
WG14/N997 page 1
Proposal for Technical Report on C Standard Library Security

 Doc No: SC22/WG14/N997

 Date: February 24, 2003

 Project: JTC1.22.32

 Reply to: Martyn Lovell
 Microsoft Corp.
 1 Microsoft Way
 Redmond WA USA 98052-6399
 Email: martynl@microsoft.com

Proposal for Technical Report on
C Standard Library Security

1 Introduction
When the C standard library was originally designed, as part of the evolution of the Unix
operating system and the C language, computing and computer internetworking were in
their infancy. Security of internal coding was far less of an issue than it is today.

This has caused many of the functions provided by the C standard library to provide an
‘insecure’ interface. It is easy to accidentally use these functions in a dangerous fashion.
Many of today’s security advisories result from such dangerous usage. Common security
mistakes like buffer overruns are easily made with many of the these functions.

This paper proposes the creation of a Technical Report (TR) to address security
weaknesses and where possible remove them from the C standard library. There are
functions in the C standard library whose common use can lead to security issues; may
are identified below by way of example. One way the TR could choose deal with this is
to adopt alternative versions of each of these functions, and let the existing functions be
deprecated.

It is important to note that simply switching to these new functions will not, on its own,
make any application secure. Secure coding practices, such as threat modeling, code
review and rigorous testing are required to build and deploy secure applications.
However, use of these functions should reduce the incidence of trivial coding mistakes
that can cause security exposure.

2 Problems addressed
There are three kinds of problems in today’s implementations of the C standard library.

• Standard-defined interface problems: Some functions do not include appropriate
parameters to allow them to be implemented securely. For example, this includes
functions which fill output string buffers but do not allow the caller to specify a
buffer size.

WG14/N997 page 2
Proposal for Technical Report on C Standard Library Security

Resolving these problems requires a new function with appropriate parameters,
and a change to the C Standard. For memorability, one way to distinguish such
new functions would be with an _s postfix.

• Standard-defined implementation problems: Some functions have an appropriate
interface, but the standard requires their implementation to be insecure. For
example, returning a non-terminated string in a buffer.
Resolving these problems requires a change to the standard, and a change to
implementations of the functions, but new functions need not be created.

• Standard agnostic implementation problems: Some functions have an appropriate
interface, but the standard allows them to be implemented inappropriately. These
are quality-of-implementation issues.
No standard change is required, though the committee may wish to consider
doing so.

Examples of issues of all three kinds are presented below. Quality-of-implementation
issues are presented for completeness.

2.1 Interface problems
2.1.1 Output buffer sizes
Functions that take a string output buffer must take a size for that buffer, to avoid writing
past its end. For example, strxfrm should take a size, and strcpy should be deprecated in
favour of strncpy.

Functions that take a binary output buffer must also take a size for it.

2.1.2 Error return
All functions should be documented to return an error in errno. New functions will use
errno as a return value to ensure all functions can be seen to return errors.

2.1.3 Callback context
Several library functions (qsort, bsearch) call back to function pointers provided to them.
These callbacks often require the caller to store context in static variables to have it
accessible from within the callback function. This can cause dangerous problems with
reentrancy. To avoid this, functions should always allow a context value (void *) to be
passed in, and will pass this back to the callback function.

2.1.4 Static result buffers
Some library functions return a pointer to a library-internal buffer, and specify that the
result will be overwritten by the next call. Though libraries are free to implement such
functions with one buffer for each thread (to reduce risk of conflict), there is still a
significant risk of buffer overrun caused by reentrancy. For example, tmpnam should
return its name in a user-provided buffer, rather than a library-internal buffer.

WG14/N997 page 3
Proposal for Technical Report on C Standard Library Security

2.1.5 Replacing variables with functions
When the library exposes a variable directly (such as errno), there is no easy way for it to
validate that the variable is only used when it is valid, and only set to valid values. Each
variable should be replaced with an appropriate get and set function,

2.1.6 Random number quality
Random number generation and initialisation should be performed in a ‘safe’ manner,
using appropriately cryptographically safe generators. For backwards compatibility, we
should probably use a new function name for this, since performance will be slower.

2.2 Standard implementation problems
2.2.1 String terminators
All functions writing strings to buffers should terminate the characters written, or return
an error if there is no space for termination. For example, strncpy should always write a
terminator.

2.3 Quality of implementation problems
2.3.1 Null pointer checks
All functions should check for invalid or null pointers and fail to act if the input pointers
are not valid. For example, if a null pointer is passed to strncat, it should fail.

2.3.2 Parameter validation
Functions should ensure they were provided with appropriate and correct inputs, and
return error if not. For example, if an invalid open mode is provided to fopen, the
function should fail.

