda function that stores no free variables by copy; in a call to doit
where the parameter is a lambda function defined with the <&> form, the match to the first overload requires
a user-defined conversion via the templated constructor of std::function, whereas the latter is a direct match.

Note further, that lambda expressions resulting in closures with an empty environment could in principle
be given function pointer types. For example, the type of the lambda expression <>(int x, int y) (x + y)
could be defined to be int(∗)(int, int). We have not considered all the implications of this design choice—if
such an exploration were to be carried out and the feature found desirable, wording could be written that
was not inconsistent with the current proposal.

7 Discussion on design choices and alternatives

Clark Nelson has pointed out that the <=> as the “lambda-introducer” is separated into tokes as <= >,
whereas other forms of the lambda-introducer would start with the < token. By selecting a different syntax

Doc. no: N2529=08-0039 9

for <=>, and possibly for the <&> form as well, such complication could be avoided. At least the following
possibilities would be free of this complication:

<!> <∗> <+> <.> <ˆ> <|> <∼>

Clark also points out that the fact that unnamed parameters are not allowed in the parameter list
of a lambda function is inconsistent with other functions. The rationale for this restriction is upwards
compatibility to polymorphic lambdas where the parameter types could be omitted. If it was allowed to
leave out either one, the type or the parameter, ambiguities would arise. Clark notes, however, that with
either of the restrictions below, the ambiguities can be prevented:

• a prohibition against using an in-scope typedef name as the name of a parameter of a polymorphic
lambda.

• different syntax (different lambda-introducer) to introduce polymorphic and monomorphic lambda
functions

8 Acknowledgements

We are grateful for help and comments by Dave Abrahams, Matt Austern, Peter Dimov, Gabriel Dos Reis,
Doug Gregor, Howard Hinnant, Andrew Lumsdaine, Clark Nelson, Valentin Samko, Jeremy Siek, Bjarne
Stroustrup, Herb Sutter, Jeremiah Willcock, Jon Wray, and Jeffrey Yasskin.

References

[Bec07] Pete Becker. Working draft, standard for programming language C++. Technical Report
N2369=07-0229, ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Programming
Language C++, August 2007.

[JFC07a] Jaakko Järvi, John Freeman, and Lawrence Crowl. Lambda expressions and closures: Wording
for monomorphic lambdas. Technical Report N2413=07-0273, ISO/IEC JTC 1, Information
technology, Subcommittee SC 22, Programming Language C++, September 2007.

[JFC07b] Jaakko Järvi, John Freeman, and Lawrence Crowl. Lambda expressions and closures: Wording
for monomorphic lambdas (revision 2). Technical Report N2487=07-0357, ISO/IEC JTC 1,
Information technology, Subcommittee SC 22, Programming Language C++, December 2007.

[JFC07c] Jaakko Järvi, John Freeman, and Lawrence Crowl. Lambda functions and closures for C++
(Revision 1). Technical Report N2329=07-0189, ISO/IEC JTC 1, Information technology, Sub-
committee SC 22, Programming Language C++, June 2007.

[JSR06a] Jaakko Järvi, Bjarne Stroustrup, and Gabriel Dos Reis. Decltype (revision 5). Technical Report
N1978=06-0048, ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming
Language C++, April 2006.

[JSR06b] Jaakko Järvi, Bjarne Stroustrup, and Gabriel Dos Reis. Decltype (revision 6): proposed wording.
Technical Report N2115=06-0185, ISO/IEC JTC 1, Information technology, Subcommittee SC
22, Programming Language C++, November 2006. http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2006/n2115.pdf.

[Mer07] Jason Merrill. New function declarator syntax wording. Technical Report N2445=07-0315,
ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Programming Language C++,
October 2007. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2445.html.

[Nel08] Clark Nelson. Lambda look-ahead issue. C++ standard’s committees reflector, message
c++std-core-12636, 2008-1-30, 2008.

Doc. no: N2529=08-0039 10

[Sam06] Valentin Samko. A proposal to add lambda functions to the C++ standard. Technical Re-
port N1958=06-0028, ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Pro-
gramming Language C++, February 2006. www.open-std.org/JTC1/SC22/WG21/docs/papers/
2006/n1958.pdf.

[Wil07] Anthony Williams. Names, linkage, and templates (rev 1). Technical Report N2187=07-0047,
ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming Language C++,
March 2007. www.open-std.org/JTC1/SC22/WG21/docs/papers/2007/n2187.pdf.

