Rationale for
International Standard -
Programming Language -
C

UNIX isatrademark of X/Open Co., Ltd..
DEC and PDP-11 are trademarks of Digital Equipment Corporation.
POSIX isatrademark of IEEE.

CONTENTS

4. COMPLIANCE

5.1.1.1 Program structure,

5112 Trandation phases

5113 DiagnosticS........coovvoeeeeee

5.1.2 Execution environments,_ ...

5121 Freestanding environment

5122 Hosted environment....................

5123 Programexecution

5.2 ENVIRONMENTAL CONSIDERATIONS
521 Character sts

5211 Trigraphsequences.....................
5212 Multibyte characters

5.2.2 Character digplay semantics

523 Sgnalsandinterrupts

524 Environmental limits,_____.........
5241 Trandationlimits

5.24.2 Numerica limits

52421 Sizesdf integer types <limitsh>
524.2.2 Characteristics of floating types <float.h>

6. LANGUAGE

6.1 LEXICALELEMENTS,
6.11 Keywords...........ccomomemnen.
6.1.2 Identifiers ...

6.1.21 Scopesof identifiers.................
6.1.22 Linkagesof identifiers,..............
6.1.2.3 Name spacesof identifiers..........
6.1.24 Storage durations of objects

6.1.25 Types

6.1.2.6 Compatible type and compasite type

6.1.2.7 Predefined identifiers.................

6.1.2.8 Representations of types
6.1.281 Generd

6.1.82 Integertypes...........ccovvueen...
6.13 Condants.............ceee.e..
6.1.31 Hoating constants
6.1.32 Integer condtants.........................
6.1.3.3 Enumerationcongtants.................
6.1.34 Character condants.....................
6.1.4 Stringliterals

6.1.5 Operators

6.1.6 Punctuators

6.1.7 Header names

6.1.8 Preprocessng numbers
6.1.9 Comments

6.2 CONVERSIONS

13

13
13
13
13
14
14
14
15
15
17
17
17
18
19
20
20
20
20
21
21

23

23
23
23
25
26
27
28
28
30
31
31
31
31
31
31
31
32
32
33
35
35
35
36
36
37

CONTENTS

6.2.1 ANMNMELIC OPEIANGSc.oiieeeeeeeeeee ettt ettt ettt et et e ee e et et et eeeeeee et eseseeeeeeeeneseeeeeeeeeas 37
B.2 11 CharalterSANUINBOEIS oo eeeee e e e e e e e e e e e e e e e e e e eeeeseeee e e eeeeeeeeeeeeereeeeseeereeeeeseeseseeseeseeanean 37
(S IS T 1= o = g o U g T 1o o T 1= 0= £ 38
6.2.1.3 R flOatiNG @A INEOBY ..o e ee eae e e eeeeeeeeeeseeeeeeeeeeereereersereeeeseeereaaea 38
L o= o (g 1Y, =S 38
B.2.1.5 COMPIEX TYIES.......oceeeeee et e et e e et e et e et eeeeeeeees e e eeeeeeeeeeeeeeeeeeeseeaseeeeeeessannsseeneseeaeseeeeeeeensnsenesenenenens 39
B.2.2.6 REA @A COMPIEX ...ttt e et et e et e et eee e e e ee e e eseeeeeeeeeaneeeeeeseeaeseeeesesenseneenneeeneeens 39
6.2.1.7 USUal @TthMEIC CONMVEISIONS ...ttt et et e e ee e e ee e e eeeeeeeeeeeeeseeeeseeeeeeeseessseneesenenees 39

B.2.2 ONEI OPEIANGSottt ettt et et et et et et es e et et eteeee e et et et eseeeee e ereseeeeeeeenerenns 39
6.22.1 Lvauesand fUNCHON QESIGNEIONS.eoueeeeee oo e e e e e e e e e e eee e e e e eeeee e e eteeeeesesteereseeeseereeeeeeeeeeanea 39
(S Vo Lo E TSSOSO 39
L T o | (= €TSS 39

5.3 EXPRESSIONS | . ittt ettt ee et et e e e e et e et e e e eeeeae et e eeeeee et e e e eeeeee et e eeeeee et et e eaeeteeneete et enaeereeaes 41

6.3.1 Primary BXPIESHONS |ottt et et et e e e et et et e eeeee et et et eseeeee et en et eseeeeseeeneneeeneeas 43
6.3 L1 TheIdEHfIEr _ fUNMC . oo e ee e e e e e e e e e e et e e e e e e e e e eeeeee e e eeeeeeeeeeeeeeereeeearesneanean 43

B.3.2 POSIX OPEIAIOISottt ettt ettt e et ea e eeeeeeeeeeeseeeeeeee et es et eses et es et eneeeeeeeseseeas 43
B.32.L AITAY SUDSTIILING, ... oo e e e e e e e e e e e e e e e e e e eaeeeeeee e e eaeeeeaeeeseeeeaeeseeeseeeeseeeseseeerseesanan 43
B.322 FUNCHONCAIS, ... e e ee e e e e e e e e e e e e e e e e e e et e eae e e e e eee e e eseeeeeeeeeeaeeeeeeeeeeerseeseseesaean 43
6.32.3 SUCUrE NG UNION MBIMIOEIS, oo e e e e e e e e e e e e e e e eteeteeeeeeeeeeeeeeeeeeeeeeeeeseeeseereessereseeareereanea 45
6.3.24 Postfix increment and deCremMENt ODEIBEONS,c.ooeeeeeeee e e eeeeee e e e e e s e e eeeeseeseseeeeaeseesteesseseeasseseeseensesnns 45
6.325 COMPOUNG HITEIAIS ... e e e e e e e e et e e e et e e e eeeeaeeeeeseaaeeeeeseeseaseeseseesseaeeeeeeresseeseseeaassesanean 45

B.3.3 UNAIY OPEIGIONS ...ttt ettt e et e et et et en s s s s s s e s s e e e eeeeens 46
6.3.31 Prefix increment and JeCrEMENt ODEIGIONSo e oot e et e e e e e et e e e e e e e e e eaeseeateeeeesteeneeeeeesaeeaeeenns 46
6.3.3.2 Addressand iNAIrECtION ODEIELONS,..............c.ceeeeeee oo ee e e e e e e e e e e e e e e e e eeeee e e ereeeeeeesteeeeeeseereseeseeseeanea 46
6.3.3.3 UNary @ithmEtiC OPEIBIONS.ottt et et e et et e e e e e e e ee e e eeeeeeeeeeeneeenenees 46
LR N oEs b= o o e = - (o 46

B.3.4 CASL OPEIIONSttt ettt et e et et eeeeee e et et et eeee et et eteeee et et er et ereeeee e ereseeeeeeneeereens 47

6.35 MUIIPIICALIVE OPBIALONS.ttt s e st en e een s eeneneen 48

6.3.6 AUGILIVE OPEIAIONS.oieeeeeeeeeeeeeee ettt ee et s e et s e et en s e e enen e eeneneeen 48

6.3.7 BitWISBSNIfL OPBIAIOISottt s en e eneen 49

6.3.8 REAONA OPEIALOIS ...ttt ee et et s et en e een s eeneneeen 49

6.3.9 EQUAILY OPBIALONS,ttt et ee et e et st en s s eenen e eeneneeen 49

6.3.10 BItWISBAND OPEIAONottt ettt et et eeenen et enenen s s s s nnanans 49

6.3.11 Bitwise eXCIUSIVE OR OPEIGIONttt e e 49

6.3.12 BitWISBINCIUSIVE OR OPBIGION oottt ettt e et et et e eee e e eneeeeeeeeeas 49

6.3.13 LOGICAl AND OPEIGLON ee e ee et st es et n s s en s e eneneeen 50

6.3.14 LOGICAl OR OPEIAIONt eee et ee s et en s es s e et en s e s en s e eneneeen 50

6.3.15 CONGItIONAl OPEIAION et eee s eee e s ee s es s ee e ees s eee s eneeeeneseeneseenneees 50

6.3.16 ASSIGNMENT OPEIIOIS ...,iueieeeeeeeeeeeeeee e e e eeee e ees s ee e ees e es s eseseee e ees e et s eneseenseereseenneees 50
Lo Lo S Ty 4 o (== S T 00T=. 0 SRS 51
6.3.16.2 COMPOUND BSSIONMIENT ...t e e et e et e e e e e e e e eeeeereeeeeeseseeeaseeaseseseeseeeeesteeaseeeesreenseseesreenresnes 51

6.3.17 COMMBLOPEIGION ...ttt ettt et e e et et eee et ee et es e et esene et es et eseeeeseeeeeeseeteneeeeseeeeseneeseneeanas 51

6.4 CONSTANT EXPRESSIONS | . ettt et e et et e e e e e et et e e ee et et eeeeeeee et eeeeeeeeeeeeneeeeeeeeeeeeeeeeneeneeenes 51
B.5 DECLARATIONS ittt ettt e e e et et et e e e e e e et e e eeeeeeeeeeeeeeeee e et eeeeeeeeeseeeeeeeeneeeeeeeseneenensenanns 52

6.5.1 SOragE-ClasS SPECITIEIS oottt et ettt ettt er et et et e eneeeeeneeeas 52

B.5.2 TYPEIECITIEISottt ettt ettt en et e e e e e s s 53
6.521 SUCUrE aNA UNION SDEGTIEIS oo ee e e e e e e e e e et e e e e e e e e e e e e e eeeeeesteereeeeeereeeereeneanea 55
6.5.2.2 ENUMEIAION SDBCITIEIS ... oo eaeeeeeeeeeeeeeeeeeeeeeeaeeeeeeeeereereeseseeaesaneanen 56
B.5.2.3 Ta0S. ...ttt e ettt e ettt te et et ete et eate ate et et ate et et e et eeteeeteeeeareeneane 56

B.5.3 TYPEQUAIITIENS . . . ettt ettt et et ettt e e ettt e e et et et et eee et ereseeeeeeeeeereeas 56
6.5.3.1 FOrma defiNitiON OF FESIICE ee e e e e e e e e e et e e e e e e e eeeeeeeseeeeaeesteereeeeseereeeeseeeeeanea 58

6.5.4 FUNCHON SDECITIEIS oottt et ettt et ettt er et et eee et et eeeeeeeeeas 61

6.5.5 DECAIGIOIS, .. .o oot e e oot et e et e ee et e et e et ee e et eeneen e, 61
L R 1 (= o = o ' o= 61
R A g = Yo = E= = (o £ SR 61
6.5.5.3 Function dedarators (iINAUAING PrOOLYIES)oovee oo 62

B.56 TYPENMAMESottt ettt ettt e e e et e et se et e e et et et et s s e e s e e s e e 63

B.5.7 TYPEUEIINITIONS ettt ettt et e ettt et et ee e e et et etee et e et et eeee et e et eeeeeneeeee 63

6.5.8 Initialization
6.6 STATEMENTS

6.6.2 Compound statement, or block
6.6.3 Expresson and null gatements
6.6.4 Sdection statements

6.6.5.2 Thedo statement
6.6.5.3 Thefor statement

6.6.6. Jumpdatements
6.6.6.1 The goto Satement
6.6.6.2 The continue statement
6.6.6.3 Thebreak statement

6.83 Macroreplacement.................
6.8.3.1 Argument substitution

6.8.3.5 Scope of macro definitions
6.8.4 Linecontrol

6.8.5 Errordirective ...
6.8.6 Pragmadirective
6.8.7 Null directive

6.8.8 Predefined macronames ...

6.89 Pragmaoperator...................
6.9 FUTURE LANGUAGE DIRECTIONS, .

6.9.1 Character escape sequences .

6.9.2 Storage-class specifiers

6.9.3 Functiondeclarators..............

6.9.4 Function definitions, ...
6.9.5 Pragma directives

7.1 INTRODUCTION

7.1.1 Dsefinitionsof terms, ...
712 Standardheaders. ...

7.1.3 Resrvedidentifiers ...
714 Errors <errno.h>

CONTENTS

6.8.34 Rescanning and further replacement

7.15 Limits <float.n> and <limtsh>
7.1.6 Common definitions <gddef.h>

7.1.7 Boolean type and values <stdbool.h>

7.1.8 Useof library functions
7.2 DIAGNOSTICS <ASSERT.H>

7.3.1 Character testing functions
7311 Theisanum function
7.312 Theisdphafunction

CONTENTS

7313 Theishlank fUNCIION oo eeeeeeeeeeeeeeeeeeeeeeereseeareaneenan 86
T.3L4 TheisOl FUNCHON oo ee e e e e e eaeeeeeeeeeeeeeeeeeeeereeeeeseereseeseesesanan 86
7315 TheiSdiGit FUNCION e e ee e e e e e e e e e e e e e e e e eee e e e e eeeeteeeeeeeeeeeeeseeeseeeeeeeereeeeeeesesanan 86
7316 TheisOrapn TUNCHONo e e e e e e e e e e e e e e e et e et e e e e e eaeeeeeeeeeeseeeseseeeeeeeeeseeseseeseeeneaean 86
T.3L7 ThEISONE FUNCHONo e e e e e e e e e e e e e e ete et eeae e e eeeeseaeeesessesseseeeeeesesaeeseseesseesesean 86
7.31.8 ThEISOINEFUNCHION, ...ttt et e et e et e e e e e ee e e eeeeeeaseeeeeeeeeaeseeeeeesensneeneneeenens 86
7.31.9 ThEISPUNCEFUNCHION. ...t ettt e e et e et e e e e e e s e eseeeeeeeeeaeeeeeeeeeeaeeeeeeeeeenseneeeeeeeenens 86
S O N g =T 1= = o= o= (U oo o R 86
S K 1 4 = 1= W= o g oo SR 87
S e 2 1 4 = 1= Co T 3 0o o o SR 87
7.3.2 Character case mapping fUNCUONSc.ooiuiieee et 87
7321 ThetOolOWEr FUNCHON e oo ee e e e e e e e e e e e e e e e e eeeeae e e eee e e eeeeeeeeeeseeeeeeeseeeaeeseeeeaaeeesenan 87
7.322 ThetOUDPEr TUNCHON ... e ee e e e e e e e e e e e e e e e e e e ee e e e e e eeeeeeeeeeeeeeeeeeaeeeeeseeeeeereseearesnesnan 87
TA INTEGERTYPES KINTTYPESHS | ettt ettt e et et e e e e et e e et eeee et et e eaeeee et eeeeeeeeaeeeeeeeans 87
7.4.1 Typedef NamMeSTOr INTEJEN LYPES.ottt ettt 87
A R = o BV o 1 g [0 (5’0 = Y 0 =T 87
TAL2 MinmMUTEWIO INEEOE TYDES ...t ee e e e e e e e e e e et e e e e e eeeeeeeeeeeeeeeeeeeteereseeeeereseeseeereanea 87
74.1.3 Fastest MinimUMAWI Ot INE0E TYDES .. .o e 87
74.1.4 Integer types capable of holding OhJECE POIMENS oo e 87
TALS Greaest-Witth iNEOOE TYPES. oo ee e e e e e e e e e e e e e e e e eteeteete e e eaeseeseeeseseesseseeeseeseseeesesseseeseeanea 87
742 Limitsof Specified-Width INTEJEN TYPESoiieieeeeeeee ettt ettt e e e e e s 87
7421 Limits Of @XaCt-Witth I OOE BY8S ..o e 88
7422 Limits of minimUmEi Ot OO0 B8 ... oo e e 88
7423 Limitsof fastest Minimum-Widtn iNEEOEN TYDES. ... ee eeeeateeeeanea 88
7424 Limitsof integer types capable of holding ObjECt POINLENS,c.oe et eeeeeeee e e eretraeanea 88
7425 Limits of greatest-Witth INtEOON TYPES. ... oot e et e et e e ee e e eee e eaeeeeeeneeneesenenees 88
743 Macrosfor iNtEgEr CONSIANESooiueieeeeeece et eee e et s et s e e en s eneneeen 88
7425 Macrosfor minimumrwidth INtEOEr CONSIANESce e e e e ee e e e e e e eeee e e e e eeeteeeateeeeanea 88
7.4.32 Macrosfor grestest-Width INTEOEr CONSANISccoi et e e e e e e e e e e e e et e eaeeeeeeteeeaeaeeeeeeeaeeeeaeeenns 88
744 Macrosfor format SPECITIEIScouiiieceeeeeeeeeeeeeee ettt 88
745 LimitsOf Other INtEJEN TYPESouiiieieceeeeeeeeeee et e et s e s eneneen 88
746 Converson functionsfor greatest-width integer typescccoooeuivoiueiiceeceece e 88

74.6.1 Thesrtoimax function
7.4.6.2 Thestrtoumax function

7.5 LOCALIZATION <LOCALE.H>
7.5.1 Localecontrol

752 Numeric formatting CoNVENtioN INQUITY ..ot neen 90
7521 ThelOoCAEOONV FUNCHON. eee e e eeeeeeeeeeeeeeeeeeereeseereseeereeeeanean 90

7.6 FLOATING-POINT ENVIRONMENT SFENV.H> ettt et e e eee e ane 90
7.6.1 TheFENV_ACCESSDIAGMALc.coioteeeeeeeeeeeeeeeeeee et e et et et e e et et et eseeeeetes et eseeeeenenereeeeeeens 0
T8.2 EXCEPUONS, ...ttt ettt e et et et e e ee et et et et eeeee e et et eeee e e et et et et eeeee e eeeseeeeseeeee e 90
7621 Thefed@aeXCaDt fUNCHION. ee eee e e eeeeeeeeeeeeeeeeereeeeeeeeeeanea 90
7.6.22 ThefegateXCaptilag fUNCHON o ettt eeeee e e nenees 91
7623 TheferaiSeeXOemt TUNCHONo eeeeeeeeeeeeeeeereeeesaesneanea 91
7.6.24 ThefesateXCaptflagTUNCHON e e ee e e e e et e e e e e e e eteeeeeeeeeeeeeseeeeeeeeeresaesreeneaaea 91
7625 ThefaleteXOEOL FUNCHION ee e e e e e e e e e et e e e eeeeeeete et e eaeeseaeeeseeeeesesesereseesseesesseseeeaeaaea 91
T.8.3 ROUNGING.. ...ttt ee et et ettt et ettt et e e a e eeeeeeeseeeeeeeeeeeeee et et et et en et et ee e e eeseseeaeeeeeeeeeens 91
7631 ThefegetrOUNA FUNCHON,.o e ee e e e e e e e e e e et e e e e e eeeeeeeeeeeeeeeereeteeeeseeeseereseeereeeeanean 91
A N0 =Y (=== o W0l BV o (T S 91
T = AV ol 1= o | SRS 91
7641 ThefegetenV IUNCHON. oo e ee e e e e e e e e e e e e et e e e e e eee e e e e eeeeeeeeeeeeeeeeeeeereaeeareaeeanan 91
7.6.4.2 ThefehOldeXCapt FUNCHION.o ee eeeeeeeeeeeeeeeereeeeseereaesseeeenanea 91
7643 ThefeSmenVIUNCHON ee eeeeeeeeeseeeeeereeeeereeeeeresreanan 91
7644 ThefeupatenV fUNCLION e e e e e e e e e e e e et e eteeteeaeeteeeeeseseessessessesresseesessesreseeanea 91

T7 MATHEMATICS KMATH.H S oot e ettt e e e et et e eeeeee et e et e eee et et e eeeeeeeeeeeeeeeeeeeeeeeeans 91
7.7.1 Treatment of error conditions 92

7731
7732
7733
7734
7.735
7.7.3.6

7.7.4 Trigonometric functions

7741
7742
7743
7744
7745
7746
1747

7.75 Hyperbolic functions

7751
7752
7753
7.754
7.755
7.7.5.6

7.7.6 Exponential and logarithmic functions

7.76.1
7.76.2
7.76.3
7764
7.765
7.76.6
7.76.7
7.76.8
7.76.9
7.7.6.10
7.76.11
7.76.12
7.76.13
7.76.14

CONTENTS

The fpdassify macro
The signbit macro
Theidfinite macro

The acos function

Theasinfundion::: ..

The cosh function

Thesinh function

TR IUNGION. ...