2.3.3 Stack depth
Functions should not copy unbounded user input to the stack, as this can allow a denial of
service attack. Long strings should always be allocated on the heap where overflow can
be safely dealt with.

2.3.4 File permissions
File functions should default to secure permissions (exclusive/single user), and secure
locations (temporary files) to ensure that squatting attacks are not possible. For example
fopen should default to exclusive access.

2.3.5 scanf family problems
scanf makes extensive use of unsized buffers. While there is no entirely satisfactory way
to fix this, one possible proposal would be to require that each scanf buffer parameter
have a size passed. The function already allows this, but it is possible to propose a new
function that requires the size.

WG14/N997 page 4
Proposal for Technical Report on C Standard Library Security

3 Proposed Technical Report
We propose the creation of a technical report specifying security-related risks and
security-enabling changes to the C library in detail, potentially including items such as
the following: deprecation of functions that cannot be fixed without change to the
function’s signature; replacement functions that are secure, specifying the necessary
behaviour changes; and new functions to be added. We would also be able to provide
various sample implementations of such functions.

4 Appendix: Function Shape Changes
We are working through the whole library to apply these principles. This table
summarises the changes we’re making to standard functions. We are also making similar
changes to our many functions that are extensions to the standard.

Area Old prototype New prototype Security Act
Algorithms void *bsearch(

 const void *key,
 const void *base,
 size_t num,
 size_t width,
 int (__cdecl
*compare) (const void
*, const void *)
);

void *bsearch_s(
 const void *key,
 const void *base,
 size_t num,
 size_t width,
 int (__cdecl
*compare) (void
*context, const void
*, const void *),
 void *context
);

Passes context to
avoid static vars

Algorithms void qsort(
 void *base,
 size_t num,
 size_t width,
 int (__cdecl
*compare)(const void
*, const void *)
);

void qsort_s(
 void *base,
 size_t num,
 size_t width,
 int (__cdecl
*compare)(void
*context, const void
*, const void *),
 void *context
);

Avoid static vars with
context

Filesystem char *tmpnam(
 char *string
);

errcode tmpnam_s(
 char *buffer,
 size_t

Standard validations

WG14/N997 page 5
Proposal for Technical Report on C Standard Library Security

 sizeInBytes,
 char *string
);

General char *getenv(
 const char *varname
);

errcode getenv_s(
 char *buffer,
 size_t
sizeInBytes,
 const char
*varname
);

Standard validations

Math int rand(void); int rand_s (void) Crypto-safe
Stream IO char *fgets(

 char *string,
 int n,
 FILE *stream
);
wchar_t *fgetws(
 wchar_t *string,
 int n,
 FILE *stream
);

char *fgets_s(
 char *string,
 size_t
sizeInBytes,
 int n,
 FILE *stream
);
wchar_t *fgetws_s(
 wchar_t *string,
 size_t
sizeInWords,
 int n,
 FILE *stream
);

Standard validations

Stream IO int fscanf(
 FILE *stream,
 const char *format
[,
 argument]...
);
int fwscanf(
 FILE *stream,
 const wchar_t
*format [,
 argument]...
);

int fscanf_s(
 FILE *stream,
 const char
*format [,
 argument]...
);
int fwscanf_s(
 FILE *stream,
 const wchar_t
*format [,
 argument]...
);

Require buffer
lengths

WG14/N997 page 6
Proposal for Technical Report on C Standard Library Security

Stream IO char *gets(

 char *buffer
);

errcode gets_s(
 char *buffer,
 size_t
sizeInBytes
);

Standard validations

Stream IO int scanf(
 const char *format
[,
 argument]...
);
int wscanf(
 const wchar_t
*format [,
 argument]...
);

int scanf_s(
 const char
*format [,
 argument]...
);
int wscanf_s(
 const wchar_t
*format [,
 argument]...
);

Requires buffer sizes

Stream IO void setbuf(
 FILE *stream,
 char *buffer
);

Deprecate Standard validations

Stream IO int vsprintf(
 const char *format,
 va_list argptr
);
int vswprintf(
 const wchar_t
*format,
 va_list argptr
);

int vsprintf_s(
 const char
*format,
 size_t count,
 va_list argptr
);
int vswprintf_s(
 const wchar_t
*format,
 size_t count,
 va_list argptr
);

Nul terminate
Buffer size
Parameter validate

String void *memcpy(
 void *dest,
 const void *src,
 size_t count
);
wchar_t *wmemcpy(

errcode memcpy_s(
 void *dest,
 size_t
sizeInBytes,
 const void *src,
 size_t count