[WJG+06] Jeremiah Willcock, Jaakko Järvi, Douglas Gregor, Bjarne Stroustrup, and Andrew Lumsdaine.
Lambda functions and closures for C++. Technical Report N1968=06-0038, ISO/IEC JTC 1,
Information technology, Subcommittee SC 22, Programming Language C++, February 2006.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1968.pdf.

A Proposed wording

The proposed wording follows starting from the next page. Within the proposed wording, text that has been
added will be presented in blue and underlined when possible. Text that has been removed will be presented
in red, with strike-through when possible. The wording in this document is based on the C++0X draft, and
uses its LATEX sources. There are some dangling references in the final document, which will be resolved
when merged back to the full sources of the working paper.

Text typeset as follows is not intended as part of the wording:
[Editorial note: Example of a meta comment.]

Chapter 5 Expressions [expr]

5.1 Primary expressions [expr.prim]

Primary expressions are literals, names, and names qualified by the scope resolution operator ::, and lambda expres-
sions.

primary-expression:
literal
this

(expression)

id-expression
lambda-expression

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
∼ class-name
template-id

5.1.1 Lambda Expressions [expr.prim.lambda]

lambda-expression:
lambda-introducer (lambda-parameter-declaration-listopt) exception-specificationopt

lambda-return-type-clauseopt lambda-local-var-clauseopt (expression)

lambda-introducer (lambda-parameter-declaration-listopt) exception-specificationopt
lambda-return-type-clause lambda-local-var-clauseopt compound-statement

lambda-introducer:
< >

< & >

<= >

< = >

lambda-parameter-declaration-list:
lambda-parameter
lambda-parameter , lambda-parameter-declaration-list

lambda-parameter:
decl-specifier-seq declarator

lambda-return-type-clause:
-> new-type-id
-> (type-id)

lambda-local-var-clause:
: [lambda-local-var-list]

lambda-local-var-list:
lambda-local-var
lambda-local-var , lambda-local-var-list

1

2 CHAPTER 5. EXPRESSIONS

lambda-local-var:
&opt identifier
this

1 The execution of a lambda-expression results in a closure object. Calling the closure object executes the expression
or statements specified within the lambda-expression body. The type of a closure object depends upon the form of the
lambda-expression. Some such types are defined within this standard; others are implementation-defined.

Closure objects behave as function objects ([function.objects], 20.5), whose function call operator, constructors, and
member variables are defined by the lambda expression’s signature, body, and the context of the lambda expression.

2 In a lambda expression

<>(lambda-parameter-declaration-listopt) exception-specificationopt lambda-return-type-clause
lambda-local-var-clauseopt compound-statement

denote the lambda-parameter-declaration-listopt as P, exception-specificationopt as E, type-id or new-type-id in lambda-
return-type-clause R, lambda-local-var-clauseopt as L, and compound-statement as B.

— The potential scope of a function parameter name in lambda-parameter-declaration-list begins at its point of
declaration and ends at the end of the lambda expression.

— A name in the lambda-local-var-clause shall be in scope in the context of the lambda expression, and shall be
this or refer to a local object with automatic storage duration. The same name shall not appear more than once
in a lambda-local-var-clause.

— The lambda expression shall not refer to this or a variable of automatic storage duration in the enclosing scope
of the lambda expression, if it is not named within the lambda expression’s lambda-local-var-list.

3 To define the meaning of the lambda expression, define an empty class with a unique name, call it F, immediately
preceding the statement where the lambda expression occurs.

Let n1, . . ., nk denote the names defined in the lambda-local-var-clause, where this has been translated to some
unique name, call it __this. Let ti, i = 1, . . . ,k denote the (non-reference) types of objects named ni looked up in the
context of the lambda expression; type of __this is the type of this pointer. If lambda-local-var-clause is empty,
k = 0, and we take the sequences ni and ti to be empty as well. Define in F a private member variable named ni for
each i = 1, . . . ,k. If the name ni was declared with & in L, the type of the member variable named ni is ti&, otherwise
the type is ti and the member variable is declared mutable.

4 Let r be the type denoted by the type-id R. Let u1, . . ., un be the types denoted by the list of type-ids in E, if E is not
empty.

Define a public function call operator in F:

auto operator()(P) const E’ -> R’ B’

where R’ is some type-id that denotes the type r; where E’ is empty if E is empty and otherwise E’ is an exception-
specification whose type-id-list consist of type-ids that denote the types n1, . . ., nk; and where B’ is obtained from
B by applying the following transformations:

— If the lambda expression is within a non-static member function of class X, perform name lookup. Trans-
form all accesses to non-static non-type class members of the class X or of a base class of X that do not use
the class member access syntax (5.2.5) to class member access expressions that use (*this), as specified in
([class.mfct.non-static], 9.3.1).