TREEXDTUNCION..............ooiviicceec ettt s st et s e s et s s snsne et ssnnseeeeasenseeeensesnnenens
The frexp function
The Idexp function
TREIOGTUNCION ..ottt sttt s e ea et ssns et as e ns et e e s ensneesas et s nsneas
The logl0 function
THEMOO FUNGHON ..ottt s et e et e et es s st et ssene st ssenssnsneas
TREEXP2 TUNCHON,oooviiiceeee ettt sttt sttt ss st tessnsne et s s ns et s s enssensnn s sesneneas
The expml function
The loglp function
Thelog2 function
JLLLET [o B (3T (T TP
The scalbn function

Theilogb function

7.7.7 Power and absolute value functions

7771
1772
7773
1774
1.7.75

7.7.8 Error and gamma functions

7781

7791
7.79.2
7.793
7.794
7.795
7.7.9.6
7.79.7
7.79.8
7.79.9

TRETAOSTUNCION. ettt et e et eae e e reee e st eeeseeee et eeeeere et eneeeeneeseneeeeeanenreeeenens
The pow function

The ggrt function
The cbrt function

The hypot function

TREIFFUNGHON ...

The nearbyint function
Therint function

CONTENTS

7.7.10 Remainder functions

7.7.10.3 Theremquo function
7.7.11 Manipulation functions

7.711.1 The copysign function

7.711.2 Thenanfunction

7.7.13 Floating multiply-add
77131 Thefmafunction

7.7.14 Comparison macros
7.714.1 Theisgrester macro
7.7.14.2 Theisgreasterequal macro
7.714.3 Theidessmacro
7.7144 Theidessequa macro
7.7145 Theidesgrester macro
7.714.6 Theisunordered macro

7.8 COMPLEX ARITHMETIC <COMPLEX.H>

7.81The CX_LIMITED_RANGE pragma

7.8.2 Complex functions
7.8.2.1 Branchcuts
7.8.2.2 Thecacosfunction
7.8.2.3 Thecasinfunction
7.8.24 Thecatan function
7.8.25 Theccosfunction
7826 Thecsnfunction
7.8.2.7 Thectanfunction
7.8.2.8 The cacosh function
7.8.29 Thecasnhfunction
7.8.2.10 The catanh function
7.8.2.11 The ccosh function
7.8.212 Thecsinh function
7.8.2.13 Thectanhfunction
7.82.14 Thecexp function
7.8.215 Thedogfunction
7.8216 Thecsrt function
7.8.2.17 Thecabsfunction
7.8.2.18 Thecpow function
7.8.219 Thecargfunction
7.8.220 The conj function
7.8.221 Thecdmagfunction
7.8.222 Thecprg function
7.8.2.23 Thecred function

7.9.1 The Type-generic macros

7.10.1 Save calling environment
7.10.1.1 Thesgtjmp macro
7.10.2 Redore calling environment
7.10.2.1 Thelongimp function

7111 Specify sgnal handling
71111 Thesgnd function
7112 Sendsdgnal
7.11.21 Therasefunction

7.10 NONLOCAL JUMPS <SETIMP.H>

7.11 SGNAL HANDLING <SIGNAL.H>

CONTENTS

7.12 VARIABLE ARGUMENTS KSTDARG.H> || ittt ettt ee e e et et e e e e e ee e e e eeeeaeeeeeeaaaens 100
7.12.1 Variableargument lit @CCESSMACIOSc.c.ouiiieeeeeeeeeeeeeeeeee et s e eeneneen 101
71201 TREVA ST MBOIO, ... oo e e e ee e e e e e e e e e e e et e e e e e e e e e eee e e eeseseeeeeeeereeeeeeeeeeeeesessenseseeeeeeereens 101
N 1 0= U (o 10 o (o S 101
N B 1 0 == W o o o Y 17" o SR 101
N 1 0 =A== o 0 17= o (TSR 101
743 INPUT/OUTPUT KSTDIOHS ettt ettt e e e e ee et et e e ee e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeneeneannns 102
48 B A Vo 1ol LV ot Lo o SRS 103
TAB.2 SWEAIMIS ... et e et e e et e e e e et e e ee et e et eeeeeeee e e e et eeeeeeeeeeeeeeeeeeeeeeneeeeeeeeeneneenanns 103
8 R T 1 1= = SRS 105
7134 OperatioNSON TIES . . . ettt eneen 105
TA3AL ThETEMOVETUNCHON oottt e e e e et e e e e e e e e e e e e e e e e ee e e e e e e eeeneteanas 105
71342 ThEreNAMETUNCHON oot e et e e e ee e e e e e e e e e e e e e e e e ete e e e e e e e e ereereeteanas 105
TA3A43 ThetmPiilETUNCION. oottt e et e e e e e e e e e e e e e ee e e e e e e e e e e eeeneteanes 105
71344 ThetmPnamM UNCIONo ee e e e e e e et e e e e e e e et e eeeeseeeeaseseeesessessessessesseseeseeseesresreeeeans 105
7135 FIlEACCESSTUNCUONS oottt ettt et ettt et ee et e et eneeeeeeeaens 106
71351 ThefUOSBIUNCHON, e e e e e e e e e e e e e e e e e et e et e ete e e e e eaeeeeeeeereeeeereeaeaeeereensens 106
71352 TheffIUSNTUNCION, oo e e e e e e e e e e e e e e et e et e e e e e e e e e eeeeeeeeeeeeeeeeeeeeeeeneens 106
SN B 1 0'= 0 (oo = o B 0T oo o SR 106
AN N a'= i ='o o = 0 (00T (Lo o 107
A 1 0= = (o100 o o o S 107
AR R 1 0= = oY oW (V0o T o 107
7.13.6 Formatted input/OUtPUL FUNCLIONSooieeieeceeeeeeeeeee ettt 108
TA3.6. 1L TR PNt FUNCHON ... oot eteeeeteeteereeeeeteans 108
71362 ThefSCat fUNCHION,o et e e s e ete e e e e eeeeeeeseeseseesereeeeeeeeeeneens 109
TA3.6.3 ThE PN FUNCHONo e e e e e e e e e e e e et e e e e e et e e e ete e e eeeeeeeeeeeeeseeeeeeeeeeereereeneens 109
G 1 0= o= {0 o (oo 109
A 1 0= oy T {00 (o o 109
7.13.6.6 The SNt FUNCHON ... ettt e et e et e et e et e e e eeeee e e eeeeeeeeeesaeeseneeseeeeeensesens 109

7.13.6.7 The sscanf function 110

Ao S I 1 0 =Y o g o 0o (T o R 110
A CN e I 1 0 =Y o g 0 1010 oo SR 110
7.13.6.10 TRE VSO FUNCHON ...ttt e et e et e et e et e e e e e ee e e eee e eeeeeeeeeseneeeeeeseenseees 110
T.13.6.11 TR VSNPIINE FUNCHON ...ttt ee et e eeeee e eee e eeeeeeeeeseeeeseteeeeeeeeeesseensseensseeessseeseeesenees 110
7.13.6.12 TREVESCANT FUNCHION ..ot et e et e e e e e ese e eeeeeeeeeeseeeseeeseseeseeeeesesseenssseessensssresseeeseeees 110
TA3.6.03 TheVSCANT FUNCION oo e e e e ee s en e 110
A NG oo o g 1o [0 SR 110
7.13.7 Character input/OUtpUt FUNCHIONSot 110
TA3T7.1 ThEFGEICTUNCION ... oo et e eeeete e e eeeeeeeeeeeeereeeeeeeeeeaeeeeeeens 110
N v 1 0'= D (= 6] Vg o To o SR 110
A8 T A0 T 1 0= o8 o0 T o T SR 110
A N A 1 0= o8 1V g (o S 110
TABT7.5 TREOEICTUNCUONt e e et e e e e e e e e e e e e e eenseeeeneeeeeeens 110
A R 1 0=t o= (o g g 1V (T o 11
TABT.7 TREOEISTUNCIION ... oottt e e e e e e e e e e e e e e e e e eeenseeeeneeeeeeens 11
TA3.7.8 TREPUICTUNCIION ...t eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaneeeeeneeeeeeens 11
7.13.7.9 Theputchar function 11
TA3.7.00 TREPUISTUNCIIONo ee et ee e e e e e e e e e e e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeneaeeeeeeeeeeens 11
7.13.7.11 The ungetc function 111
7.13.8 Direct inpUt/OULPUL FUNCHIONS.oiieieoeceeeeeee et 112
72381 ThefrEaTUNCHON.o e ee e e e e e e e e e e e e e e e e e e et e et e ete e e e e eeeeeeeeeeeseeeeeeeeeeeneenenens 112
71382 ThEfWITETUNCHION,o e e e e e e e e e e e e e e e e e e et eeeeeee e e eeeeeeeaeeeeereeeeeeeeeeeeeeeeereens 112
7139 Filepostioning FUNCHONSot 112
71391 ThefQEIPOSTUNCION.o oo ettt e e e e e e et e e e e e e e e e e e e eeeeteeteeeeteareeeeeeaeanes 112
72392 ThefSBEK TUNCION, oo e e e e e e e e e e e e e et e et e e e et e et e eae e e eeeeaeeeeeseereeeeeeeeaeaeneenesens 112
7.13.9.3 ThefSBPOSTUNCION e e e e e e e e e e e e et e et e e e e e e e ete e e ereeeeeeeeeeeeseeeeeeseeseneeneneens 112
AR 1 0= (= I 10T o oo R 112
71395 ThereWiNTUNCHON ee e ee e e e e e e e e e e e e e et e et e eteeseeeeeseseeeseeseseeseeseeeseseeseeseeseeereeeeens 113
7.13.10 Error-handling fUNCUONSttt ettt ettt en e 113
7.13.10.1 Thedearerr function 113

CONTENTS

713104 TREPEITON FUNCHION,ottt ettt e e ee et ee et eee et eee et ereeeereeeeneeeeeeseenesreeereeeereenereneenes
7.14 GENERAL UTILITIES <STDLIBIH> || . ittt sttt st sttt e st sssasss st e e sr e e
7.14.1 String conversion functions
7.141.1 Theatof function

7.14.1.2 Theatoi function

7.14.1.3 Theatol function

7.14.1.4 Theatdll function

7.14.1.5 Thestrtod function

7.14.1.6 Thestrtof function

7.14.1.7 Thesrtad function

7.14.1.8 Thestrtd function

7.14.2 Pseudo-random sequence generation functions
71421 Therand function

7.14.6 Integer arithmetiC FUNCHIONS, et
7.14.6.1 Theabsfunction

7.14.6.2 Thediv function

7.14.6.3 Thelabsfunction

7.14.6.4 Thellabsfunction

7.14.6.5 Theldiv function

7.14.6.6 Thelldiv function

7.14.7 Multibyte character functions
7.14.7.1 Themblen function

7.14.8 Multibyte string functions
7.14.8.1 The mbstowcs function

7.14.8.2 Thewcstombs function

7.151 String function conventions
7152 CopYINGTUNCIONSottt ettt en s enenaeen
71521 ThEeMEMODY TUNCHION oot e et e et e et e et e eaeeeeeeeeeeeeeeeseeeesesaeeaseaesesteeassssesseeesesrnesseans
71522 ThememMMOVETUNCHIONo oot e e e e e e e e e e e e e e eeeeeeeeeeeeseseeesssaesesteeanseseessseanssrnesreans
TA5.2.3 TRESIICDY FUNCIION, ... e e e e e et e et e et e e e e e e eeeeeeeeeeeeeeaseeeaesseeeseseseseeeassesessesesssnesneeas
71524 TRESINCDY FUNCIION, ... oo ee e e e e e e e e e et e eeeeeeeeeseseeeeeeeeseseeeaseeesesseeasesssesseeassseessesesssnesrees
7.15.3 Concatenation functions

7.154 Comparison FUNCHONSccouiiiieieieieceece e
7.154.1 The memcmp function
7.154.2 Thestrcmp function

113
113
113
113
113
113
113
113
114
114
114
114
114
114
114
114
114
114
114
114
115
115
115
115
116
116
116
116
116
116
117
117
117
117
117
117
118
118
118
118
118
118
118
118
118
118
118
118
119
119
119
119
119
119
119
119
120
120
120
120

CONTENTS

7.15.4.3 Thesrcdll function

7.154.4 Thestrncmp function
7.15.4.5 Thestrxfrm function
7.15,5 Search functions

7.155.1
7.155.2
7.155.3
71554
7.1555
7.155.6
7.155.7
7.155.8

The strespn function
The strpbrk function
The strrchr function
The strspn function
The strstr function

7.15.6.1 The memset function

7.15.6.2 Thesrerror function

7.15.6.3 Thestrlen function

7.16.1 Componentsof time

7.16.2 Time manipulation functions
7.16.2.1 Thedock function
7.16.2.2
7.16.2.3
7.16.2.4
7.16.25
7.16.2.6

7.16.3 Time converson functions
7.16.3.1 Theasctime function
7.16.3.2 Thedimefunction
7.16.3.3
7.16.34
7.16.35
7.16.3.6
7.16.3.7

The gmtime function
The localtime function

The zonetime function
The gtrftime function

717

7.18 WIDE-CHATACER CLASSIFICATION AND MAPPING UTILITIES <WCTYPE.H>

7.18.1 Introduction

718211
718211
718213
718214
718215
718216
718217

Theiswapha function
Theiswblank function

Theiswentrl function
Theiswdigit function
Theiswgraph function
Theiswlower function
7.182.1.8 Theiswprint function
7.182.1.9 Theiswpunct function
7.1821.10 Theiswspace function
7.182.1.11 Theiswupper function
7182112 Theiswxdigit utilities
7.18.2.2 Extensible wide-character dassification functions
7.182.2.1 Thewctype function
7.1822.2 Theiswctype function
7.18.3 Wide-character mapping utilities

7.18.2.2 Extensblewide-character dassification functions
7.1822.2 Theiswctype function
7.1822.2 Theiswctype function
7.18.2.2 Extensblewide-character dassification functions
7.1822.2 Theiswctype function
7.1822.2 Theiswctype function

120
120
120
120
120
120
120
120
120
120
120
120
120
121
121
121
121
121
121
121
121
122
122
122
122
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124

CONTENTS

7.19 EXTENDED MULTIBYTE AND WIDE-CHARACTER UTILITIES <WCHAR.H>
7.19.1 Introduction

7.19.2 Formatted wide-character input-output functions

71921
71922
7.19.2.3
71924
7.19.25
7.19.2.6
7.19.2.7
7.19.2.8
7.19.29

Thefwprintf function
Thefwstanf FUNCON ...t en s en e
Thewprintf function

TheWSCANT TUNCLONoiiiicccccc ettt ettt ettt ettt ettt bttt sttt bbb sttt tans
The swprintf function
LSS o (Ve (T
Theviwprintf function
Thewwprintf function

The vswprintf function

7.19.2.10 The vfwscanf function
7.19.211 Thevwscanf function

7.19.3 Wide-character input-output functions

71931
7.193.2
7.193.3
7.1934
7.1935
7.19.3.6
7.193.7
7.19.3.8
7.19.3.9

The fgetwc function
THEFGEIWS FUNCION. ...ttt
The fputwc function
The fputws function
THEGEWC FUNCHION.ouiiiiiicice ettt ettt s
The getwchar function
TREPUIWC UNCLIONoviiiiiiciete ettt et
The putwchar function
The ungetwc function

7.19.3.10 Thefwide function

7.19.4 Gerenal wide-gtring utilities

7.194.1

Wide-string numeric conversion functions

7.19.4.1.1 Thewcstod function
7.19.4.1.2 Thewcstof function
7.19.4.1.3 Thewcstold function
7.19.4.1.4 Thewcsta function
7.19.4.15 Thewcstall function
7.19.4.1.6 Thewcstoul function
7.19.4.1.7 Thewcstoull function

7.194.2

7.19.4.2.1 Thewcscpy function
7.19.4.2.2 Thewcsncpy function

7.194.3

WIG@SING QODYING FUNGHONS ...

Wide-string concatenation functions

7.19.4.3.1 Thewcscat function

71944

7.19.4.4.1 Thewcscmp function

Wide-string comparison funtions.___........

7.19.4.4.2 Thewcscdl function

7.19.4.4.3 Thewcsncmp function

7.19.4.44 Thescxfrm function

71945

Wide-string search functions

7.19.45.1 Thewcschr function

7.19.45.2 Thewcscspn function
7.19.45.3 Thewcspbrk function

7.19.454 Thewcsrchr function

7.19.455 Thewcsspn function

7.19.45.6 Thewcsstr function

7.19.45.7 Thewcstok function
7.19.45.8 Thewcdenfunction

7.19.4.6

Wide-character array functions

7.19.4.6.1 Thewmemchr function

7.19.4.6.2 Thewmemcmp function
7.19.4.6.3 Thewmemcpy function

7.19.4.6.4 Thewmemmove function
7.19.4.6.5 Thewmemset function

124
124
124
124
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
126
126
126
126
126
126
126
126
126
126
126
126
126
126
126
126
126
126
126
126
126
126
126
126
127
127
127
127
127
127
127
127
127

CONTENTS

7.19.5 Thewcstime function

7.19.7.1 Single-byte wide-character conversion functions
7.19.71.1 Thebtowc function
7.19.7.1.2 Thewtctob function
7.19.7.2 Thembsinit function
7.19.7.3 Redtartable multibyte-wide-character conversion functions
7.19.7.3.1 Thembrlen function

7.19.7.4 Redtartable multibye-wide-string conversion functions
7.19.74.1 The mbsrtowcsfunction
7.19.7.4.2 Thewcstombs function

7.20 FUTURE LIBRARY DIRECTIONS

7.20.1
7.20.2
7.20.3
7.20.4
7.20.5
7.20.6
7.20.7
7.20.8
7.20.9

7.20.10 Wide-character classfication and mapping utilities <wctype.h>
7.20.11 Extended multibyte and wide-character utilities <wchar.h>

Errors<errno.h>

Character Nanaling <CtYPEN> et en

Integral typeS <INELYPESI> | . . ettt
LOCAliZAtiON <TOCAIEISttt en e
Signal handling <signal.h>
INPUYOULPUL SSEAIONS | .ottt
General UtIlIIES SSIAIID.N> ...ttt

Complex arithmetic <complex.h>
String handling <string.h>

8. ANNEXES

A. MSE ANNEX (NEW TEXT)

A.1 M SE BACKGROUND

A.3 PARALLELISM VERSUS IMPROVEMENT
A.4 SUPPORT FOR INVARIANT |SO 646
A.5 HEADERS

A.5.1.1 Prototypes in <wchar.h>
A.5.1.2 Types and macros in <wchar.h>

A5.2 <wctypeh>

A.6 WIDE-CHARACTER CLASSIFICATION FUNCTIONS

A.6.1 Locale dependency of iswxxx functions
A.6.2 Changed space-character handling

A.7 EXTENSIBLE CLASSIFICATION AND MAPPING FUNCTIONS
A.8 GENERALIZED MULTIBYTE CHARACTERS
A.9 STREAMS AND FILES,

A.9.2 Implementation

127
127
127
127
127
127
127
127
127
127
127
127
127
127
127
128
128
128
128
128
128
128
128
128
128
128

129

O O OWWOWWMMOWMWMONIGOODOOODWN PP -

ALO.2.1 SEEK OPEIGHIONS ...t e e e et oo e et e et e e e e e e et e eeeeeeeeeeeseeteeeeeeeeeeeeaaeseeeseeeeseeeeaeeeereseesesesaeanes

A.9.2.2 Sate-dependent encodings
A.9.2.3 Multiple encoding environments
A.9.3 Byte versus wide-character input/output
A.9.4 Text versus binary input/output

A.10 FORMATTED INPUT/OUTPUT FUNCTIONS

A.10.1 Enhancing existing formatted input/output functions
A.10.2 Formatted wide-character input/output functions

A.11 ADDING THE FWIDE FUNCTION

Xi

CONTENTS

A.13 EXTENDED CONVERSIONUTILITIES | ittt eee e e e ee e e e e es e e e e e e et e es e s es e e eseeseseeeeaeeneanans 14
ALB L CONVEISION SBIE . .. et e et e e e e e e e e e e et e et eee e ee e e ee s e e eeseeeseneneeneesennes 15
AL3.2 CONVEISION ULTTTIES . . . ettt ettt ettt et e ee et et eteeeeeeee e et eneseseeeeseneserenas 15

AL321 INitIAiZING CONMVEISION SEAESottt ee et e e e e e e e e e e e e e e e e e e eeeereseeeteeteereseeeereseeaeeaeeanea 15

A.13.2.2 COmMPAING CONMVEISION SBES oot ee et ee e e e e et e e e e e e e e e e e e eteeeeeeeseeesesteeeeseereereseearesneanea 15

AL3.2.3 Testing for INItiAl Shift SlaE, ... ettt e et e e e e e e e e e e e e e e eeeeteeteeeeeeeeereeeereseeanea 16

A13.24 Restartahl @ MUILIDYIE UNCIONS et ee et et e e e e e e e e e e e eeeeteeteetesteereereeseereseesreseeanea 16

ALTA COLUMNWIDTH |ttt eee et e et e et et e e ee et et eeeeeeee et eeeeeeee e e et eeeeeeeeeeeeeeeeeeeeeeeeeeneenanneeseenn 16
INDEX 1

X1l

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

1. SCOPE

This Rationde summarizes the ddiberations of X3J11, the Technicd Committee charged by ANS|
with devising a standard for the C programming language. 1t has been published along with the draft
Standard to assist the process of formal public review.