Standard validations

Don’t deprecate old

WG14/N997 page 7
Proposal for Technical Report on C Standard Library Security

 wchar_t *dest,
 const wchar_t *src,
 size_t count
);

);
errcode wmemcpy_s(
 wchar_t *dest,
 size_t
sizeInWords,
 const wchar_t
*src,
 size_t count
);

String void *memmove(
 void *dest,
 const void *src,
 size_t count
);
wchar_t *wmemmove(
 wchar_t *dest,
 const wchar_t *src,
 size_t count
);

void *memmove(
 void *dest,
 size_t
sizeInBytes,
 const void *src,
 size_t count
);
wchar_t *wmemmove(
 wchar_t *dest,
 size_t
sizeInWords,
 const wchar_t
*src,
 size_t count
);

Standard validations

String int sprintf(
 char *buffer,
 const char *format
[,
 argument] ...
);

Deprecate Null terminate and
validate

String int sscanf(
 const char *buffer,
 const char *format
[,
 argument] ...
);
int swscanf(

int sscanf_s(
 const char
*buffer,
 const char
*format [,
 argument] ...
);

Require buffer sizes

WG14/N997 page 8
Proposal for Technical Report on C Standard Library Security

 const wchar_t
*buffer,
 const wchar_t
*format [,
 argument] ...
);

int swscanf_s(
 const wchar_t
*buffer,
 const wchar_t
*format [,
 argument] ...
);

String char *strcat(
 char
*strDestination,
 const char
*strSource
);
wchar_t *wcscat(
 wchar_t
*strDestination,
 const wchar_t
*strSource
);

Deprecate Standard validations

String char *strcpy(
 char
*strDestination,
 const char
*strSource
);
wchar_t *wcscpy(
 wchar_t
*strDestination,
 const wchar_t
*strSource
);
unsigned char *_mbscpy(
 unsigned char
*strDestination,
 const unsigned char
*strSource
);

Deprecate Standard validations

String char *strerror(
 int errnum

errcode strerror_s(
 char *buffer,
 size_t

Standard validations

WG14/N997 page 9
Proposal for Technical Report on C Standard Library Security

);

sizeInBytes
 int errnum,
);

String size_t strnlen(
 const char
*string
);
size_t wcsnlen(
 const wchar_t
*string
);

Standard validations

String char *strncat(
 char *strDest,
 const char
*strSource,
 size_t count
);
wchar_t *wcsncat(
 wchar_t *strDest,
 const wchar_t
*strSource,
 size_t count
);

errcode strncat_s(
 char *strDest,
 size_t
sizeInBytes,
 const char
*strSource,
 size_t count
);
errcode wcsncat_s(
 wchar_t *strDest,
 size_t
sizeInWords,
 const wchar_t
*strSource,
 size_t count
);

Ensure null
termination
Validate parameters

String char *strncpy(
 char *strDest,
 const char
*strSource,
 size_t count
);
wchar_t *wcsncpy(
 wchar_t *strDest,
 const wchar_t
*strSource,
 size_t count

char *strncpy_s(
 char *strDest,
 size_t
sizeInBytes,
 const char
*strSource,
 size_t count
);
wchar_t *wcsncpy_s(
 wchar_t *strDest,
 size_t

Standard validations

WG14/N997 page 10
Proposal for Technical Report on C Standard Library Security

); sizeInWords,
 const wchar_t
*strSource,
 size_t count
);

String char *strtok(
 char *strToken,
 const char
*strDelimit
);
wchar_t *wcstok(
 wchar_t *strToken,
 const wchar_t
*strDelimit
);
unsigned char *_mbstok(
 unsigned
char*strToken,
 const unsigned char
*strDelimit
);

We should do
strtok_r to avoid
static reentrancy
issues

Standard validations

String size_t wcstombs(
 char *mbstr,
 const wchar_t
*wcstr,
 size_t count
);

size_t wcstombs_s(
 char *mbstr,
 size_t
sizeInBytes,
 const wchar_t
*wcstr,
 size_t count
);

Standard validations

String size_t mbstowcs(
 wchar_t *wcstr,
 const char *mbstr,
 size_t count
);

errcode mbstowcs_s(
 size_t
*pConvertedMBChars,
 wchar_t *wcstr,
 size_t
sizeInWords,
 const char
*mbstr,
 size_t count
);

Takes a buffer size
and won’t write past

WG14/N997 page 11
Proposal for Technical Report on C Standard Library Security

Time char *ctime(

 const time_t *timer
);

errcode ctime_s(
 char *buffer,
 size_t
sizeInBytes,
 const time_t
*timer
);

Output buffer, no
static buffers