— Transform all occurrences of this to __this.

5 F has an implicitly-declared copy constructor. Define a public move constructor for F that performs a member-wise
move. The assignment operator in F has a deleted definition. Define no other public members to F. [EDITORIAL NOTE:
The wording should include a reference to the definition of “move constructor”. That definition does not seem to exist,
though “move constructor” is mentioned in several places in the draft.]

5.1. PRIMARY EXPRESSIONS 3

6 Replace the lambda expression with an object of type F where each member named ni has been initialized with the
variable named ni and the member __this initialized with this.

Denote the constructed F object fo. The meaning of the lambda expression is that of fo, except for the following:

— The size and alignment characteristics of the closure object are unspecified. In particular, they are not guaranteed
to be those of objects of class F.

— If one or more variables in the local variable clause are declared with &, the effect of invoking a closure object,
or its copy, after the innermost block scope of the context of the lambda expression has been exited is undefined.

— A closure object defined by a lambda expression with a local variable list consisting only of references shall have
type std::nested_function<R(P’)> (20.5.17), where P’ is the comma separated list of types of the param-
eters in P. [Note:This requirement effectively means that such closures must be implemented via a "function
pointer and static scope pointer" pair rather than by construction of a unique class type. — end note]

7 The meaning of a lambda expression

<&>(lambda-parameter-declaration-listopt) exception-specificationopt lambda-return-type-clause
lambda-local-var-clauseopt compound-statement

where we denote lambda-parameter-declaration-listopt as P, exception-specificationopt as E, type-id or new-type-id in
lambda-return-type-clause R, lambda-local-var-clauseopt as L, and compound-statement as B, is that of

<>(P) E -> R L’ B

where L’ is a lambda-local-var-clause that contains all lambda-local-var entries in L and a new entry &v for each
distinct variable name v appearing in B and denoting a local object with automatic storage duration in the enclosing
scope of the lambda expression. If B refers to this, or contains member accesses that do not mention this but would
be converted to class member accesses using (*this) according to (9.3.1), L’ contains this.

8 The meaning of a lambda expression

<=>(lambda-parameter-declaration-listopt) exception-specificationopt lambda-return-type-clause
lambda-local-var-clauseopt compound-statement

where we denote lambda-parameter-declaration-listopt as P, exception-specificationopt as E, type-id or new-type-id in
lambda-return-type-clause R, lambda-local-var-clauseopt as L, and compound-statement as B, is that of

<>(P) E -> R L’ B

where L’ is a lambda-local-var-clause that contains all lambda-local-var entries in L and a new entry v for each
distinct variable name v appearing in B and denoting a local object with automatic storage duration in the enclosing
scope of the lambda expression.

9 The meaning of a lambda expression

lambda-introducer (lambda-parameter-declaration-listopt) exception-specificationopt lambda-return-type-
clause
lambda-local-var-clauseopt (expression)

where we denote lambda-introducer as I, lambda-parameter-declaration-listopt as P, exception-specificationopt as E,
type-id or new-type-id in lambda-return-type-clause R, lambda-local-var-clauseopt as L, and expression with E1, is
that of

I(P) E -> R L { return E1; }

10 The meaning of a lambda expression

lambda-introducer (lambda-parameter-declaration-listopt) exception-specificationopt
lambda-local-var-clauseopt (expression)

where we denote lambda-introducer as I, lambda-parameter-declaration-listopt as P, exception-specificationopt as E,
lambda-local-var-clauseopt as L, and expression with E1, is that of

4 CHAPTER 5. EXPRESSIONS

I(P) E -> decltype(E1) L { return E1; }

Chapter 20 General utilities library [utilities]

20.5 Function objects [function.objects]

20.5.17 Class template nested_function [func.nest]

namespace std {

template<class> class nested_function; // undefined

template<class ResType , class... ArgTypes >

class nested_function<ResType (ArgTypes ...)>

{

public:

// 20.5.17.1, trivial members:
nested_function() = default;

nested_function(const nested_function&) = default;

nested_function& operator=(const nested_function&) = default;

~nested_function() = default;

// 20.5.17.2, null values:
constexpr nested_function(unspecified-null-pointer-type);

nested_function& operator=(unspecified-null-pointer-type);

explicit operator bool() const;