The X3J11 Committee represents a cross-section of the C community: it conssts of about fifty active
members representing hardware manufacturers, vendors of compilers and other software development
tools, software designers, consultants, academics, authors, gpplications programmers, and others. In
the course of its ddliberations, it has reviewed related American and internationa standards both
published and in progress. It has attempted to be respongve to the concerns of the broader
community: as of September 1988, it had recelved and reviewed amost 200 letters, including dozens
of forma comments from the first public review, suggesting modifications and additions to the various
preliminary drafts of the Standard.

Upon publication of the Standard, the primary role of the Committee will be to offer interpretations of
the Standard. It will consider and respond to al correspondence received.

The Committee's overal goa wasto develop a clear, consstent, and unambiguous Standard for the C
programming language which codifies the common, existing definition of C and which promotesthe
portability of user programs across C language environments.

The X3J11 charter clearly mandates the Committee to codify common existing practice. The
Committee has held fast to precedent wherever this was clear and unambiguous. The vast mgjority of
the language defined by the Standard is precisaly the same as is defined in Appendix A of The C
Programming Language by Brian Kernighan and Dennis Ritchie, and as is implemented in amogt al C
trandators. (This document is hereinafter referred to asK&R.)

K&R is not the only source of “existing practice.” Much work has been done over the years to
improve the C language by addressing its weaknesses. The Committee has formalized enhancements
of proven value which have become part of the various dialects of C.

Existing practice, however, has not always been consistent. Various dialects of C have approached
problems in different and sometimes diametrically opposed ways. This divergence has happened for
several reasons. First, K&R, which has served as the language specification for almost all C
translators, is imprecise in some areas (thereby allowing divergent interpretations), and it does not
address some issues (such as a complete specification of a library) important for code portability.
Second, as the language has matured over the years, various extensions have been added in different
dialects to address limitations and weaknesses of the language; these extensions have not been
consistent across dialects.

One of the Committee's goals was to consider such areas of divergence and to establish a set of clear,
unambiguous rules consistent with the rest of the language. This effort included the consideration of
extensions made in various C dialects, the specification of a complete set of required library functions,
and the development of a complete, correct syntax for C.

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

The work of the Committee was in large part a balancing act. The Committee has tried to improve
portability while retaining the definition of certain features of C as machine-dependent. It attempted to
incorporate vauable new ideas without disrupting the basic structure and fabric of the language. It tried
to develop a clear and congstent language without invalidating existing programs. All of the goas
were important and each decison was weighed in the light of sometimes contradictory requirementsin
an attempt to reach aworkable compromise.

In specifying a standard language, the Committee used severd guiding principles, the most important
of which are:

Exigting code is important, exising implementations are not. A large body of C code exists of
congderable commercial value. Every attempt has been made to ensure that the bulk of this code will
be acceptable to any implementation conforming to the Standard. The Committee did not want to
force most programmers to modify their C programs just to have them accepted by conforming
trandator.

On the other hand, no one implementation was held up as the exemplar by which to define C it is
assumed that al existing implementations must change somewhat to conform to the Standard.

C code can be portable. Although the C language was originally born with the UNIX operating
system on the DEC PDP-11, it has since been implemented on a wide variety of computers and
operating systems. It has dso seen considerable use in cross-compilation of code for embedded systems
to be executed in a free-standing environment. The Committee has attempted to specify the language
and the library to be as widdly implementable as possible, while recognizing that a syslem must meet
certain minimum criteriato be consdered a viable host or target for the language.

C code can be non-portable. Although it strove to give programmers the opportunity to write truly
portable programs, the Committee did not want to force programmers into writing portably, to
preclude the use of C as a "high-level assembler”: the ability to write machine-specific code is one of
the strengths of C. It is this principle which largely motivates drawing the distinction between grictly
conforming program and conforming program (84).

Avoid " quiet changes” Any change to widespread practice altering the meaning of existing code
causes problems. Changes that cause code to be so ill-formed as to require diagnostic messages are at
least easy to detect. As much as seemed possible consistent with its other goals, the Committee has
avoided changes that quietly alter one valid program to another with different semantics, that cause a
working program to work differently without notice. In important places where this principle is
violated, the Rationale points out a QUIET CHANGE.

A gandard isa treaty between implementor and programmer. Some numerical limits have been

added to the Standard to give both implementors and programmers a better understanding of what
must be provided by an implementation, of what can be expected and depended upon to exist. These
limits are presented asinimum maxima (i.e., lower limits phced on the values of uppkmnits

specified by an implementation) with the understanding that any implementor is at liberty to provide
higher limits than the Standard mandates. Any program that takes advantage of these more tolerant
limits is not strictly conforming, however, since other implementations are at liberty to enforce the
mandated limits.

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

Keep the spirit of C. The Committee kept as a mgor goal to preserve the traditiona spirit of C.
There are many facets of the spirit of C, but the essence is a community sentiment of the underlying
principles upon which the C language isbased. Some of the facets of the spirit of C can be summarized
in phraseslike

. Trust the programmer.

. Don't prevent the programmer from doing what needs to be done.
. Keep the language small and simple.

. Provide only one way to do an operation.

. Make it fast, even if it is not guaranteed to be portable.

The last proverb needs a little explanation. The potential for efficient code generation is one of the most
important strengths of C. To help ensure that no code explosion occurs for what appears to be a very
simple operation, many operations are defined to be how the target machine's hardware does it rather
than by a general abstract rule. An example of this wilingness to liveviagttthe machine does can

be seen in the rules that govern the wideningcbfir objects for use in expressions: whether the
values of char objects widen to signed or unsigned quantities typically depends on which byte
operation is more efficient on the target machine.

One of the goals of the Committee was to avoid interfering with the ability of translators to generate

compact, efficient code. In several cases the Committee has introduced features to improve the
possible efficiency of the generated code; for instance, floating point operations may be performed in
single-precision if both operands afé oat rather thandoubl e,

At the WG14 meeting in Tokyo, Japan, in July 1994, the original principles were re-endorsed and the
following new ones were added:

Support international programming. During the initial standardization process, support for
internationalization was something of an afterthought. Now that internationalization has proved to be
an important topic, it should have equal visibility with other topics. As a result, ala revision proposals
submitted shall be reviewed with regard to their impact on internationalization as well as for other
technical merit.

Codify exigting practice to address evident deficiencies. Only those concepts that have some prior

art should be accepted. (Prior art may come from implementations of languages other than C.) Unless
some proposed new feature addresses an evident deficiency that is actually felt by more than a few C
programmers)o new inventions should be entertained.

Minimize incompatibilities with C90 (1SO/IEC 9899:1990). It should be possible for existing C
implementations to gradually migrate to future conformance, rather than requiring a replacement of the
environment. It should also be possible for the vast majority of existing conforming C programs to run
unchanged.

Minimize incompatibilitieswith C++. The committee recognizes the need for a clear and defensible
plan with regard to how it intends to address the compatibility issue with C++. The committee
endorses the principle of maintaining the largest common subset clearly and from the outset. Such a
principle should satisfy the requirement to maximize overlap of the languages while maintaining a
distinction between them and allowing them to evolve separately.

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

Regarding our relationship with C++, the committee is content to let C++ be the big and ambitious
language. While some festures of C++ may well be embraced, it is not the committee's intention that C
become C++.

Maintain conceptual smplicity. The committee prefers an economy of concepts that do the job.
Members should identify the issues and prescribe the minimal amount of machinery that will solve
them. The committee recognizes the importance of being able to describe and teach new conceptsin a
sraightforward and concise manner.

During the revision process, it will be important to consder the following observations:

Regarding the 11 principles, there is a tradeoff between them—none is absolute. However, the
more the committee deviates from them, the more rationale needed to explain the deviation.

There has been a very positive reception of the standard from both the user and vendor
communities.

The standard is not considered to be broken. Rather, the revision is needed to track emerging
and/or changing technologies and internationalization requirements.

Most users of C view it as a general-purpose high-level language. Nighie level constructs
can be added, they should be done so only if they don't contradict the basic principles.

There are a good number of useful suggestions to be found from the public comments and defect
report processing.

Areas to which the committee shall look when revising the C Standard include:

Incorporate Amendment 1.

Incorporate all technical corrigenda and records of response.

Current defect reports.

Future directions in current standard.

Features currently labeled obsolescent.

Cross-language standards groups work.

Requirements resulting from JTC1/SC2 (character sets).

The evolution of C++.

The evolution of other languages particularly with regard to interlanguage communication issues.

Other papers and proposals from member delegations, such as the numerical extensions Technical

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001
Report being proposed by J11.

o Other comments from the public &t large.

o Other prior art.

Without a set of acceptance criteria, judging any technical proposal becomes a highly subjective, and
definitely emotiondl, exercise. It aso wastes a lot of time and energy. Therefore, submittors are
encouraged tokeep dl the guiding principles in mind when making submissions.

Guiddines for the submission of proposas will be provided. Each submisson shdl contain a cover
page containing responses to a number of questions and further summary information enabling the
essence of a submission to be distilled smply by reading that cover. The information requested will
include such things as. title, author, author affiliation, date, document number, abstract, proposal
category (e.g., editoria, correction, new feature), prior art, and target audience. Proposals that are not
directly linked must be submitted separately, each with their own document number and cover page.

Submissions must be sponsored in the same way as defect reports, thet is, either by the convener of
WG14, WG14 itsdf, or by aWG14 national member body. This provides afiltering process and alows
submissions to be regjected early in the process if they violate the revison principles. It adso dlows
substantidly incomplete or digoint proposals to be returned for further refinement.

This Rationale focuses primarily on additions, clarifications, and changes made to the C language. It is
not arationale for the C language as a whole: the Committee was charged with codifying an existing
language, not designing a new one. No attempt is made in this Rationale to defend the pre-existing
syntax of the language, such as the syntax of declarations or the binding of operators. The Standard is
contrived as carefully as possible to permit a broad range of implementations, from direct interpreters
to highly optimizing compilers with separate linkers, from ROM-based embedded microcomputers to
multi-user multi-processing host systems. A certain amount of specidized terminology has therefore
been chosen to minimize the bias toward compiler implementations shown in the Base Documents.

This Rationale discusses some language or library features which were not adopted into the Standard.
These are usudly features which are popular in some C implementations, so that a user of those
implementations might question why they do not appear in the Standard.

1.2 Organization of the document

This Rationale is organized to parald the Standard as closgly as possible, to facilitate finding relevant
discussons. Some subsections of the Rationde comprise just the subsection title from the Standard:
this indicates that the Committee thought no specia comment was necessary. Where a given
discussion touches on severd aress, attempts have been made to include cross-references within the
text. Such references, unless they specify the Standard or the Rationdle, are deliberately ambiguous.
The Appendices were added as a repository for related material not included in the Standard itself, or
to bring together in a single place information about a topic which was scattered throughout the
Standard.

Just as the Standard proper excludes al examples, footnotes, references, and appendices, this
Rationale is not part of the Sandard. The C language is defined by the Standard done. If any part of

5

WG14/N802 J11/98-001 RATIONALE

this Rationae is not in accord with that definition, the Committee would very much like to be s0
informed.

RATIONALE WG14/N802 J11/98-001

2. NORMATIVE REFERENCES

WG14/N802 J11/98-001 RATIONALE

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

3. DEFINITIONSand CONVENTIONS

The definitions of object, bit, byte, and alignment reflect a strong consensus, reached after consderable
discussion, about the fundamenta nature of the memory organization of a C environment:

. All objects in C must be representable as a contiguous sequence of bytes, each of which
Is at least 8 bits wide.

. A char (or signed char or unsi gned char) occupies exactly one byte.

(Thus, for instance, on a machine with 36-stbrds, abyte can be defined to consist of 9, 12, 18, or

36 bits, these numbers being all the exact divisors of 36 which are not less than 8.) These strictures
codify the widespread presumption that any object can be treated as an array of characters, the size of
which is given by the sizeof operator with that object's type as its operand.

These definitions do not preclude "holes"dgitir uct objects. Such holes are in fact often mandated
by alignment and packing requirements. The holes simply do not participate in representing the
(composite) value of an object.

The definition ofobject does not employ the notion of type. Thus an object has no type in and of itself.
However, since an object may only be designated lyehre (see 86.2.2.1), the phrase "the type of

an object" is taken to mean, here and in the Standard, "the type of the Ivalue designating this object,"
and "the value of an object" means "the contents of the object interpreted as a value of the type of the
lvalue designating the object.”

The concept ofmulti-byte character has been added to C to support very large character sets. (See
85.2.1.2)

The termsunspecified behavior, undefined behavior, andimplementation-defined behavior are used

to categorize the result of writing programs whose properties the Standard does not, or cannot,
completely describe. The goal of adopting this categorization is to allow a certain variety among
implementations which permitgiality of implementation to be an active force in the marketplace as

well as to allow certain popular extensions, without removing the cachenirmance to the
Sandard. Appendix K to the Standard catalogs those behaviors which fall into one of these three
categories.

Unspecified behavior gives the implementor some latitude in translating programs. This latitude does
not extend as far as failing to translate the program.

Undefined behavior gives the implementor license not to catch certain program errors that are difficult
to diagnose. It also identifies areas of possible conforming language extension: the implementor may
augment the language by providing a definition of the officially undefined behavior.

Implementation-defined behavior gives an implementor the freedom to choose the appropriate
approach, but requires that this choice be explained to the user. Behaviors designated as
implementation-defined are generally those in which a user could make meaningful coding decisions

9

10

WG14/N802 J11/98-001 RATIONALE
based on the implementation definition. Implementors should bear in mind this criterion when deciding
how extensive an implementation definition ought to be. As with unspecified behavior, smply failing to
trandate the source containing the implementation-defined behavior is not an adequate response.

RATIONALE WG14/N802 J11/98-001

4. COMPLIANCE

The three-fold definition of compliance is used to broaden the population of conforming programs and
distinguish between conforming programs using a single implementation and portable conforming
programs.

A drictly conforming program is another term for a maximally portable program. The goal isto give
the programmer a fighting chance to make powerful C programsthat are aso highly portable, without
demeaning perfectly useful C programs that happen not to be portable. Thusthe adverb srictly.

By defining conforming implementations in terms of the programs they accept, the Standard leaves
open the door for a broad class of extensons as part of a conforming implementation. By defining
both conforming hosted and conforming freestanding implementations, the Standard recognizes the
use of C to write such programs as operating systems and ROM-based applications, as well as more
conventional hosted applications. Beyond this two-level scheme, no additional subsetting is defined for
C, since the Committee felt strongly that too many levels dilutes the effectiveness of a standard.

Conforming program is thus the most tolerant of al categories, snce only one conforming
implementation need accept a program to rule it conforming. The primary limitation on this license is
8§5.1.1.3.

Diverse sections of the Standard comprise the "treaty" between programmers and implementors
regarding various name spaces - if the programmer follows the rules of the Standard the
implementation will not impose any further restrictions or surprises:

. A strictly conforming program can use only a restricted subset of the identifiers that
begin with underscore (87.1.3). Identifiers and keywords are distinct (86.1.1).
Otherwise, programmers can use whatever internal names they wish; a conforming
implementation is guaranteed not to use conflicting names of the form reserved to the
programmer. (Note, however, the class of identifiers which are identified in §7.20 as
possible future library names.)

. The external functions defined in, or called within, a portable program can be named
whatever the programmer wishes, as long as these names are distinct from the external
names defined by the Standard library (87). External names in a maximally portable
program must be distinct within the first 16 characters mapped into one case (86.1.2).

. A maximally portable program cannot, of course, assume any language keywords other
than those defined in the Standard.

. Each function called within a maximally portable program must either be defined within
some source file of the program or else be a function in the Standard library.

One proposal long entertained by the Committee was to mandate that each implementation have a
translate-time switch for turning off extensions and making a pure Standard-conforming
implementation. It was pointed out, however, that virtually every translate-time switch setting

11

10

15

WG14/N802 J11/98-001 RATIONALE

effectively creates a different "implementation,” however close may be the effect of trandating with two
different switch settings. Whether an implementor chooses to offer a family of conforming
implementations, or to offer an assortment of non-conforming implementations aong with one that
conforms, was not the business of the Committee to mandate. The Standard therefore confinesitsef to
describing conformance, and merely suggests areas where extensons will not compromise
conformance.

Other proposals rejected more quickly were to provide a vaidation suite, and to provide the source
code for an acceptable library. Both were recognized to be major undertakings, and both were seen to
compromise the integrity of the Standard by giving concrete examples that might bear more weight
than the Standard itself. The potentia legal implications were dso a concern.

Standardization of such tools as program consistency checkers and symbolic debuggers lies outside the

mandate of the Committee. However, the Committee has taken pains to alow such programs to work
with conforming programs and implementations.

12

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

5. ENVIRONMENT

Because C has seen widespread use as a cross-compiled cross-compilation language, a clear distinction
must be made between trandation and execution environments. The preprocessor, for instance, is
permitted to evaluate the expressionina #i f statement using the long integer arithmetic native to the
trandation environment: these integers must comprise at least 32 hits, but need not match the number
of hits in the execution environment. Other trandate-time arithmetic, however, such as type casting
and floating arithmetic, must more closely mode the execution environment regardless of trandation
environment.

5.1 Conceptual models

The as if principle is invoked repeatedly in this Rationale. The Committee has found that describing
various aspects of the C language, library, and environment in terms of concrete models best serves
discussion and presentation. Every attempt has been made to craft the models so that implementors
are congtrained only insofar as they must bring about the same result, as if they had implemented the
presentation model; often enough the clearest model would make for the worst implementation.

5.1.1 Trandation environment Test
5.1.1.1 Program structure

The terms source file, external linkage, linked, libraries, and executable program al imply a
conventional compiler-linker combination. All of these concepts have shaped the semantics of C,
however, and are inescapable even in an interpreted environment. Thus, while implementations are not
required to support separate compilation and linking with libraries, in some ways they must behave as

if they do.
5.1.1.2 Trandation phases

Perhaps the greatest undesrable diversty among existing C implementations can be found in
preprocessing. Admittedly a distinct and primitive language superimposed upon C, the preprocessing
commands accreted over time, with little centra direction, and with even less precison in ther
documentation. This evolution has resulted in a variety of loca features, each with its ardent
adherents: the Base Document offerslittle clear basis for choosing one over the other.

The consensus of the Committee is that preprocessing should be smple and overt, that it should
sacrifice power for clarity. For instance, the macro invocation f (a, b) should assuredly have two
actua arguments, evenif b expandsto ¢, d; and the forma definition of f must cal for exactly
two arguments. Above dl, the preprocessing sub-language should be specified precisely enough to
minimize or eiminate didect formation. To clarify the nature of preprocessng, the trandation from
source text to tokens is spelled out as a number of separate phases. The separate phases need not
actudly be present in the trandator, but the net effect must be as if they were. The phases need not be
performed in a separate preprocessor, dthough the definition certainly permits this common practice.
Since the preprocessor need not know anything about the specific properties of the target, a
13

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE
meachine-independent implementation is permissible.

The Committee deemed that it was outsde the scope of its mandate to require the output of the
preprocessing phases be available as a separate trandator output file.

The phases of trandation are spelled out to resolve the numerous questions raised about the
precedence of different parses. Can a #def i ne begin a comment? (No.) Is backdash/new-line

permitted within atrigraph? (No.) Must a comment be contained within one #i ncl ude file? (Yes)

And so on. The Rationale section on preprocessing (86.8) discusses the reasons for many of the
articular decisions which shaped the specification of the phases of translation.

A backslash immediately before a new-line has long been used to continue string literals, as well as
preprocessing command lines. In the interest of easing machine generation of C, and of transporting
code to machines with restrictive physical line lengths, the Committee generalized this mechanism to
permitany token to be continued by interposing a backslash/ new-line sequence.

In translation phase 4, the syntactic category preprocessing-file applies to each included file separately
from the file it is included into. Thus an included file cannot contain (for example) unbatégiced
or#el i f directives.

5.1.1.3 Diagnostics

By mandating some form of diagnostic message for any program containing a syntax error or
constraint violation, the Standard performs two important services. First, it gives teeth to the concept
of erroneous program, since a conforming implementation must distinguish such a program from a
valid one. Second, it severely constrains the nature of extensions permissible to a conforming
implementation.

The Standard says nothing about the nature of the diagnostic message, which could simply be
"syntax error”, with no hint of where the error occurs. (An implementation must, of course,
describe what translator output constitutes a diagnostic message, so that the user can recognize it as
such.) The Committee ultimately decided that any diagnostic activity beyond this level is an issue of
quality of implementation, and that market forces would encourage more useful diagnostics.
Nevertheless, the Committee felt that at least some significant class of errors must be diagnosed, and
the class specified should be recognizable by all translators.

The Standard does not forbid extensions, but such extensions must not invalidate strictly conforming
programs. The translator must diagnose the use of such extensions, or allow them to be disabled as
discussed in (Rationale) 84. Otherwise, extensions to a conforming C implementation lie in such realms
as defining semantics for syntax to which no semantics is ascribed by the Standard, or giving meaning
to undefined behavior.

5.1.2 Execution environments

The definition ofprogram startup in the Standard is designed to permit initialization of static storage
by executable code, as well as by data translated into the program image.

5.1.2.1 Freestanding environment

14

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

Aslittle as possible is said about freestanding environments, since little is served by constraining them.
5.1.22 Hosted environment

The properties required of a hosted environment are spelled out in a fair amount of detail in order to
give programmers a reasonable chance of writing programs which are portable among such
environments.

The behavior of the argumentsto mai n, and of the interaction of exit, mai nand atexit (see
87.14.4.2) has been codified to curb some unwanted variety in the representati@vastrings, and
in the meaning of values returned byi n.

The specification ofar gc and ar gv as arguments tdvai n recognizes extensive prior practice.
ar gv[ar gc] is required to be a null pointer to provide a redundant check for the end of the list, also
on the basis of common practice.

mai n is the only function that may portably be declared either with zero or two arguments. (The
number of arguments must ordinarily match exactly between invocation and definition.) This special
case simply recognizes the widespread practice of leaving off the argumen® to when the
program does not access the program argument strings. While many implementations support more
than two arguments taTai n, such practice is neither blessed nor forbidden by the Standard; a
program that definesvai n with three arguments is ndtrictly conforming. (See Standard Annex

K.5.1.)

Command line 1/0O redirection is not mandated by the Standard; this was deemed to be a feature of the
underlying operating system rather than the C language.

5.1.2.3 Program execution

Because C expressions can contain side effects, issigegueaficing are important in expression
evaluation. (See 86.3.) Most operators impose no sequencing requirements, but a few operators
Imposesequence points upon their evaluation: comma, logical-AND, logical-OR, and conditional. For
example, in the expressiop = 1, a[i] = 0) the side effect (alteration to storage) specified by

I = 1 must be completed before the expressidn] = O is evaluated.

Other sequence points are imposed by statement execution and completion of evaluatidh of a
expression. (See 86.6). Thus i n(++a) , the incrementation ot must be completed beforen is
called. Ini = 1; a[i] = O; the side-effect ofi = 1 must be complete beforg[i] = 0

Is evaluated.

The notion ofagreement has to do with the relationship between abgract machine defining the
semantics and an actual implementation. agreement point for some object or class of objects is a
sequence point at which the value of the object(s) in the real implementation must agree with the value
prescribed by the abstract semantics.

For example, compilers that hold variables in registers can sometimes drastically reduce execution
times. In a loop like

15

10

15

20

25

30

35

WG14/N802 J11/98-001 RATIONALE

sum = 0;
for (i =0, i <N ++i)
sum += a[i];

both sumand i might be profitably kept in registers during the execution of the loop. Thus, the
actual memory objects designated by sumand i would not change state during the loop.

Such behavior is, of course, too loose for hardware-oriented applications such as device drivers and
memory-mapped 1/0. The following loop looks amost identical to the previous example, but the
specification of vol ati | e ensures that each assignment to *ttyport takes place in the same
sequence, and with the same values, as the (hypothetical) abstract machine would have done.

vol atile short *ttyport;

for (i =0; i <N ++)
*ttyport = a[i];

Another common optimization isto pre-compute common subexpressions. In thisloop:

vol atile short *ttyport;
short nmaskl, mask2;
[* ... *l
for (i =0, i <N ++i
*ttyport = a[i] & maskl & mask2;

evauation of the subexpresson maskl & mask?2 could be performed prior to the loop in the red
implementation, assuming that neither Maskl nor mask?2 appear as an operand of the address-of
(&) operator anywhere in the function. In the abstract machine, of course, this subexpression is
re-evaluated at each loop iteration, but the real implementation is not required to mimic this
repetitiveness, because the variables mask1 and nask2 arenot vol ati | e and the same results
are obtained either way.

The previous example shows that a subexpression can be pre-computed in the real implementation. A
guestion sometimes asked regarding optimization is, "Is the rearrangement ill conforming if the
pre-computed expression might raise a Signd (such as divison by zero)?" Fortunately for optimizers,
the answer is "Yes,” because any evauation that raises a computational signa has fdlen into an
undefined behavior (86.3), for which any action is allowable.

Behavior is described in terms of abstract machine to underscore, once again, that the Standard
mandates resultss if certain mechanisms are used, without requiring those actual mechanisms in the
implementation. The Standard specifies agreement points at which the value of an object or class of
objects in an implementation must agree with the value ascribed by the abstract semantics.

Appendix C to the Standard lists the sequence points specified in the body of the Standard.

The class ointeractive devices is intended to include at least asynchronous terminals, or paired display
screens and keyboards. An implementation may extend the definition to include other input and output
devices, or even network inter-program connections, provided they obey the Standard's
characterization of interactivity.

16

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

5.2 Environmental consider ations
521 Character sats

The Committee ultimately came to remarkable unanimity on the subject of character set requirements.

There was strong sentiment that C should not be tied to ASCII, despite its heritage and despite the

precedent of Ada being defined in terms of ASCII. Rather, an implementation is required to provide a

unique character code for each of the printable graphics used by C, and for each of the control codes
representable by an escape sequence. (No particular graphic representation for any character is
prescribed - thus the common Japanese practice of using the glyph ¥ or the C character '\' is perfectly
legitimate.) Translation and execution environments may have different character sets, but each must
meet this requirement in its own way. The goal is to ensure that a conforming implementation can
translate a C translator written in C.

For this reason, and economy of description, source code is deswilfet undergoes the same
translation as text that is input by the standard library I/O routines: each line is terminated by some
new-line character, regardless of its external representation.

5.2.1.1 Trigraph sequences

Trigraph sequences have been introduced as alternate spellings of some characters to allow the
implementation of C in character sets which do not provide a sufficient number of non-alphabetic
graphics.

Implementations are required to support these alternateggeeven if the character set in use is
ASCII, in order to allow transportation of code from systems which must use the trigraphs.

The Committee faced a serious problem in trying to define a character set for C. Not all of the
character sets in general use have the right number of characters, nor do they support the graphical
symbols that C users expect to see. For instance, many character sets for languages other than English
resemble ASCII except that codes used for graphic characters in ASCII are instead used for extra
alphabetic characters or diacritical marks. C relies upon a richer set of graphic characters than most
other programming languages, so the representation of programs in character sets other than ASCII is
a greater problem than for most other programming languages.

The International Standards Organization (ISO) uses three technical terms to describe character sets:
repertoire, collating sequence , andcodeset. Therepertoire is the set of distinct printable characters.

The term abstracts the notion of printable character from any particular representation; the glyphs R,
R,R,R,R,R, and R all represent the same element of the repertoire, upper-case-R, which is
distinct from lower-case-r. Having decided on the repertoire to be used (C needs a repertoire of 96
characters), one can then pickoHlating sequence which corresponds to the internal representation in

a computer. The repertoire and collating sequence together focoulése.

What is needed for C is to determine the necessary repertoire, ignore the collating sequence altogether

(it is of no importance to the language), and then find ways of expressing the repertoire in a way that
should give no problems with currently popular codesets.

17

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

C derived its repertoire from the ASCII codeset. Unfortunately the ASCII repertoire is not a subset of
all other commonly used character sets, and widespread practice in Europe is not to implement al of
ASCII either, but use some parts of its collating sequence for specia national characters.

The solution is an internationally agreed-upon repertoire, in terms of which an internationa
representation of C can be defined. The ISO has defined such a standard: 1SO 646 describes an
invariant subset of ASCII.

The charactersin the ASCI| repertoire used by C and absent from the | SO 646 repertoire are:
#L 1 {}y\V | ~"

Given this repertoire, the Committee faced the problem of defining representations for the absent
characters. The obvious idea of defining two-character escape sequences fails because C uses dl the
characters which are in the 1SO 646 repertoire: no single escape character is available. The best that
can be doneisto use atrigraph - an escape digraph followed by a distinguishing character.

?? was sdlected as the escape digraph because it is not used anywhere else in C (except as noted
below); it suggests that something unusud is going on. The third character was chosen with an eye to
graphica smilarity to the character being represented.

The sequence ?? cannot currently occur anywhere in alegal C program except in strings, character
condants, comments, or header names. The character escape sequence \ ?' (see 8§6.1.3.4) was
introduced to allow two adjacent question-marks in such contexts to be represeied, asform
distinct from the escape digraph.

The Committee makes no claims that a program written using trigraphs looks attractive. As a matter
of style, it may be wise to surround trigraphs with white space, so that they stand out better in program
text. Some users may wish to define preprocessing macros for some or all of the trigraph sequences.

QUIET CHANGE

Programs with character sequences such?@$ in string constants, character
constants, or header names will now produce different results.

5.2.1.2 Multibyte characters

The "byte = character" orientation of C works well for text in Western alphabets, where the size of the
character set is under 256. The fit is rather uncomfortable for languages such as Japanese and Chinese,
where the repertoire of ideograms numbers in the thousands or tens of thousands.

Internally, such character sets can be represented as numeric codes, and it is merely necessary to
choose the appropriate integral type to hold any such character.

Externally, whether in the files manipulated by a program, or in the text of the source files themselves,
a conversion between these large codes and the various byte media is necessary.

The support in C of large character sets is based on these principles:

18

RATIONALE WG14/N802 J11/98-001

. Multibyte encodings of large character sets are necessary in I/O operations, in source
text comments, and in source text string and character literals.

. No existing multibyte encoding is mandated in preference to any other; no widespread
existing encoding should be precluded.

. The null character\(0") may not be used as part of a multibyte encoding, except for
the one-byte null character itself. This allows existing functions which manipulate
strings transparently to work with multibyte sequences.

. Shift encodings (which interpret byte sequences in part on the basis of some state
information) must start out in a known (default) shift state under certain circumstances,
such as the start of string literals.

. The minimum number of absolutely necessary library functions is introduced. (See
§7.14.7)

5.2.2 Character digplay semantics

The Standard defines a number of internal character codes for specifying "format effecting actions on
display devices," and provides printable escape sequences for each of them. These character codes are
clearly modelled after ASCII control codes, and the mnemonic letters used to specify their escape
sequences reflect this heritage. Nevertheless, theytemeal codes for specifying the format of a

display in an environment-independent manner; they must be writtetextofiée to effect formatting

on a display device. The Standard states quite clearly that the external representation of a text file (or
data stream) may well differ from the internal form, both in character codes and number of characters
needed to represent a single internal code.

The distinction between internal and external codes most needs emphasis with respedng

ANSI X3L2 (Codes and Character Sets) uses the term to refer to an external code used for
information interchange whose display semantics specify a move to the next line. Both ANSI X3L2
and 1SO 646 deprecate the combination of the motion to the next line with a motion to the initial
position on the line. The C Standard, on the other handnesdee to designate the end-of-line

internal code represented by the escape sequienicé/hile this ambiguity is perhaps unfortunate, use

of the term in the latter sense is nearly universal within the C community. But the knowledge that this
internal code has numerous external representations, depending upon operating system and medium, is
equally widespread.

The alert sequence ') has been added by popular demand, to replace, for instance, the ASCIl BEL
code explicitly coded as007".

Proposals to addie' for ASCII ESC { 033") were not adopted because other popular character sets
such as EBCDIC have no obvious equivalent. (See §6.1.3.4.)

The vertical tab sequenck\(") was added since many existing implementations support it, and since it
Is convenient to have a designation within the language for all the defined white space characters.

The semantics of the motion control escape sequences carefully avoid the Western language

19

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE
assumptionsthat printing advances left-to-right and top-to-bottom.

To avoid the issue of whether an implementation conformsiif it cannot properly effect vertica tabs (for
instance), the Standard emphasizes that the semantics merely describe intent.

523 Sgnalsand interrupts

Sgnals are difficult to specify in a system-independent way. The Committee concluded that about the

only thing a drictly conforming program can do in a sgnd handler is to assgn a vaue to a

vol atile static variable which can be written uninterruptedly and promptly return. (The

header <si gnal . h> gpecifies a type Si g_at om c_t which can be so written.) It is further
guaranteed that a sgnal handler will not corrupt the automatic storage of an ingtantiation of any
executing function, even if that function is called within the sgna handler. No such guarantees can be

extended to library functions, with the explicit exceptions of | ongj np (§7.10.2.1) andsi gnal
(87.11.1.1), since the library functions may be arbitrarily interrelated and since some of them have
profound effect on the environment.

Calls to | ongj np are problematic, despite the assurances of §7.10.2.1. The signal could have
occurred during the execution of some library function which was in the process of updating external
state and/or static variables.

A second signal for the same handler could occur before the first is processed, and the Standard makes
no guarantees as to what happens to the second signal.

524 Environmental limits

The Committee agreed that the Standard must say something about certain capacities and limitations,
but just how to enforce these treaty points was the topic of considerable debate.

5.2.4.1 Translation limits

The Standard requires that an implementation be able to translate and compile some program that
meets each of the statledits. This criterion was felt to give a useful latitude to the implementor in
meeting these limits. While a deficient implementation could probably contrive a program that meets
this requirement, yet still saeed in being useless, the @uittee felt that such ingenuity would
probably require more work than making something useful. The sense of the Committee is that
implementors should not construe the translation limits as the values of hard-wired parameters, but
rather as a set of criteria by which an implementation willdhggd.

Some of the limits chosen represent interesting compromises. The goal was to allow reasonably large
portable programs to be written, without placing excessive burdens on reasonably small
implementations.

The minimum maximum limit o257 cases in a switch statement allows coding of lexical routines
which can branch on any character (one of at least 256 values) or on the value EOF.

5.2.4.2 Numerical limits

20

10

15

20

25

30

35

RATIONALE WG14/N802 J11/98-001

In addition to the discussion below, see 87.1.5.
5.2.4.2.1 Sizes of integer type$ i mts. h>

Such a large body of C code has been developed for 8-bit byte machines that the integer sizes in such
environments must be considered normative. The prescribed limits are minima: an implementation on a
machine with 9-bit bytes can be conforming, as can an implementation that defihe® be the

same width asl ong. The negative limits have been chosem¢oommodate ones-complement or
sign-magnitude implementations, as well as the more usual twos-complement. The limits for the
maxima and minima of unsigned types are specified as unsigned constant6%e3pu) to avoid
surprising widenings of expressions involving these extrema.

The macro CHAR_BI T makes available the number of bits irc@ar object. The Committee saw
little utility in adding such macros for other data types.

The names associated with tishort int types BHRT_M N, etc., rather thanSHORT_M N,
etc.) reflect prior art rather than obsessive abbreviation on the Committee's part.

5.2.4.2.2 Characteristics of floating typskl oat . h>

The characterization of floating point follows, with minor changes, that of the FORTRAN
standardization committee (X3)3 The Committee chose to follow the FORTRAN model in some
part out of a concern for FORTRAN-to-C translation, and in large part out of deference to the
FORTRAN committee's greater experience with fine points of floating point usage. Note that the
floating point model adopted permits all common representations, including sign-magnitude and
twos-complement, but precludes a logarithmic implementation.

Single precision (32-bit) floating point is considered adequate to support a conforming C
implementation. Thus the minimum maxima constraining floating types are extremely permissive.

The Committee has also endeavored to accommodat&Hte 754 floating point standard by not
adopting any constraints on floating point which are contrary to this standard.

The term FLT_NMANT_DI G stands for "float mantissa digits." The Standard now uses the more
precise ternsignificand rather thamantissa.

1
See X3J3 working document S8-112.

21

WG14/N802 J11/98-001 RATIONALE

22

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

6. LANGUAGE

While more forma methods of language definition were explored, the Committee decided early on to
employ the style of the Base Document: Backus-Naur Form for the syntax and prose for the
congtraints and semantics. Anything more amhbitious was considered to be likely to delay the Standard,
and to make it less accessible to its audience.

6.1 Lexical Elements

The Standard endeavors to bring preprocessing more closely into line with the token orientation of the

language proper. To do o requires that at least some information about white space be retained

through the early phases of translation (see 85.1.1.2). It also requires that an inverse mapping be
defined from tokens back to source characters (see 86.8.3).

6.1.1 Keywords

Several keywords have been addsohst , enum si gned, voi d, and vol atil e. New for
COX are the keywordg estri ct i nl i ne, conpl ex andi magi nary.

As much as possible, however, new features have been added by overloading existing keywords, as, for
example, | ong doubl e instead of ext ended. It is recognized that each added keyword will
require some existing code that used it as an identifier to be rewritten. No meaningful programs are
known to be quietly changed by adding the new keywords.

The keywordsentry, fortran, and asmhave not been included since they were either never
used, or are not portable. Uses bbrtran and asm as keywords are noted @smmon
extensions.

6.1.2 Identifiers

While an implementation is not obliged to remember more than the first 31 characters of an identifier
for the purpose of name matching, the programmer is effectively prohibited from intentionally creating
two different identifiers that are the same in the first 31 characters. Implementations may therefore
store the full identifier; they are not obliged to truncate to 31.

The decision to extend significance to 31 characters for internal names was made with little opposition,
but the decision to retain the old six-character case-insensitive restriction on significance of external
names was most painful. While strong sentiment was expressed for making C "right" by requiring
longer names everywhere, the Committee recognized that the language must, for years to come,
coexist with other languages and with older assemblers and linkers. Rather than undermine support for
the Standard, the severe restrictions have been retained.

The Committee has decided to label afisolescent the practice of providing different identifier
significance for internal and external identifiers, thereby signaling its intent that some future version of
the C Standard require 31-character case-sensitive external name significance, and thereby encouraging
new implementations to support such significance.

Three solutions to the external identifier length/case problem were explored, each with its own set of
23

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

problems:

1 Label any C implementation without at least 31-character, case-sengitive sgnificance
in external identifiers as non-standard. This is unacceptable since the whole reason
for a standard is portability, and many systems today smply do not provide such a
name space.

2. Require a C implementation which cannot provide 31-character, case-sengtive
sgnificance to map long identifiersinto the identifier name space that it can provide.
This option quickly becomes very complex for large, multi-source programs, since a
program-wide database has to be maintained for al modules to avoid giving two
different identifiers the same actual external name. It also reduces the usefulness of
source code debuggers and cross reference programs, which generally work with the
short mapped names, since the source-code name used by the programmer would likely
bear little resemblance to the name actudly generated.

3. Require a C implementation which cannot provide 31-character, case-sendtive
ggnificance to rewrite the linker, assembler, debugger, any other language
trandators which use the linker, etc. This is not aways practica, since the C
implementor might not be providing the linker, etc. Indeed, on some systems only the
manufacturer’s linker can be used, either because the format of the resulting program
file is not documented, or because the ahility to create program files is restricted to
Secure programs.

Because of the decision to restrict significance of externa identifiers to six case-insengtive characters,
C programmers are faced with these choices when writing portable programs.

1

Make sure that externa identifiers are unique within the first six characters, and use only one
case within the name. A unique six-character prefix could be used, followed by an underscore,
followed by alonger, more descriptive name:

extern int a_xvz_real _| ong_nane,
extern int a_rwt_real | ong_nane2;

Use the prefix method described above, and then use #def i ne statements to provide a
longer, more descriptive name for the unique name, such as:

#define real _| ong_nanme a_xvz_real _| ong_nane
#define real _| ong_name2 a_rwt _real | ong_nane2

Note that overuse of this technique might result in exceeding the limit on the number of alowed
#def i ne macros, or some other implementation limit.