// 20.5.17.3, invocation:
ResType operator()(ArgTypes ...) const;

// 20.5.17.4, type access:
typedef ResType result_type;

typedef T1 argument_type; // iff one argument
typedef T1 first_argument_type; // iff two arguments
typedef T2 second_argument_type; // iff two arguments

};

// 20.5.17.5, comparisons:
template <class ResType , class... ArgTypes >

bool operator==(const nested_function<ResType (ArgTypes ...)>&,

unspecified-null-pointer-type);

template <class ResType , class... ArgTypes >

bool operator==(unspecified-null-pointer-type ,

const nested_function<ResType (ArgTypes ...)>&);

template <class ResType , class... ArgTypes >

bool operator!=(const nested_function<ResType (ArgTypes ...)>&,

unspecified-null-pointer-type);

template <class ResType , class... ArgTypes >

bool operator!=(unspecified-null-pointer-type ,

const nested_function<ResType (ArgTypes ...)>&);

} // namespace std

5

6 CHAPTER 20. GENERAL UTILITIES LIBRARY

1 The nested_function class template represents reference-only closures [expr.prim.lambda].

2 A nested_function object f of type F is Callable for argument types T1, T2, ..., TN in ArgTypes and a return
type R , if, given lvalues t1, t2, ..., tN of types T1, T2, ..., TN , respectively, INVOKE(f, t1, t2, ...,

tN) is well-formed (20.5.2) and, if R is not void, convertible to ResType .

3 The instances of nested_function class template are trivial and standard-layout classes (3.9 [basic.types]).

4 Unless otherwise specified, none of the functions in this section throw exceptions.

20.5.17.1 trivial members [func.nest.trivial]

explicit nested_function()

1 Postconditions: None — the object state is undefined.

nested_function(const nested_function& f)

2 Postconditions: *this is a copy of f

nested_function& operator=(const nested_function& f);

3 Postconditions: *this is a copy of f

4 Returns: *this

~nested_function();

5 Effects: destroys this

20.5.17.2 null values [func.nest.null]

nested_function(unspecified-null-pointer-type);

1 Postconditions: !*this

nested_function& operator=(unspecified-null-pointer-type);

2 Postconditions: !*this

3 Returns: *this

explicit operator bool() const

4 Returns: true if *this was constructed or copied from a closure, false if *this was constructed or copied
from an unspecified-null-pointer-type, undefined otherwise.

5 [Note: This conversion can be used in contexts where a bool is expected (e.g., an if condition); however, implicit
conversions (e.g., to int) that can occur with bool are not allowed, eliminating some sources of user error. One
possible implementation choice for this type is pointer-to-member. — end note]

20.5.17.3 invocation [func.nest.invoke]

ResType operator()(ArgTypes ... args) const

1 Preconditions: (bool)*this

2 Effects: Undefined if *thiswas default constructed, constructed from an unspecified-null-pointer-type or copied
from such. Otherwise, invokes the closure with the given arguments.

3 Returns: Nothing if ResType is void, otherwise the return value of the closure.

4 Throws: Any exception thrown by the wrapped function object.

20.5. FUNCTION OBJECTS 7

20.5.17.4 type access [func.nest.type]

typedef ResType result_type

1 Returns: The return type of the invocation.

typedef T1 argument_type

2 Returns: The argument type of the invocation when that invocation takes exactly one argument, otherwise the
typedef is not present.

typedef T1 first_argument_type

3 Returns: The first argument type of the invocation when that invocation takes exactly two arguments, otherwise
the typedef is not present.

typedef T2 second_argument_type

4 Returns: The second argument type of the invocation when that invocation takes exactly two arguments, other-
wise the typedef is not present.

20.5.17.5 comparison [func.nest.compare]

template <class ResType , class... ArgTypes >

bool operator==(const nested_function<ResType (ArgTypes ...)>& f ,

unspecified-null-pointer-type);

template <class ResType , class... ArgTypes >

bool operator==(unspecified-null-pointer-type ,

const nested_function<ResType (ArgTypes ...)>& f);

1 Returns: !f

template <class ResType , class... ArgTypes >

bool operator!=(const nested_function<ResType (ArgTypes ...)>& f ,

unspecified-null-pointer-type);

template <class ResType , class... ArgTypes >

bool operator!=(unspecified-null-pointer-type ,

const nested_function<ResType (ArgTypes ...)>& f);

2 Returns: (bool)f