3.

24

Use longer and/or multi-case externad names, and limit the portability of the programs to
systemsthat support the longer names.

Declare dl exported items (or pointers thereto) in a single data structure and export that
structure. The technique can reduce the number of externd identifiers to one per trandation
unit; member names within the structure are interna identifiers, hence can have full

10

15

20

25

30

35

40

45

50

RATIONALE WG14/N802 J11/98-001

significance. The principal drawback of this technique is that functions can only be exported by
reference, not by name; on many systems this entails a run-time overhead on each function call.

QUIET CHANGE

A program that depends upon interna identifiers matching only in the first (say) eight
characters may change to one with distinct objects for each variant spelling of the
identifier.

6.1.2.1 Scopesof identifiers

The Standard has separated from the overloaded keywords for storage classes the various concepts of
scope, linkage, name space, and storage duration. (See 86.1.2.2, 86.1.2.3, 86.1.2.4.) This has
traditionally been a major area of confusion.

One source of dispute was whether identifiers with external linkage should have file scope even when
introduced within a block. The Base Document is vague on this point, and has been interpreted
differently by different implementations. For example, the following fragment would be valid in the file
scope scheme, while invalid in the block scope scheme:

t ypedef struct data d_struct ;

first(){
extern d_struct func(); /* ... */
}

second() {
} d_struct n = func();

While it was generally agreed that it is poor practice to take advantage of an external declaration once
it had gone out of scope, some argued that a translator had to remember the declaration for checking
anyway, so why not acknowledge this? The compromise adopted was to decree essentially that block
scope rules apply, but that a conforming implementation need not diagnose a failure to redeclare an
external identifier that had gone out of scapeléfined behavior).

QUIET CHANGE

A program relying on file scope rules may be valid under block scope rules but behave
differently - for instance, ifd_struct were defined as typd | oat rather than
struct dat a inthe example above.

Although the scope of an identifier in a function prototype begins at its declaration and ends at the end
of that function's declarator, this scope is of course ignored by the preprocessor. Thus an identifier in a
prototype having the same name as that of an existing macro is treated as an invocation of that macro.
For example:

#define status 23
void exit(int status);

25

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

generates an error, since the prototype after preprocessing becomes

void exit(int 23);

Perhaps more surprising iswhat happensif st at us isdefined

#define status []

Then the resulting prototype is

void exit(int []);
which is syntactically correct but semantically quite different from the intent.

To protect an implementation’s header prototypes from such misinterpretation, the implementor must
write them to avoid these surprises. Possible solutions include not using identifiers in prototypes, or
using names (suchas __st at us or _St at us) inthe reserved name space.

6.1.2.2 Linkagesof identifiers

The Standard requires that the first declaration, implicit or explicit, of an identifier specify (by the
presence or absence of the keyword st at i ¢) whether the identifier has internd or external linkage.

This requirement alows for one-pass compilation in an implementation which must treat internal
linkage items differently than externa linkage items. An example of such an implementation is one
which produces intermediate assembler code, and which therefore must construct names for internal
linkage items to circumvent identifier length and/or case restrictions in the target assembler.

Exigting practice in this areais inconsstent. Some implementations have avoided the renaming problem
smply by regricting interna linkage names by the same rules as for externa linkage. Others have
disdlowed a gatic declaration followed later by a defining instance, even though such congtructs are
necessary to declare mutudly recursive static functions. The requirements adopted in the Standard
may call for changes in some existing programs, but alow for maximum flexibility.

The definition modd to be used for objects with externa linkage was a mgjor standardization issue.
The basic problem was to decide which declarations of an object define storage for the object, and
which merely reference an existing object. A related problem was whether multiple definitions of
storage are dlowed, or only one is acceptable. Existing implementations of C exhibit at least four
different models, listed here in order of increasing restrictiveness:

Common Every object declaration with external linkage (whether or not the keyword extern
appears in the declaration) creates a definition of storage. When al of the modules are
combined together, each definition with the same name is located a the same address in
memory. (The name is derived from common storage in FORTRAN.) This model was the
intent of the original designer of C, Dennis Ritchie.

Relaxed Ref/Def The appearance of the keyword ext er n (whether it is used outsde of the scope
of a function or not) in a declaration indicates a pure reference (ref), which does not define
storage. Somewhere in dl of the trandation units, at least one definition (def) of the object
must exist. An external definition is indicated by an object declaration in file scope containing

26

10

15

20

25

RATIONALE WG14/N802 J11/98-001

no storage class indication. A reference without a corresponding definition is an error. Some
implementations aso will not generate a reference for items which are declared with the
extern keyword, but are never used within the code. The UNIX operating syssem C
compiler and linker implement this model, which is recognized as a common extension to the C
language (K.5.11). UNIX C programs which take advantage of this moddl are standard
conforming in their environment, but are not maximaly portable.

Strict Ref/Def Thisis the same as the relaxed ref/def model, save that only one definition is alowed.
Again, some implementations may decide not to put out references to items that are not used.
Thisisthe modd specified in K&R and in the Base Document.

Initialization Thismodd requires an explicit initialization to define storage. All other declarations are
references.

Figure 6.1 demonstrates the differences between the models.

The model adopted in the Standard is a combination of features of the strict ref/def model and the
initialization mode. Asin the strict ref/def model, only a single trandation unit contains the definition of

agiven object - many environments cannot effectively or efficiently support the "distributed definition”

inherent in the common or relaxed ref/def approaches. However, ether an initidization, or an
appropriate declaration without storage class specifier (see 86.7), serves as the external definition. This
composite approach was chosen to accommodate as wide a range of environments and existing
implementations as possible.

6.1.2.3 Name spaces of identifiers
Implementations have varied considerably in the number of separate name spaces maintained. The

position adopted in the Standard is to permit as many separate hame spaces as can be distinguished by
context, except that all tagst(r uct , uni on, and enun) comprise a single name space.

27

10

15

20

25

30

WG14/N802 J11/98-001 RATIONALE

Figure 6.1: Comparison of identifier linkage models

Model File1 Fle2
t int i: t int i
common min() g second() {
ALY third(i
} second(); }
Relaxed Ref/Def AU second() {
T third(i);
} second(); }
_ int i: extern int i;
Strict Ref/Def Imii nl() s)écoad(l) I{
T third(i);
} second(); }
L int i =0; int i;
Initializer ',mi n'() Isecolnd() |
T third(i);
} second(); }

6.1.24 Storage durations of objects

It was necessary to clarify the effect on automatic storage of jumping into a block that declares loca

storage. (See 86.6.2.) While many implementations allocate the maximum depth of automatic storage
upon entry to a function, some explicitly allocate and deallocate on block entry and exit. The latter are
required to assure that local storage is allocated regardless of the path into the block (although
initializers in automatic declarations are not executed unless the block is entered from the top).

To effect true reentrancy for functions in the presence of signals raised asynchronously (see 85.2.3), an
implementation must assure that the storage for function return values has automatic duration. This
means that the caller must allocate automatic storage for the return value and communicate its location
to the called function. (The typical case of return registers for small types conforms to this
requirement: the calling convention of the implementation implicitly communicates the return location
to the called function.)

6.1.2.5 Types

Several new types have been added:

voi d

void *

si gned char
unsi gned char
unsi gned short
unsi gned | ong
| ong doubl e

28

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

New types added for C9X.
fl oat conpl ex
doubl e conpl ex
| ong doubl e conpl ex
| ong | ong

New designations for existing types have been added:

si gned short for short
signed int for I nt
signed | ong for | ong

voi d isused primarily as the typemark for a function which returns no result. It may also be used, in
any context where the value of an expression is to be discarded, to indicate explicitly that a vaue is
ignored by writing the cast (voi d) . Findly, a function prototype list that has no arguments is
writtenas f (voi d) , because f () retainsits old meaning that nothing is said about the arguments.

A "pointer to void,” voi d *, isageneric pointer, capable of pointing to any (data) object except for
bit-fields and objects declared with the regi st er storage-class without truncation. A pointer to
void must have the same representation and alignment as a pointer to character; the intent of thisruleis
to dlow existing programs which call library functions (such as nmentpy and free) to continue to
work. A pointer to void may not be dereferenced, athough such a pointer may be converted to a
normal pointer type which may be dereferenced. Pointers to other types coerce silently to and from
voi d * inassignments, function prototypes, comparisons, and conditional expressions, whereas other
pointer type clashes areinvalid. 1t is undefined what will happen if a pointer of some type is converted
to void * and then the void * pointer is converted to a type with a sricter aignment
requirement. Threetypesof char are specified: si gned, plain, and unsi gned. A plain char

may be represented as either signed or unsigned, depending upon the implementation, as in prior
practice. Thetype si gned char wasintroduced to make available a one-byte signed integer type
on those systems which implement plain char as unsigned. For reasons of symmetry, the keyword
si gned isalowed as part of the type name of other integral types. Two varieties of the integral types
are specified: si gned and unsi gned. If neither specifier is used, signed is assumed. In the Base
Document the only unsigned typeis unsi gned i nt .

The keyword unsi gned is something of a misnomer, suggesting as it does in arithmetic that it is
non-negative but capable of overflow. The semantics of the C type unsi gned isthat of modulus, or
wrap-around, arithmetic, for which overflow has no meaning. The result of an unsigned arithmetic
operation is thus aways defined, whereas the result of a signed operation may (in principle) be
undefined. In practice, on twos-complement machines, both types often give the same result for all
operators except division, modulus, right shift, and comparisons. Hence there has been a lack of
sengtivity in the C community to the differences between sgned and unsigned arithmetic (see
§6.2.1.1).

The Committee has explicitly restricted the C language to binary architectures, on the grounds that this

stricture was implicit in any case:

. Bit-fields are specified by a number of bits, with no mention of "invald integer"

representation. The only reasonable encoding for such bit-fields is binary.
29

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

. The integer formats forpri ntf suggest no provision foillégal integer" values,
implying that any result of bitwise manipulation produces an integer result which can be
printed by pri ntf.

. All methods of specifying integer constants - decimal, hex, and octal - specify an
integer value. No method independent of integers is defined for specifying "bit-string
constants.” Only a binary encoding provides a complete one-to-one mapping between
bit strings and integer values.

The restriction to "binary numeration systems” rules out such curiosities as Gray code, and makes
possible arithmetic definitions of the bitwise operators on unsigned types (see 86.3.3.3, 86.3.7, 86.3.10,
86.3.11, 86.3.12).

A new floating typd ong doubl e has been added to C. Theong doubl e type must offer at

least as much precision as the tygeubl e. Several architectures support more than two floating
types and thus can map a distinct machine type onto this additional C type. Several architectures which
only support two floating point types can also take advantage of the three C types by mapping the less
precise type ontof | oat and doubl e, and designating the more precise typeng doubl e,
Architectures in which this mapping might be desirable include those in which single-precision floats
offer at least as much precision as most other machines's double-precision, or those on which
single-precision is considerably more efficient than double-precision. Thus the common C floating
types would map onto an efficient implementation type, but the more precise type would stil be
available to those programmers who require its use.

To avoid confusion,| ong f | oat as a synonym fordoubl e has been retired.
Enumerations permit the declaration of named constants in a more convenient and structured fashion
than #def i ne's. Both enumeration constants and variables behave like integer types for the sake of

type checking, however.

The Committee considered several alternatives for enumeration types in C:

1. leave them out;

2. include them as definitions of integer constants;

3. include them in the weakly typed form of the UNIX C compiler;
4. include them with strong typing, as, for example, in Pascal.

The Committee adopted the second alternative on the grounds that this approach most clearly reflects
common practice. Doing away with enumerations altogether would invalidate a fair amount of existing
code; stronger typing than integer creates problems, for instance, with arrays indexed by enumerations.

6.1.2.6 Compatible type and composite type

The notions otompatible types andcomposite type have been introduced to discuss those situations in

30

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

which type declarations need not be identical. These terms are especially useful in explaining the
relationship between an incomplete type and a complete type.

Structure, union, or enumeration type declarations in two different trandation units do not formally
declare the same type, even if the text of these declarations come from the same include file, since the
trandation units are themsalves digoint. The Standard thus specifies additional compatibility rules for
such types, so that if two such declarations are sufficiently smilar they are compatible.

6.1.2.7 Predefined identifiers
6.1.2.8 Representations of types
6.1.281 Gened

6.12.82 Integer types

6.1.3 Congants

In folding and converting constants, an implementation must use at least as much precison as is
provided by the target environment. However, it is not required to use exactly the same precision as
the target, since thiswould require a cross compiler to simulate target arithmetic at trandation time.

The Committee consdered the introduction of structure constants. Although it agreed that structure
literals would occasiondly be useful, its policy has been not to invent new features unless a strong need
exigs. Since the language aready dlows for initialized const sructure objects, the need for inline
anonymous structured constants seems less than pressing.

Severd implementation difficulties beset structure congtants. All other forms of congtants are "sdif
typing” - the type of the congtant is evident from its lexica structure. Structure constants would
require either an explicit type mark, or typing by context; either gpproach is consdered to require
increased complexity in the design of the trandator, and either approach would aso require as much, if
not more, care on the part of the programmer as using an initialized structure object.

6.1.3.1 Hoating congtants

Consistent with existing practice, a floating point constant has been defined to have type doubl e,

Since the Standard now alows expressions that contain only f 1 oat operands to be performed in
f1 oat arithmetic (see 86.2.1.7) rather thaloubl e, a method of expressing explicft| oat
constants is desirable. The ndvong doubl e type raises similar issues.

Thus the F and L suffixes have been added to convey type information with floating constants, much

like the L suffix for long integers. The default type of floating constants remdimgbl e, for
compatibility with prior practice. Lower caseand | are also allowed as suffixes.

Note that the run-time selection of the decimal point charact&eby ocal e (§7.5.1) has no effect
on the syntax of C source text: the decimal point character is always period.

6.1.3.2 Integer constants

31

10

15

20

25

30

35

40

WG14/N802 J11/98-001 RATIONALE

The rule that the default type of a decimd integer congtant is either i nt, | ong, or unsi gned
| ong, depending on which type is large enough to hold the value without overflow, simplifies the use
of congtants.

The suffixes Uand U have been added to specify unsigned numbers.

Unlike decima congants, octal and hexadecima constants too large to be ints are typed as
unsi gned i nt (if within range of that type), sinceit is more likely that they represent bit patterns or
masks, which are generally best treated as unsigned, rather than "real” numbers.

Little support was expressed for the old practice of permitting the digits 8 and 9 in an octa constant, o
it has been dropped.

A proposal to add binary constants was rejected due to lack of precedent and insufficient utility.
Despite a concern that alower-case L could be taken for the numera one at the end of an integra (or
floating) literal, the Committee rgected proposals to remove this usage, primarily on the grounds of

sanctioning existing practice.

The rules given for typing integer constants were carefully worked out in accordance with the
Committee's deliberations on integral promotion rules (see §6.2.1.1).

QUIET CHANGE
Unsuffixed integer constants may have different types. In K&R, unsuffixed decimal
constants greater thah NT_MAX' and unsuffixed octal or hexadecimal constants

greater thanUl NT_MAX are of typel ong.

6.1.3.3 Enumeration constants

Whereas an enumeration variable may have any integer type that correctly represents all its values
when widened tol Nt , an enumeration constant is only usable as the value of an expression. Hence

its type is simplyi nt . (See 86.1.2.5.)

6.1.3.4 Character constants

The digits 8 and 9 are no longer permitted in octal escape sequences. (Cf. octal constants, 86.1.3.2.)

The alert escape sequence has been added (see 85.2.2).

Hexadecimal escape sequences, beginning Wkh have been adopted, with precedent in several
existing implementations. (Little sentiment was garnered for providi¥gas well.) The escape
sequence extends to the first non-hex-digit character, thus providing the capability of expressing any
character constant no matter how large the tgpar is. String concatenation can be used to specify

a hex-digit character following a hexadecimal escape sequence:

char a[] = "\xff" "f" ;

32

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001
char b[] = {"\xff", "f', "\0};
Thesetwo initidizationsgive a and b the same string value.

The Committee has chosen to reserve dl lower case letters not currently used for future escape
sequences (undefined behavior). All other characters with no current meaning are left to the
implementor for extensions (implementation-defined behavior). No portable meaning is assigned to
multi-character constants or ones containing other than the mandated source character set
(implementation-defined behavior).

The Committee considered proposas to add the character constant '\ €’ to represent the ASCII ESC
(\ 033") character. This proposal was based upon the use of ESC as the initid character of most
control sequences in common termina driving disciplines, such as ANSI X3.64. However, this usage
has no obvious counterpart in other popular character codes, such as EBCDIC. A programmer merely
wishing to avoid having to type \033 to represent the ESC character in an ASCII/X3.64
environment, may, instead of writing

printf("\033[10; 10h%\ n", soneval ue);

write:
#define ESC "\033"

printf(ESC "[10; 10h%l\ n", soneval ue);

Notwithstanding the genera rule that literd constants are non-negative ? a character constant
containing one character is effectively preceded with a (char) cast and hence may yield a negative
vaueif plain char isrepresented thesameas si gned char . Thissimply reflects widespread past
practice and was deemed too dangerous to change.

QUIET CHANGE
A congtant of the form\ 078’ isvalid, but now has different meaning. It now denotes
a character congtant whose value is the (implementation-defined) combination of the
vaues of the two characters \ 07 and '8". In some implementations the old meaning is

the character whose code is 078 = 0100 = 64.
QUIET CHANGE

A congtant of theform\ @’ or \ X’ now may have different meaning. The old meaning,
If any, was implementation dependent.

An L prefix diginguisheswide character constants. (See §5.2.1.2.)

6.1.4 String literals

String literals are specified to be unmodifiable. This specification allows implementations to share
copies of strings with identical text, to place string literals in read-only memory, and perform certain

2. . . .
isan expression: unary minus with operand 3.

33

10

15

20

25

30

35

40

45

50

WG14/N802 J11/98-001 RATIONALE

optimizations. However, gtring literals do not have the type array of const char, in order to avoid the
problems of pointer type checking, particularly with library functions, snce assgning a pointer to const
char to aplain pointer to char isnot vaid. Those members of the Committee who inssted that string
literals should be modifiable were content to have this practice designated a common extension (see
K.5.5).

Existing code which modifies string literals can be made strictly conforming by replacing the string
literal with an initidlized static character array. For instance,

char *p, *make_tenp(char *str);
[* ... *l
p = make_tenp("tenmpXXX");
I* make_tenp overwites the literal */
I* with a uni que nane */

can be changed to:
char *p, *make_tenp(char *str);
[* ... *l
{
static char tenplate[] = "tenpXXX';
} p = make_tenp(tenplate);

A long string can be continued across multiple lines by using the backdash-newline line continuation,

but this practice requires that the continuation of the string Sart in the first postion of the next line. To

permit more flexible layout, and to solve some preprocessing problems (see 86.8.3), the Committee
introduced string literal concatenation. Two string literals in a row are pasted together (with no null
character in the middle) to make one combined string literal. This addition to the C language allows a
programmer to extend a string literal beyond the end of a physical line without having to use the
backslash-newline mechanism and thereby destroying the indentation scheme of the program. An
explicit concatenation operator was not introduced because the concatenation is a lexical construct
rather than a run-time operation.

without concatenation:

I* say the columm is this wde */
al pha = "abcdef ghi j kl m
nopgr st uvwxyz" ;

with concatenation:

I* say the columm is this wde */
al pha = "abcdef ghi j kI n¥
"nopgr st uvwxyz";

QUIET CHANGE
A string of the form 078" is valid, but now has different meaning. (See 86.1.3.)

QUIET CHANGE

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

A gring of theform™\ @" or "\ X" now has different meaning. (See §6.1.3.)
QUIET CHANGE

It is neither required nor forbidden that identical string literals be represented by a

single copy of the string in memory; a program depending upon either scheme may

behave differently.
An L prefix distinguishes wide string literals. A prefix (as opposed to suffix) notation was adopted so
that a translator can know at the start of the processing of a long string literal whether it is dealing with
ordinary or wide characters. (See 85.2.1.2.)
6.1.5 Operators
Assignment operators of the formt, described agld fashioned even in K&R, have been dropped.

The form +=is now defined to be a single token, not two, so no white space is permitted within it; no
compelling case could be made for permitting such whiteesp

QUIET CHANGE

Expressions of the formx=-3 change meaning with the loss of the old-style
assignment operators.

The operator# has been added in preprocessing statements: withithed i ne it causes the macro
argument following to be converted to a string literal.

The operator## has also been added in preprocessing statements: withi¢ i ne it causes the
tokens on either side to Ipasted to make a single new token. See 86.8.3 for further discussion of
these preprocessing operators.

6.1.6 Punctuators

The punctuator. . . (ellipsis) has been added to denote a variable number of traiing arguments in a
function prototype. (See 86.5.5.3.)

The constraint that certain punctuators must occur in pairs (and the similar constraint on certain
operators in 86.1.5) only applies after preprocessing. Syntactic constraints are checked during
syntactic analysis, and this follows preprocessing.

6.1.7 Header names
Header names i#i ncl ude directives obey distinct tokenization rules; hence they are identified as
distinct tokens. Attempting to treat quote-enclosed header names as string literals creates a contorted

description of preprocessing, and the problems of treating angle-bracket-enclosed header names as a
sequence of C tokens is even more severe.

35

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

6.1.8 Preprocessng numbers

The notion of preprocessing numbers has been introduced to smplify the description of preprocessing.
It provides a means of talking about the tokenization of strings that look like numbers, or initial
substrings of numbers, prior to their semantic interpretation. In the interests of keeping the description
simple, occasiond spurious forms are scanned as preprocessing numbers - 0x123E+1 is a single
token under therules. The Committee felt that it was better to tolerate such anomalies than burden the
preprocessor with a more exact, and exacting, lexical specification. It felt that this anomaly was no
worse than the principle under which the characters a+++++b aretokenizedas a ++ ++ + b (an
invalid expression), even though the tokenization a ++ + ++ b would yield a syntacticaly correct
expression. In both cases, exercise of reasonable precaution in coding style avoids surprises.

6.1.9 Comments

The Committee consdered proposals to dlow comments to nest. The main argument for nesting
comments is that it would alow programmers to "comment out” code. The Committee regjected this
proposa on the grounds that comments should be used for adding documentation to a program, and
that preferable mechanisms dready exist for source code exclusion. For example,

#f O

/* this code is bracketed out because ... */
code_t o_be_excl uded();

#endi f

Preprocessing directives such as this prevent the enclosed code from being scanned by later trandation
phases. Bracketed materia can include comments and other, nested, regions of bracketed code.

Another way of accomplishing these goalsiswithan i f statement:

if (0) {
/* this code is bracketed out because ... */
code_to_be_excl uded();

}

Many modern compilers will generate no code for this i f statement.

/'l comments were added for C9X due to their utility and widespread existing practice,
especialy in dual C/C++ translators/compilers3.

QUIET CHANGE

In certain unusua Situations, code could have different semantics for C90 and
C9IX, for example

a b //*divisor:*/ ¢
+

ol

In C90 this was equivalent to

The C++ programming language supports // comments.

36

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

a=Db/ c + d;

but in C9X it is equivalent to
a=>b+d,

6.2 Conversons
6.2.1 Arithmetic operands
6.2.1.1 Charactersand integers

Since the publication of K&R, a serious divergence has occurred among implementations of C in the
evolution of integra promotion rules. Implementations fal into two maor camps, which may be
characterized as unsigned preserving and value preserving. The difference between these gpproaches
centers on the treatment of unsi gned char and unsi gned short, when widened by the
integral promotions, but the decision has an impact on the typing of constants as well (see 86.1.3.2).

Theunsigned preserving approach calls for promoting the two smaller unsigned types® gned
i nt. This is a simple rule, and yields a type which is independent of execution environment.

The value preserving approach calls for promoting those typesgbgned i nt | if that type can
properly represent all the values of the original type, and otherwise for promoting those types to
unsigned int. Thus, if the execution environment represest®r t as something smaller than

I nt, unsi gned short becomesi nt ; otherwise it becomesinsi gned i nt .

Both schemes give the same answer in the vast majority of cases, and both give the same effective
result in even more cases in implementations with twos-complement arithmetic and quiet wraparound
on signed overflow - that is, in most current implementations. In such implementations, differences
between the two only appear when these two conditions are both true:

1. An expression involving aminsi gned char or unsi gned short produces an
I nt -wide result in which the sign bit is set: i.e., either a unary operation on such a
type, or a binary operation in which the other operand ist&n or "narrower" type.

2. The result of the preceding expression is used in a context in which its signedness is
significant:

. sizeof (int) < sizeof(long) anditisin a context where it must be
widened to a long type, or

. it is the left operand of the right-shift operator (in an implementation where this
shift is defined as arithmetic), or

. it is either operand of /, % <, <=, > or >=,
In such circumstances a genuine ambiguity of interpretation arises. The result must be dubbed

questionably signed, since a case can be made for either the signed or unsigned interpretation. Exactly
37

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

the same ambiguity arises whenever an unsi gned int confronts a si gned int across an
operator, andthe si gned i nt hasanegative value. (Neither scheme does any better, or any worse,
in resolving the ambiguity of this confrontation.) Suddenly, the negative signed i nt becomes a very
large unsigned int, which may be surprising - or it may be exactly what is desired by a
knowledgeable programmer. Of course, all of these ambiguities can be avoided by a judicious use of
cads.

One of the important outcomes of exploring this problem is the understanding that high-quality
compilers might do well to look for such questionable code and offer (optional) diagnostics, and that
conscientious ingtructors might do well to warn programmers of the problems of implicit type
conversons.

The unsigned preserving rules greatly increase the number of stuations where unsi gned i nt
confronts Si gned i nt to yield a questionably signed result, whereas the vaue presarving rules
minimize such confrontations. Thus, the value preserving rules were consdered to be safer for the
novice, or unwary, programmer. After much discussion, the Committee decided in favor of value
preserving rules, despite the fact that the UNIX C compilers had evolved in the direction of unsigned
preserving.

QUIET CHANGE

A program that depends upon unsigned preserving arithmetic conversions will behave
differently, probably without complaint. This is consdered the most serious semantic
change made by the Committee to awidespread current practice.

The Standard clarifies that the integral promotion rules also apply to bit-fields.
6.2.1.2 Signed and unsigned integers

Precise rules are now provided for converting to and from unsigned integers. On a twos-complement
meachine, the operation is ill virtua (no change of representation is required), but the rules are now
stated independent of representation.

6.2.1.3 Red floating and integer

There was strong agreement that floating values should truncate toward zero when converted to an
integral type, the specification adopted in the Standard. Although the Base Document permitted
negative floating values to truncate avay from zero, no Committee member knew of current hardware
that functionsin such a manner.*

6.2.1.4 Red floating types

The Standard, unlike the Base Document, does not require rounding in the doubl e to f 1 oat
conversion. Some widely used IEEE floating point processor chips control floating to integral
conversion with the same mode bits as for double-precison to single-precison converson; since
truncation-toward-zero is the appropriate setting for C in the former case, it would be expensive to

4
We have since been informed of one such implementation.

38

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

require such implementationsto roundto f | oat .
6.2.1.5 Complex types

6.2.1.6 Red and complex

6.2.1.7 Usua arithmetic conversons

The rulesin the Standard for these conversions are dight modifications of those in the Base Document:

the modifications accommodate the added types and the value preserving rules (see §86.2.1.1). Explicit
license has been added to perform calculations in a "wider" type than absolutely necessary, since this
can sometimes produce smaller and faster code (not to mention the correct answer more often).
Calculations can also be performed in a "narrower" type, bgstiferule, so long as the same end

result is obtained. Explicit casting can always be used to obtain exactly the intermediate types

required.

The Committee relaxed the requirement tHdtoat operands be converted tdoubl e. An
implementation may still choose to convert.

QUIET CHANGE

Expressions withf | oat operands may now be computed at lower precision. The
Base Document specified that all floating point operations be dothetb! e.

6.2.2 Other operands
6.2.2.1 Lvalues and function designators

A difference of opinion within the C community has centered around the meahmbefone group
considering an Ivalue to be any kind of object locator, another group holding that an Ivalue is
meaningful on the left side of an assigning operator. The Committee has adopted the definition of
lvalue as an object locator. The temudifiable lvalue is used for the second of the above concepts.

The role of array objects has been a classic source of confusion in C, in large part because of the
numerous contexts in which an array reference is converted to a pointer to its first element. While this

conversion neatly handles the semantics of subscripting, the fac[that is itself a modifiable lvalue

while a is not has puzzled many students of the language. A more precise description has therefore
been incorporated in the Standard, in the hopes of combatting this confusion.

6.2.2.2 voi d

The description of operators and expressions is simplified by sayiny ¢hat yields a value, with the
understanding that the value has no representation, hence requires no storage.

6.2.2.3 Pointers

C has now been implemented on a wide range of architectures. While some of these architectures
feature uniform pointers which are the size of some integer type, maximally portable code may not

39

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

assume any necessary correspondence between different pointer types and the integral types.

The use of void * ("pointer to void”) as a generic object pointer type is an invention of the
Committee. Adoption of this type was stimulated by the desire to specify function prototype
arguments that either quietly convert arbitrary pointers (as in f r ead) or complain if the argument
type does not exactly match (asin st rcnp). Nothing is said about pointers to functions, which may
be incommensurate with object pointers and/or integers.

Since pointers and integers are now congdered incommensurate, the only integer that can be safely
converted to a pointer is the constant 0. The result of converting any other integer to a pointer is
meachine dependent.

Consequences of the treatment of pointer types in the Standard include.

. A pointer to void may be converted to a pointer to an object of any type.
. A pointer to any object of any type may be converted to a pointer to void.
. If a pointer to an object is converted to a pointer to void and back again to the original

pointer type, the result compares equal to original pointer.

. It is invalid to convert a pointer to an object of any type to a pointer to an object of a
different type without an explicit cast.

. Even with an explicit cast, it is invalid to convert a function pointer to an object pointer
or a pointer to void, or vice-versa.

. It is invalid to convert a pointer to a function of one type to a pointer to a function of a
different type without a cast.

. Pointers to functions that have different parameter-type information (including the
"old-style" absence of parameter-type information) are different types.

Implicit in the Standard is the notioniokalid pointers. In discussing pointers, the Standard typically
refers to "a pointer to an object” or "a pointer to a function” or "a null pointer." A special case in
address arithmetic allows for a pointer to just past the end of an array. Any other pointer is invalid.

An invalid pointer might be created in several ways. An arbitrary value can be assigned (via a cast) to a
pointer variable. (This could even create a valid pointer, depending on the value.) A pointer to an
object becomes invalid if the memory containing the object is deallocated. Pointer arithmetic can
produce pointers outside the range of an array.

Regardless how an invalid pointer is created, any use of it yields undefined behavior. Even assignment,
comparison with a null pointer constant, or comparison with itself, might on some systems result in an
exception.

Consider a hypothetical segmented architecture, on which pointers comprise a segment descriptor and
an offset. Suppose that segments are relatively small, so that large arrays are allocated in multiple

40

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

segments. While the segments are vaid (allocated, mapped to real memory), the hardware, operating
system, or C implementation can make these multiple segments behave like a single object: pointer
arithmetic and relational operators use the defined mapping to impose the proper order on the elements
of the array. Once the memory is dedllocated, the mapping is no longer guaranteed to exist; use of the
segment descriptor might now cause an exception, or the hardware addressing logic might return
meaningless data

6.3 Expressons

Severd closdy-related topics are involved in the precise specification of expresson evauation:
precedence, associativity, grouping, sequence points, agreement points, order of evaluation, and
interleaving. The latter three terms are discussed in 85.1.2.3.

The rules ofrecedence are encoded into the syntactic rules for each operator. For example, the syntax
for additive-expression includes the rule

additive-expression + multiplicative-expresson

which implies thata+b* ¢ parses asa+(b*c) . The rules ofssociativity are similarly encoded into
the syntactic rules. For example, the syntaadaignment-expression includes the rule

unary-expression assignment-operator ass gnment-expresson
which implies thata=b=c parses asa=(b=c) .

With rules of precedence and associativity thus embodied in the syntax rules, the Standard specifies, in
general, th@rouping (association of operands with operators) in an expression.

The Base Document describes C as a language in which the operands of successive identical
commutative associative operators can be regrouped. The Committee has decided to remove this
license from the Standard, thus bringing C into accord with most other major high-level languages.

This change was motivated primarily by the desire to make C more suitable for floating point
programming. Floating point arithmetic does not obey many of the mathematical rules that real
arithmetic does. For instance, the two expressioaisb) +c and a+(b+c) may well yield different
results: suppose thdd is greater than 0a equals - b, and ¢ is positive but substantially smaller

than b. (That is, suppose&/ b is less thanDBL_EPSI LON)) Then (a+b) +c is 0+c, or ¢, while
a+(b+c) equals at+b, or 0. That is to say, floating point addition (and multiplication) is not
associative.

The Base Document's rule imposes a high cost on translation of numerical code to C. Much numerical
code is written in FORTRAN, which does provide a no-regrouping guarantee; indeed, this is the
normal semantic interpretation in most high-level languages other than C. The Base Document's
advice, "rewrite using explicit temporaries," is burdensome to those with tens or hundreds of thousands
of lines of code to convert, a conversion which in most other respects could be done automatically.

Elimination of the regrouping rule does not in fact prohibit much regrouping of integer expressions.
The bitwise logical operators can be arbitrarily regrouped, since any regrouping gives the same result

41

10

15

20

25

30

35

WG14/N802 J11/98-001 RATIONALE

asif the expression had not been regrouped. Thisis also true of integer addition and multiplication in
implementations with twos-complement arithmetic and silent wraparound on overflow. Indeed, in any
implementation, regroupings which do not introduce overflows behave as if no regrouping had
occurred. (Results may aso differ in such an implementation if the expression as written results in
overflows: in such acase the behavior is undefined, so any regrouping couldnt be any worse.)

The types of Ivalues that may be used to access an object have been restricted so that an optimizer is
not required to make worst-case aliasing assumptions.

In practice, diasng arises with the use of pointers. A contrived exampleto illustrate theissuesis

int a;

void f(int * b) {
a = 1;
*b = 2;
g(a);

}

It is tempting to generate the call to g asiif the source expression were g(1) , but b might point to
a, S0 thisoptimization is not safe. On the other hand, consider

int a;

void f(double * b) {
a = 1;
*p = 2.0;
g(a);

}

Again the optimization isincorrect only if b pointsto a. However, this would only have come about
if the address of a were somewhere cast to (doubl €*) . The Committee has decided that such
dubious possibilities need not be alowed for.

In principle, then, diasing only need be alowed for when the Ivalues dl have the same type. In
practice, the Committee has recognized certain prevaent exceptions.

. The Ivalue types may differ in signedness. In the common range, a signed integral type
and its unsigned variant have the same representation; it was felt that an appreciable
body of existing code is not "strictly typed" in this area.

. Character pointer types are often used in the bytewise manipulation of objects; a byte
stored through such a character pointer may well end up in an object of any type.

. A qualified version of the object's type, though formally a different type, provides the

45

50

same interpretation of the value of the object.

Structure and union types also have problematic aliasing properties:
struct fi{ float f; int i;};

void f(struct fi * fip, int * ip)
a2

10

15

20

25

30

35

40

45

50

RATIONALE WG14/N802 J11/98-001

{
static struct fi a = {2.0, 1};

*Ip = 2
*fip = a;
g(*ip);
*fip = a
*Ip = 2;

} g(fip->i);

It is not safe to optimize the first cdl to g as 9(2), or the second as g(1), since the cal to f
could quite legitimately have been

struct fi x;
f(&, &.i);

These observations explain the other exception to the same-type principle.

6.3.1 Primary expressons

A primary expresson may be voi d (parenthesized call to a function returning Vvoi d), a function
designator (identifier or parenthesized function designator), an Ivaue (identifier or parenthesized
Ivalue), or smply avaue expression. Congtraints ensurethat a voi d primary expression is no part of
a further expression, except that a void expresson may be cast to void, may be the second or third
operand of a conditiond operator, or may be an operand of acomma operator.

6.3.1.1 Theidentifier __ func__

A new feature for COX

6.3.2 Podtfix operators

6.3.2.1 Array subscripting

The Committee found no reason to disdlow the symmetry that permits a[i] to bewrittenas i [a] .
The syntax and semantics of multidimensiona arrays follow logicaly from the definition of arrays and
the subscripting operation. The materia in the Standard on multidimensiona arrays introduces no new
language features, but clarifies the C treatment of thisimportant abstract data type.

6.3.2.2 Function calls

Pointers to functions may be used either as (*pf) () or as pf(). The later construct, not
sanctioned in the Base Document, appears in some present versions of C, is unambiguous, invalidates
no old code, and can be an important shorthand. The shorthand is useful for packages that present
only one externa name, which designates a structure full of pointers to objects and functions: member

functions can be called as gr aphi cs. open(fil e) ingeadof (*graphi cs. open) (file).

The treatment of function designators can lead to some curious, but vaid, syntactic forms. Given the
43

WG14/N802 J11/98-001 RATIONALE
declarations:

int £(), (*pf)();
then al of the following expressions are valid function calls:

&f : f : * f : * % f : * k% f :
gf(g;() (’%f)g); 8*p§)()?(%**£pf)(g;()
The first expression on each line was discussed in the previous paragraph. The second is conventional
usage. All subsequent expressions take advantage of the implicit conversion of a function designator to
a pointer vaue, in nearly al expresson contexts. The Committee saw no real harm in alowing these
forms; outlawing forms like (*f) (), while till permitting *a (for int a[]), smply seemed
more trouble than it was worth.

The rule for implicit declaration of functions has been removed. The effect is to guarantee that a
diagnostic is produced, which will catch an additional category of programming errors. After
Issuing the diagnostic, an implementation may choose to assume an implicit declaration and
continue trandlation in order to support existing programs that exploited this feature.

For compatibility with past practice, al argument promotions occur as described in the Base Document
in the absence of a prototype declaration, including the (not dways desirable) promotion of f 1 oat to
doubl e. A prototype gives the implementor explicit licenseto passa fl oat asa fl oat rather
than a doubl e, or a char asa char raher thanan i nt, or anh argument in a specid register,
etc. If the definition of a function in the presence of a prototype would cause the function to expect
other than the default promotion types, then clearly the calls to this function must be made in the
presence of a compatible prototype.

To clarify this and other relationships between function calls and function definitions, the Standard
describes an equivaence between a function cal or definition which does occur in the presence of a
prototype and one that does not.

Thus a prototyped function with no "narrow” types and no variable argument list must be callable in the
absence of a prototype, since the types actudly passed in a call are equivaent to the explicit function
definition prototype. This condraint is necessary to retain compatibility with past usage of library
functions. (See §7.1.8.)

This provision constrains the latitude of an implementor because the parameter passing conventions of
prototype and non-prototype function calls must be the same for functions accepting a fixed number of
arguments. Implementations in environments where efficient function calling mechanisms are available
must, in effect, use the efficient calling sequence either in all "fixed argument list" calls or in none.
Since efficient calling sequences often do not allow for variable argument functions, the fixed part of a
variable argument list may be passed in a completely different fashion than in a fixed argument list with
the same number and type of arguments.

The existing practice of omitting trailing parameters in a call if it is known that the parameters will not

be used has consistently been discouraged. Since omission of such parameters creates an inequivalence
between the call and the declaration, the behavior in such cases is undefined, and a maximally portable
program will avoid this usage. Hence an implementation is free to implement a function calling

44

10

15

20

25

30

35

40

45

50

RATIONALE WG14/N802 J11/98-001

mechanism for fixed argument lists which would (perhaps fatally) fail if the wrong number or type of
arguments were to be provided.

Strictly speaking then, cdls to printf are obliged to be in the scope of a prototype (as by
#i ncl ude <stdio. h>), but implementations are not obliged to fal on such a lapse. (The
behavior is undefined).

6.3.2.3 Structure and union members

Since the language now permits structure parameters, structure assgnment and functions returning
structures, the concept of a structure expression is now part of the C language. A structure vaue can
be produced by an assignment, by a function call, by a comma operator expression or by a conditional
operator expresson:

sl = (s2 = s3)
sf (x)

(x, sl)

X ?sl: s2

In these cases, the result is not an Ivalue; hence it cannot be assigned to nor can its address be taken.

Smilarly, X.Yy isanlvaueonly if X isan Ivaue. Thus none of the following valid expressions are
lvalues:

sf(3).a

(s1=s2).a

g(i ==6) ?s1:s2). a
X,sl).a

Evenwhen X. Y isan Ivaue, it may not be modifiable:

const struct S sli;
sl.a = 3; I* invalid */

The Standard requires that an implementation diagnose a congtraint error in the case that the member
of a structure or union designated by the identifier following a member selection operator (- or - >)
does not appear in the type of the structure or union designated by the first operand. The Base
Document is unclear on this point.

6.3.24 Postfix increment and decrement operators

The Committee has not endorsed the practice in some implementations of considering post-increment
and post-decrement operator expressionsto be Ivalues.

6.3.2.5 Compound literals
A new feature for C9X. Compound literals provide a mechanism for specifying constants of aggregate

or union type. This diminates the requirement for temporary variables when an aggregate or union
vaue will only be needed once.

45

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

Compound literds integrate easly into the C grammar and do not impose any additiona run-time
overhead on auser's program. They also combine well with designated initializers (see 86.5.8) to form

an even more convenient aggregate or union constant notation. Their initial C implementation
appeared in a compiler by Ken Thompson at AT&T Bell Laboratories.

6.3.3 Unary operators
6.3.3.1 Prefix increment and decrement operators See 86.3.2.4.
6.3.3.2 Address and indirection operators

Some implementations have not allowed th@perator to be applied to an array or a function. (The
construct was permitted in early versions of C, then later made optional.) The Committee has endorsed

the construct since it is unambiguous, and since data abstraction is enhanced by allowing the important
& operator to apply uniformly to any addressable entity.

6.3.3.3 Unary arithmetic operators

Unary plus was adopted by the Committee from several implementations, for symmetry with unary
minus.

The bitwise complement operator, and the other bitwise operators, have now been defined
arithmetically for unsigned operands. Such operations are well-defined because of the restriction of
integral representations to "binary numeration systems." (See 86.1.2.8.2.)

6.3.3.4 Thesi zeof operator

It is fundamental to the correct usage of functions suchr@lsl oc and fread that si zeof

(char) be exactly one. In practice, this means tHafteiin C terms is the smallest unit of storage,
even if this unit is 36 bits wide; and all objects are comprised of an integral number of these smallest
units. (See §1.6.)

The Standard, like the Base Document, defines the result sfitheof operator to be a constant of

an unsigned integral type. Common implementations, and common usage, have often presumed that
the resulting type isi nt. Old code that depends on this behavior has never been portable to
implementations that define the result to be a type otheritidin The Committee did not feel it was

proper to change the language to protect incorrect code.

The type ofsi zeof , whatever it is, is published (in the library head&t ddef . h>) as si ze_t |

since it is useful for the programmer to be able to refer to this type. This requirement implicitly restricts
Sl ze_t to be a synonym for an existing unsigned integer type, thus quashing any notion that the

largest declarable object might be too big to span even witinam gned | ong. This also restricts
the maximum number of elements that may be declared in an array, since for anq afaif
elements,

N == si zeof (a)/si zeof (a[0])

Thus si ze_t is also a convenient type for array sizes, and is so used in several library functions.

46

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

(See 87.13.8.1, §7.13.8.2, 87.14.3.1, etc.)

The Standard specifies that the argumentsiozeof can be any value except a bit field, a void
expression, or a function designator. This generality allows for interesting environmental enquiries;
given the declarations

int *p, *q;
these expressions determine the size of the type used for ...

Si zeofEF(xg) I* ... F's return value */
si zeof (p-q I* ... pointer difference */

(The last type is of course available pr di ff _t in <stddef. h>)
6.34 Cad operators
A (void) castis explicitly permitted, more for documentation than for utility.

Nothing portable can be said about casting integers to pointers, or vice versa, since the two are now
iIncommensurate.

The definition of these conversions adopted in the Standard resembles that in the Base Document, but
with several significant differences. The Base Document required that a pointer successfully converted
to an integer must be guaranteed to be convertible back to the same pointer. This integer-to-pointer
conversion is now specified asplementation-defined. While a high-quality implementation would
preserve the same address value whenever possible, it was considered impractical to require that the
identical representation be preserved. The Committee noted that, on some current machine
implementations, identical representations are required for efficient code generation for pointer
comparisons and arithmetic operations.

The conversion of the integer constant O to a pointer is defined similarly to the Base Document. The
resulting pointer must not address any object, must appear to be equal to an integer value of 0, and
may be assigned to or compared for equality with any other pointer. This definition does not
necessarily imply a representation by a bit pattern of all zeros: an implementation could, for instance,
use some address which causes a hardware trap when dereferenced.

The type char must have the least strict alignment of any typegbar * has often been used as a
portable type for representing arbitrary object pointers. This usage creates an unfortunate confusion
between the ideas afbitrary pointer andcharacter or sring pointer. The new typevoi d *,

which has the same representatiorcigir *, is therefore preferable for arbitrary pointers.

It is possible to cast a pointer of some qualified type (86.5.3) to an unqualified version of that type.
Since the qualifier defines some special access or aliasing property, however, any dereference of the
cast pointer results imdefined behavior.

The Standard (86.2.1.4) requires that a cast of one floating point type to anothedl@gly. e to
f1 oat) results in an actual conversion.

47

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

6.3.5 Multiplicative operators

There was congderable sentiment for giving more portable semantics to divison (and hence remainder)
by specifying some way of giving less machine dependent results for negative operands. Few
Committee members wanted to require this by default, lest existing fast code be gravely dowed. One
suggestion was to make si gned i nt atype digtinct from plain | nt, and require better-defined
semantics for si gned i nt divison and remainder. This suggestion was opposed on the grounds
that effectively adding severa types would have consequences out of proportion to the benefit to be
obtained; the Committee twice regjected this approach. 1nstead the Committee has adopted new library
functions di v and | di v which produce integra quotient and remainder with well-defined sign
semantics. (See §7.14.6.2, 87.14.6.5.)

The Committee rejected extending tRé operator to work on floating types; such usage would
duplicate the facility provided by nmod. (See §7.7.10.1)

6.3.6 Additiveoperators

As with the si zeof operator, implementations have taken different approaches in defining a type for
the difference between two pointers (see 86.3.3.4). It is important that this type be signed, in order to
obtain proper algebraic ordering when dealing with pointers within the same array. However, the
magnitude of a pointer difference can be as large as the size of the largest object that can be declared.
(And since that is an unsigned type, the difference between two pointers may cause an overflow.)

The type ofpointer minus pointer is defined to bei nt in K&R. The Standard defines the result of

this operation to be a signed integer, the size of which is implementation-defined. The type is published
as ptrdiff_t, inthe standard headefst ddef. h> Old code recompiled by a conforming
compiler may no longer work if the implementation defines the result of such an operation to be a type
other thani nt and if the program depended on the result to be of typk. This behavior was
considered by the Committee to be correctable. Overflow was considered not to break old code since
it was undefined by K&R. Mismatch of types between actual and formal argument declarations is
correctable by including a properly defined function prototype in the scope of the function invocation.

An important endorsement of widespread practice is the requirement that a pointer can always be
incremented tgust past the end of an array, with no fear of overflow or wraparound:

SOVETYPE ar r ay[SPAN ;

[* */

for (p = &rray[0]; p < &rray[SPAN]; p++)

This stipulation merely requires that every object be followed by one byte whose address is
representable. That byte can be the first byte of the next object declared for all but the last object
located in a contiguous segment of memory. (In the example, the adéhessaly[SPAN] must
address a byte following the highest elementiof ay.) Since the pointer expressigntl need not

(and should not) be dereferenced, it is unnecessary to leave room for a complete object of size
si zeof (*p).

In the case ofp- 1, on the other hand, an entire objeotld have to be allocated prior to the array of
objects that p traverses, so decrement loops that run off the bottom of an array may fail. This

48

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

restriction alows segmented architectures, for instance, to place objects a the start of a range of
addressable memory.

6.3.7 Bitwise shift operators
See 86.3.3.3 for a discussion of the arithmetic definition of these operators.

The description of shift operators in K&R suggests that shifting bpag count should force the left
operand to be widened tbong before being shifted. A more intuitive practice, endorsed by the
Committee, is that the type of the shift count has no bearing on the type of the result.

QUIET CHANGE
Shifting by a | ong count no longer coerces the shifted operantieng.

The Committee has affirmed the freedom in implementation granted by the Base Document in not
requiring the signed right shift operation to sign extend, since such a requirement might slow down fast
code and since the usefulness of sign extended shifts is marginal. (Shifting a negative
twos-complement integer arithmetically right one placetishe same as dividing by two!)

6.3.8 Reational operators

For an explanation of why the pointer comparison of the object pditeith the pointer expression
P+1 is always safe, see Rationale §6.3.6.

6.3.9 Equality operators

The Committee considered, on more than one occasion, permitting comparison of structures for
equality. Such proposals foundered on the problem of holes in structures. A byte-wise comparison of
two structures would require that the holes assuredly be set to zero so that all holes would compare
equal, a difficult task for automatic or dynamically allocated variables. (The possibility of union-type
elements in a structure raises insuperable problems with this approach.) Otherwise the implementation
would have to be prepared to break a structure comparison into an arbitrary number of member
comparisons; a seemingly simple expression could thus expand into a substantial stretch of code, which
Is contrary to thepirit of C.

In pointer comparisons, one of the operands may be of Wied *. In particular, this allows
NULL, which can be defined asvoi d *) 0, to be compared to any object pointer.

6.3.10 Bitwise AND operator
See 86.3.3.3 for a discussion of the arithmetic definition of the bitwise operators.

6.3.11 Bitwiseexclusve OR operator
See §6.3.3.3.

6.3.12 Bitwiseinclusve OR operator
See §6.3.3.3.

49

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

6.3.13 Logical AND operator
6.3.14 Logical OR operator
6.3.15 Conditional operator

The syntactic restrictions on the middle operand of the conditiond operator have been relaxed to
include more than just logical-OR-expression: severd extant implementations have adopted this
practice.

The type of a conditional operator expression can be Voi d, a structure, or a union; most other
operators do not deal with such types. The rules for balancing type between pointer and integer have,
however, been tightened, since now only the constant O can portably be coerced to pointer.

The Standard alows one of the second or third operands to be of type voi d * | if the other is a
pointer type. Since the result of such a conditiond expressionis voi d *, an appropriate cast must
be used.

6.3.16 Assgnment operators

Certain syntactic forms of assgnment operators have been discontinued, and others tightened up (see
86.1.5).

The storage assignment need not take place until the next sequence point. (A restriction in earlier
drafts that the storage take place before the value of the expression is used has been removed.) As a
consequence, a straightforward syntactic test for ambiguous expressions can be stated. Some
definitions: Asde effect is a storage to any data object, or a read of a volatile objecimid\guous

expression is one whose value depends upon the order in which side effects are evalugge. A
function is one with no side effects; an impure function is any othesegéenced expresson is one

whose major operator defines a sequence point: conda, | | , or conditional operator; an
unsequenced expression is any other. We can then say that an unsequenced expression is ambiguous if
more than one operand invokes any impure function, or if more than one operand contains an lvalue
referencing the same object and one or more operands specify a side-effect to that object. Further, any
expression containing an ambiguous expression is ambiguous.

The optimization rules for factoring out assignments can also be stated.X(lLetS) be an
expression which contains no impure functions or sequenced operators, and suppdsekahns a
storageS(i) to i . The storage expressions, and related expressions, are

S(i): Sval (i): Snew(i):
++i i +1 i +1

i ++ [i +1

- - i-1 i-1

i-- [i-1
=Yy y Y

I op=y I opy I opy

Then X(i, S) can be replaced by either

50

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001
(T =i, i = Snewi), X(T, Sval))

or

(T = X(i,Sval), i = Snew(i), T)

provided that neither | nor y have side effects themsdlves.
6.3.16.1 Simple assgnment

Structure assgnment has been added: its use was foreshadowed even in K&R, and many existing
implementations aready support it.

The rules for type compatibility in assgnment aso apply to argument compatibility between actua
argument expressions and their corresponding argument types in a function prototype.

An implementation need not correctly perform an assgnment between overlapping operands.
Overlapping operands occur most naturaly in a union, where assigning one field to another is often
desrable to effect a type conversion in place; the assgnment may well work properly in al smple
cases, but it is not maximally portable. Maximally portable code should use atemporary variable as an
intermediate in such an assignment.

6.3.16.2 Compound assgnment

The importance of requiring that the left operand | val ue be evduated only once is not a question of
efficiency, dthough that is one compelling reason for using the compound assgnment operators.
Rather, it isto assure that any side effects of evauating the left operand are predictable.

6.3.17 Comma operator

The left operand of a comma operator may be Voi d, since only the right-hand operator is relevant to
the type of the expression.

The example in the Standard clarifies that commas separating arguments "bind” tighter than the comma
operator in expressions.

6.4 Constant Expressions
To clarify existing practice, severa varieties of constant expresson have been identified:

The expression following #i f (86.8.1) must expand to integer constants, character constants, the
special operatordef i ned, and operators with no side effects. No environmental inquiries can be
made, since all arithmetic is done as translate-time (signed or unsigned) long integers, and casts are
disallowed. The restriction to translate-time arithmetic frees an implementation from having to perform
execution-environment arithmetic in the host environment. It does not preclude an implementation
from doing so - the implementation may simply define "translate-time arithmetic" to be that of the
target. Unsigned arithmetic is performed in these expressions (according to the default widening rules)
when unsigned operands are involved; this rule allows for unsurprising arithmetic involving very large
constants (i.e, those whose typeligsi gned | ong) since they cannot be represented a9 or

constants explicitly marked as unsigned.

51

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

Character constants, when evaluated in #i f expressions, may be interpreted in the source character
s, the execution character set, or some other implementation-defined character set. This latitude
reflects the diversity of existing practice, especidly in cross-compilers.

Anintegral constant expresson must involve only numbers knowable at trandate time, and operators
with no sde effects. Casts and the si zeof operator may be used to interrogate the execution
environment.

Satic initializers include integra constant expressions, along with floating constants and smple
addressing expressons. An implementation must accept arbitrary expressions involving floating and
integral numbers and Sde-effect-free operators in arithmetic initidizers, but it is at liberty to turn such
initializers into executable code which is invoked prior to program startup (see 85.1.2.2); this scheme
might impose some requirements on linkers or runtime library code in some implementations.

The translation environment must not produce a less accurate value for a floating-point initializer than
the execution environment, but it is at liberty to do better. Thus a static initializer may well be slightly
different than the same expression computed at execution time. However, while implementations are
certainly permitted to produce exactly the same result in translation and execution environments,
requiring this was deemed to be an intolerable burden on many cross-compilers.

QUIET CHANGE

A program that uses#i f expressions to determine properties of the execution
environment may now get different answers.

6.5 Declarations

The Committee decided that empty declarations are invalid (except for a special case with tags, see
86.5.2.3, and the case of enumerations suckragn { zer o, one}; , see §86.5.2.2). While many
seemingly silly constructs are tolerated in other parts of the language in the interest of facilitating the
machine generation of C, empty declarations were considered sufficiently easy to avoid.

The practice of placing the storage class specifier other than first in a declaration has been branded as
obsolescent (See 86.9.2.) The Committee feels it desirable to rule out such constructs as

enum { aaa, aab,
I* etc */
zzy, zzz } typedef a2z;

in some future standard.
6.51 Storage-classecifiers

Because the address of@gi st er variable cannot be taken, objects of storage ola&gi st er

effectively exist in a space distinct from other objects. (Functions occupy yet a third address space).
This makes them candidates for optimal placement, the usual reason for declaring registers, but it also
makes them candidates for more aggressive optimization.

52

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

The practice of representing register variables as wider types (aswhen regi ster char isquietly
changedto regi ster int)isnolonger acceptable.

6.5.2 Typegecifiers

Severd new type specifiers have been added: si gned, enum and void. long fl oat has

been retired and | ong doubl e has been added, dong with a plethora of integer types. The
Committee's reasons for each of these additions, and the one deletion, are given in section 86.1.2.5 of
this document.

C9X adds a new integer data typeng | ong, as consolidation of prior art, whose impetus has
been three hardware developments: First, disk density and capacity used to grow 2X every 3
years, but after 1989, has accelerated to 4X / 3 years, yielding low-cost, physically small disks
with large capacities. Although a fixed size for file pointers and file system structures is necessary
for efficiency, eventually it is overtaken by disk growth and limits need to be expanded. In the
1970s, 16-bit C (for the Digital PDP-11) first represented file information with 16-bit ints, which
were rapidly obsoleted by disk progress. People switched to a 32-bit file system, first using int[2]
constructs that were not only awkward, but also not efficiently portable to 32-bit hardware.

To solve the problem,ong was added to the language, even though this required PDP-11 C to
generate multiple operations to simulate 32-bit arithmetic. Even as 32-bit minicomputers became
available alongside 16-bit systems, people still us#d for efficiency, reserving 0ng for cases

where larger integers were truly needed, siho&g was noticeably less efficient on 16-bit
systems. Botlshort andl ong were added to C, making short available for 16-bie$)g for

32-bits, and nt as convenient for performance. There was no desire to lock the numbers 16 or
32 into the language, as there existed C compilers for at least 24- and 36-bit CPUs, but rather to
provide names that could be usedfor 32-bits as needed.

PDP-11 C might have been re-implemented witht as 32-bits, thus avoiding the need for

| ong, but of course, making people change most usdsnbfto short, or suffer serious
performance degradation on PDP-11s. In addition to the potential impact on source code, the
impacton existing object code and data files would have been worse, even in1976. By the 1990s,
with an immense installed base of software, and with widespread use of dynamic linked libraries,
the impact of changing the size of a common data object, in an existing environment, is so high
that few people would tolerate it, although it might be acceptable when creating a new
environment.

Hence, many vendors have added a 64-bit integer to their 32-bit C environments, using a new
name, of whicH ong | ong has been the widestused, to avoid namespace conflicts. People can

and do argue about the particular choice of name, but it has been difficult to pick a clearly better
name early enough, and by now it is fairly common practice, and may be viewed as one of the
least bad choices.

To summarize this part: 32-bit CPUs are coming to need clean 64-bit integers, just as 16-bit
CPUs came to need 32-bit integers, and the need for longer integers happens irrespective of other
CPUs. Thus, 32-bit C has evolved from a cominbR32 model (integer| ong, pointer are 32

bits) to | LP32LL (1 LP32 + 64-bit | ong | ong), and this still runs on 32-bit CPUs, with

53

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

sequences to emulate 64-bit arithmetic.

In the second and third, interrelated trends, DRAM memories continue to grow at 4X every 3
years, and 64-bit microprocessors are becoming widely used, starting in 1992. By 1995,
refrigerator-sized, microprocessor-based servers were being sold with 8GB-16GB of memory,
which required more than 32-bits for straightforward addressng. However, many 64-bit
microprocessors are actually used in video games, X-Terminals, network routers, and other
applications where pointer size isless important than performance for larger integers.

The memory trend encourages a C programming model in which pointers are enlarged to 64-bits
(called * P64), of which the consensus choice seemsto be LP64 (I ongs and pointers, and | ong
| ongs are 64 bits, i Nt s are 32-bits), with | ong | ong in some sense redundant, just as| ong
was on the 32-bit VAX. It is fairly difficult to mix this object code with | LP32, and so it is a
new environment to which people must port code, but for which they receive noticeable benefits:
they can address large memories, and file pointers automatically are enlarged to 64-bits. There do
exist, of course, 32-bit CPUs with more-than-32-bit addressing, although C environments become
much more straightforward on 64-bit CPUs with simple, flat addressing. In practice, people do
not move from | LP32LL to LP64 unless they have no choice, or gain some clear benefit.

If people only consider LP64 in isolation, | ong is 64-hit, and there seems no need for | ong
| ong, just as the VAX 32-hbit environment really did not need | ong. However, this view
ignores the difficulty of getting compilers, linkers, debuggers, libraries, etc., to exist for LP64. In
practice, these programs need to dea with 64-bit integers, long before an LP64 environment
exists, in order to bootstrap, and later support al these tools. Put another way, people must:

1. Usingi nt[2], upgrade compilers and a minimal set of tools to compile and debug code that
uses| ong | ong.
2. Recode the compilers, and al of the tools, to actualy use| ong | ong.

This ends up with a set of tools that run as | LP32LL, on existing 32-hit CPUs and new 64-hit

CPUs, and can compile code either to | LP32LL or to LP64. This is yet another reason where
| ong | ong isimportant, not for the LP64 model, but for the tools that support that model.

Most 64-bit micros can and (for commercial reasons) must continue to run existing (ILP32LL)
object programs, alongside any new LP64 programs. For example, database server processes
often desire LP64 to access large memory pools, but the implementers prefer to leave the client
code as ILP32 so that it can run on existing 32-bit CPUs as well, and where LP64 provides no
obvious value.

In mixed environments, it is of course very useful for programs to share data structures, and
specifically, for 32-bit programs to be able to cleanly describe aligned 64-bit integers, and in fact,
for it to be to write structure definitions whose size and alignment are identical between
| LP32LL and LP64. This can be straightforwardly done using i nt and | ong | ong, just asit
was doable in the 1970sviashort and | ong.

Finally, one more important case occurs, in which people want performance benefits of 64-bit
CPUs, while wishing to maintain source compatibility (but not necessarily binary compatibility)
with related 32-bit CPUs. 1n embedded control and consumer products, people have little interest

54

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

in 64-bit pointers, but they often like 64-bit integer performance for bit-manipulation, memory
copies, encryption, and other reasons. They like | LP32LL, but with | ong | ong compiled to
use 64-bit registers, rather than being smulated via 32-bit registers. While this is not binary-
compatible with existing | LP32LL binaries, it is source-compatible, but runs faster, and uses less
space than LP64, both of which are important in these markets. It is worth noting that of the
many millions of 64-bit CPUs that exist, a very large mgority are actually used in such
applications, rather than traditional computer systems.

Thus, there are 3 choices, all of which have been done already, and different customers choose
different combinations:

| LP32LL, compiled 32-bit-only: runs on 32- and 64-bit CPUs
- Needs| ong | ong to express 64-hit integers without breaking existing source and
object code badly.

| LP64, runs on 64-bit CPUs
- Doesnot need | ong | ong inisolation, but needed its earlier | LP32LL tools to have
"l ong | ong for sensible bootstrapping and later support.

| LP32LL, compiled to 64-hit registers: runs on 64-bit CPUs
- Wants! ong | ong to express 64-hit integers and get better performance, and till
have source code that runs on related 32-bit CPUs.

A new integer data type has become needed, that can be used to express 64-bit integers
efficiently and portably among 32- and 64-bit systems. It must be a new name, to avoid a
disastrous set of incompatibilities with existing 32-bit environments, i.e., one cannot safely change
| ong to 64-bits and mix with existing object code. It is needed to deal with disk file size
increases, but also to help bootstrap to 64-bit environments, and then longer, so that many
programs can be compiled to exactly one binary that runs on both 32- and 64-bit CPUs.

While there is more argument about the specific syntax, nobody has seemed able to provide a
compellingly better syntax than | ong | ong, which at least avoided gratuitous namespace
pollution. Proposalslikei nt 64_t seem very awkward for 36-bit CPUs, for example.

Given the various complex interactions, | ong | ong seems a reasonable addition to C, as existing
practice has shown the need for a larger integer, and | ong | ong syntax seems one of the least
bad choices.

A new feature for C9X. 1n C90, all type specifiers could be omitted from the declaration specifiers
in adeclaration; in such acasei nt wasimplied. The committee decided that the inherent danger
of such a feature outweighed its convenience, and thus this feature was removed. The effect isto
guarantee that a diagnostic is produced, which will catch an additional category of programming
errors. Implementations may also choose to assume an implicit i Nt and continue to trandate the
program, in order to support existing source code that exploited this feature.

6.5.2.1 Structure and union specifiers

Three types of bit fields are now defined: "plain” i nt cdls for implementation-defined

55

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

signedness (as in the Base Document), signed int cadls for assuredly signed fields, and
unsi gned i nt calsfor unsigned fields. The old congtraints on hit fields crossing word boundaries
have been relaxed, since so many properties of bit fields are implementation dependent anyway.

Thelayout of structuresis determined only to alimited extent:

. no hole may occur at the beginning;
. members occupy increasing storage addresses; and
. if necessary, a hole is placed on the end to make the structure big enough to pack

tightly into arrays and maintain proper alignment.

Since some existing implementations, in the interest of enhanced access time, leave internal holes
larger than absolutely necessary, it is not clear that a portable deterministic method can be given for
traversing a structure field by field.

To clarify what is meant by the notion that "all the fields of union occupy the same storage," the
Standard specifies that a pointer to a union, when suitably cast, points to each member (or, in the case
of a bit-field member, to the storage unit containing the bit field).

6.5.2.2 Enumeration specifiers
6.5.2.3 Tags

As with all block structured languages that also permit forward references, C has a problem with
structure and union tags. If one wants to declare, within a block, two mutually referencing structures,
one must write something like:

struct x { struct y *p; /*...* };
struct y { struct x *q; /*...*/

Butif struct Yy is already defined in a containing block, the first fieldsdfr uct X will refer to
the older declaration.

Thus special semantics has been given to the form:

struct v;
It now hides the outer declaration of y, and "opens" a new instance in the current block.
QUIET CHANGE

The empty declaratiorst r uct X; is no longer innocuous.

6.5.3 Typequalifiers

The Committee has added to C thtgee qualifierss const, volatile and restrict.
56

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

Individudly and in combination they specify the assumptions a compiler can and must make when
accessing an object through an lvalue.

The syntax and semantics of const were adapted from C++; the concept itself has appeared in

other languages. vol ati | e is an invention of the Committee; it follows the syntactic model of
const .

Type qudifiers were introduced in part to provide greater control over optimization. Severa
important optimization techniques are based on the principle of "cacheing™ under certain
circumstances the compiler can remember the last value accessed (read or written) from a location,
and use this retained value the next time that location isread. (The memory, or "cache’, istypicaly a
hardware register.) If this memory is a machine register, for instance, the code can be smdler and
faster using the register rather than accessing external memory.

The basic qudifiers can be characterized by the restrictions they impose on access and cacheing:

const No writes through this Ivalue. In the absence of this qudlifier, writes may occur
through thislvalue.

volatile No cacheing through this Ivalue: each operation in the abstract semantics must be
performed. (That is, no cacheing assumptions may be made, since the location is not
guaranteed to contain any previous value.) In the absence of this qudifier, the contents
of the designated location may be assumed to be unchanged (except for possible
aiasng.)

A trandator design with no cacheing optimizations can effectively ignore the type qudifiers, except
insofar asthey affect assgnment compatibility.

It would have been possible, of course, to specify a nonconst keyword instead of const, or
nonvol ati | e instead of vol ati | e. The senses of these concepts in the Standard were chosen
to assure that the default, unqualified, case was the most common, and that it corresponded most
clearly to traditional practice in the use of Ivalue expressions.

Four combinations of the two qudlifiers is possible; each defines a useful set of Ivaue properties. The
next severa paragraphs describe typical uses of these qualifiers.

The trandator may assume, for an unqudified lvalue, that it may read or write the referenced object,
that the value of this object cannot be changed except by explicitly programmed actions in the current
thread of control, but that other Ivalue expressions could reference the same object.

const is gpecified in such a way that an implementation is at liberty to put const objects in
read-only storage, and is encouraged to diagnose obvious attempts to modify them, but is not required
to track down all the subtle ways that such checking can be subverted. If a function parameter is
declared const | then the referenced object is not changed (through that Ivalue) in the body of the
function - the parameter is read-only.

A daic volatile object is an appropriste modd for a memory-mapped 1/O register.
Implementors of C trandators should take into account relevant hardware detals on the target

57

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

systems when implementing accesses to volatile objects. For instance, the hardware logic of a system
may require that a two-byte memory-mapped register not be accessed with byte operations, a
compiler for such a system would have to assure that no such instructions were generated, even if the
source code only accesses one byte of the register. Whether read-modify-write instructions can be
used on such device registers must dso be consdered. Whatever decisions are adopted on such issues
must be documented, as volatile access is implementation-defined. A vol ati | e object is an
appropriate modd for avariable shared among multiple processes.

A satic const vol ati | e object appropriately models a memory-mapped input port, such as a
red-time clock. Similarly, a const vol ati | e object models a variable which can be dtered by
another process but not by this one.

Although the type qudifiers are formally treated as defining new types they actudly serve as modifiers
of declarators. Thusthe declarations

const struct s {int a,b;} x;
struct s v;

declare X as a const object, but not y. The const property can be associated with the
aggregate type by means of atype definition:

typedef const struct s {int a,b;} stype;
stype X;
stype y;

In these declarationsthe const property is associated with the declarator st ype, so X and y are
both const objects.

The Committee considered making const and vol ati | e storage classes, but this would have
ruled out any number of desirable constructs, such as const members of structures and variable
pointersto const types.

A cast of avalue to a qudified type has no effect; the qualification (vol ati | e, say) can have no
effect on the access since it has occurred prior to the cast. If it is necessary to access a non-volatile
object using volatile semantics, the technique is to cast the address of the object to the appropriate
pointer-to-qualified type, then dereference that pointer.

6.5.3.1 Forma definitionof restri ct

A new feature for COX. The restri ct type qudifier dlows programs to be written so that (at
least some) trandators can produce significantly faster executables. Anyone for whom this is not a
concern can safely ignore this feature of the language.

The problem that the restrict qudifier addresses is tha potentid diasing can inhibit
optimizations. Specifically, if atrandator cannot determine that two different pointers are being used
to reference different objects, then it cannot apply optimizations such as maintaining the vaues of the
objects in registers rather than in memory, or reordering loads and stores of these values. This
problem can have a significant effect on a program that, for example, performs arithmetic calculations
on large arrays of numbers. The effect can be measured by comparing a program that uses pointers

58

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

with a amilar program that uses file scope arrays (or with a smilar Fortran program). The array
verson can run faster by afactor of ten or more on a system with vector processorsWhere such large
performance gains are possible, implementations have of course offered their own solutions, usudly in
the form of compiler directives that specify particular optimizations. Differences in the spelling,
scope, and precise meaning of these directives have made them troublesome to use in a program that
must run on many different systems. This was the motivation for a standard solution.

The restrict qualifier was designed to express and extend two types of adiasing information
aready specified in the language.

Firgt, if asingle pointer is directly assigned the return vaue from an invocation of mal | oc() , then
that pointer is the sole initial means of access to the alocated object (i.e., another pointer can gain
access to that object only by being assigned a value that is based on the vaue of the first pointer).
Declaring the pointer to be restrict-qualified expresses this information to a trandator. Furthermore,
the qualifier can be used to extend a trandator’s specid treatment of such a pointer to more genera
sttuations. For example, aninvocation of mal | oc() might be hidden from the trandator in another
function, or a single invocation of mal | oc() might be used to dlocate severa objects, each
referenced through its own pointer.

Second, the library specifies two versons of an object copying function, because on many systems a
faster copy is possible if it is known that the source and target arays do not overlap. The
restrict qudifier can be used to express the restriction on overlap in a new prototype thet is
compatible with the original verson:

void *mencpy(void * restrict sl1l, const void * restrict s2,
. size t n); _ .
voi d *nemmove(void * s1, const void * s2, size t n);

With the regtriction visible to a trandator, a straightforward implementation of memcpy in C can now
give aleve of performance that previoudy required assembly language, or other non-standard means.
Thusthe restrict qudifier provides a sandard means with which to make, in the definition of
any function, an dliasing assertion of atype that could previously be made only for library functions.

The complexity of the specification of the restri ct type qudlifier reflects the fact that C has arich
st of types and a dynamic notion of the type of an object. Recall, for example, that an object does
not have afixed type, but acquires atype when referenced. Similarly, in some of the library functions,
the extent of an array object referenced through a pointer parameter is dynamicaly determined, either
by another parameter or by the contents of the array.

The full specification is necessary to determine the precise meaning of a qudlifier in any context, and
S0 must be understood by compiler implementors. Fortunately, most others will need to understand
only afew smple patterns of usage, explained in the following examples.

A trandator can assume that afile scope restrict-qualified pointer is the sole initial means of access to
an object, much asiif it were the declared name of an array. This is useful for a dynamically alocated
array whose size is not known until a run-time. Note in the example how a single block of storage is
effectively subdivided into two digoint objects.

59

10

15

20

25

30

35

40

45

50

WG14/N802 J11/98-001 RATIONALE
float * restrict al, * restrict az2;

void init(int n) {

float * t = malloc(2 * n * sizeof(float));
al = t; /* al refers to 1st hal f. */
a2 =t +n; [|* a2 refers to 2nd hal f. */

}

A trandator can assume that a redtrict-qualified pointer that is a function parameter is, a the
beginning of each execution of the function, the sole means of access to an object. Note that this
assumption expires with the end of each execution. In the following example, parameters al and
a2 can be assumed to refer to digoint array objects because both are restrict-qualified. This implies
that each iteration of the loop is independent of the others, and so the loop can be aggressively
optimized.

void f1(int n, float * restrict al, const float * restrict a2)

int i;
for (i =0; i <n; i++)
al[i] += a2[i];

A trandator can assume that arestrict-qualified pointer declared with block scopeiis, at the beginning
of each execution of the block, the sole means of access to an object. An invocation of the macro
shown in the following example is equivalent to an inline version of acall to the function f 1 above.

define f2(N, Al, A2)
{ int n=(N;

float * restrict al = (Al);
float * restrict a2 = (A2);
int i;

for (i =0; i <n; i++)

—_——

\ al[i] += a2[i];

The restrict qudifier can be used in the declaration of a structure member. A trandator can
assume, when an identifier is declared that provides a means of access to an object of that structure
type, that the member provides the sole initial means of access to an object of the type specified in the
member declaration. The duration of the assumption depends on the scope of the identifier, not on
the scope of the declaration of the structure. Thus atrandator can assumethat s1. al and sl. a2
below are used to refer to digoint objects for the duration of the whole program, but that s2. al
and s2. a2 are used to refer to digoint objects only for the duration of each invocation of f 3() .

struct t {
int n;
float * restrict al, * restrict az2;
s
struct t si;
void f3(struct t s2) { /* ... */ }

60

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

The meaning of the restrict qudlifier for a union member or in a type definition is analogous.
Just as an object with a declared name can be diased by an unqualified pointer, so can the object
associated with arestrict-qualified pointer. The restri ct qudifier istherefore unlike the register
storage class, which precludes such aliasing.

This dlows the restrict qudlifier to be introduced more easlly into existing programs, and also
alowsit to be used in new programs that cal functions from libraries that do not use the qudifier. In
particular, a restrict-qualified pointer can be the actuad argument for a function parameter that is
unqualified. On the other hand, it is easer for a trandator to find opportunities for optimization if as
many as possible of the pointersin a program are restrict-qualified.

6.5.4 Function specifiers
6.5.5 Declarators
The function prototype syntax was adapted from C++. (See 86.3.2.2 and 86.5.5.3)

Some current implementations have a limit of six type modifiengc{ion returning, array of, pointer

to, the limit used in Ritchie's original compiler. This limit has been raised to twelve since the original
limit has proven insufficient in some cases; in particular, it did not allow for FORTRAN-to-C
translation, since FORTRAN allows for seven subscripts. (Some users have reported using nine or
ten levels, particularly in machine-generated C code.

6.5.5.1 Pointer declarators

A pointer declarator may have its own type qualifiers, to specify the attributes of the pointer itself, as
opposed to those of the reference type. The construct is adapted from C++.

const int * meangvariable) pointer to congtant i nt, and i nt * const meanscongtant
pointer to (variable) i nt | just as in C++, from which these constructs were adopted. ntatis

mutandis for the other type qualifiers.) As with other aspects of C type declarators, judicious use of
t ypedef statements can clarify the code.

6.5.5.2 Array declarators

The concept ofomposite types (86.1.2.6) was introduced to provide for the accretion of information
from incomplete declarations, such as array declarations with missing size, and function declarations
with missing prototype (argument declarations). Type declarators are therefore said to specify
compatible types if they agree except for the fact that one provides less information of this sort than
the other.

The declaration of O-length arrays is invalid, under the general principle of not providing for O-length
objects. The only common use of this construct has been in the declaration of dynamically allocated
variable-size arrays, such as

struct segnent ({
short int count ;
char c[N;

61

10

15

20

25

30

35

40

45

50

WG14/N802 J11/98-001 RATIONALE

struct segnent * new segnment(const int length)

struct segnent * result;

result = malloc(sizeof segnent + (length-N));
resul t->count = | ength,;

return result;

}

Insuchusage, Nwouldbe 0 and (| engt h-N) would bewrittenas | engt h, But this paradigm

works just as well, as written, if Nis 1. (Note, by the by, an aternate way of specifying the size of
resul t:

result = malloc(offsetof(struct segnent,c) + length);
Thisillugtrates one of the uses of the of f set of macro.)
6.5.5.3 Function declarators (including prototypes)

The function prototype mechanismis one of the most useful additionsto the C language. The feature,
of course, has precedent in many of the Algol-derived languages of the past 25 years. The particular
form adopted in the Standard is based in large part upon C++.

Function prototypes provide a powerful trandation-time error detection capability. In traditional C
practice without prototypes, it is extremely difficult for the trandator to detect errors (wrong number
or type of arguments) in calls to functions declared in another source file. Detection of such errors
has either occurred at runtime, or through the use of auxiliary software tools.

In function cals not in the scope of a function prototype, integral arguments have the integral
widening conversions applied and f | oat argumentsare widenedto doubl e, It isthusimpossible
in such a cdl to pass an unconverted char or fl oat argument. Function prototypes give the
programmer explicit control over the function argument type conversons, so that the often
ingppropriate and sometimes inefficient default widening rules for arguments can be suppressed by the
implementation.

Modifications of function interfaces are easier in cases where the actua arguments are ill assgnment
compatible with the new forma parameter type - only the function definition and its prototype need to
be rewritten in this case; no function calls need be rewritten. Allowing an optional identifier to appear
in afunction prototype serves two purposes.

. the programmer can associate a meaningful name with each argument position for

documentation purposes, and

. a function declarator and a function prototype can use the same syntax. The consistent
syntax makes it easier for new users of C to learn the language. Automatic generation

of function prototype declarators from function definitions is also facilitated.

Optimizers can also take advantage of function prototype information. Consider this example:

extern int conpare(const char * stringl,
62

10

15

20

25

30

35

40

45

50

RATIONALE WG14/N802 J11/98-001
const char * string2) ;
void func2(int x)

char * strl1, * str2 ;

[* ... *
X = conpare(strl, str2) ;
[* ... *

}

The optimizer knows that the pointers passed to conpar € are not used to assign new values of any
objects that the pointers reference. Hence the optimizer can make less conservative assumptions
about the side effects of conpar e than would otherwise be necessary. The Standard requires that
cdls to functions taking a variable number of arguments must occur in the presence of a prototype
(using the trailing dlipsis notation , ...). An implementation may thus assume that al other
functions are called with a fixed argument list, and may therefore use possbly more efficient calling
sequences. Programs using old-style headers in which the number of arguments in the cals and the
definition differ may not work in implementations which take advantage of such optimizations. Thisis
not a Quiet Change, strictly speaking, since the program does not conform to the Standard. A word
of warning is in order, however, since the style is not uncommon in extant code, and since a
conforming trandator is not required to diagnose such mismatches when they occur in separate
trandation units. Such trouble spots can be made manifest (assuming an implementation provides
reasonable diagnostics) by providing new-style function declarations in the trandation units with the
non-matching calls. Programmers who currently rely on being able to omit trailing arguments are
advised to recode using the <st dar g. h> paradigm.

Function prototypes may be used to define function types aswell:
typedef double (*d_binop) (double A, double B);

struct d_funct {
d_bi nop fa1;
} I nt (*f2) (doubl e, double);

The structure d_f unct has two fields, both of which hold pointers to functions taking two double
arguments; the function types differ in their return type.

6.5.6 Typenames

Empty parentheses within a type name are aways taken as meaning function with unspecified
arguments and never as (unnecessary) parentheses around the dided identifier. This specification
avoids an ambiguity by fiat.

6.5.7 Typedefinitions

A typedef may only be redeclared in an inner block with a declaration that explicitly contains a

type name. This rule avoids the ambiguity about whether to take the t ypedef asthe type name or
the candidate for redeclaration.

63

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

Some implementations of C have alowed type specifiers to be added to a type defined using
t ypedef . Thus

typedef short int small ;
unsi gned small x ;

would give X the type unsigned short int. The Committee decided that since this
interpretation may be difficult to provide in many implementations, and since it defeats much of the
utility of typedef as a data abstraction mechanism, such type modifications are invaid. This
decision is incorporated in the rules of 86.5.2.

A proposedt ypeof operator was rejected on the grounds of insufficient utility.
6.5.8 Initialization

An implementation might conceivably have codes for floating zero and/or null pointer other than all
bits zero. In such a case, the implementation must fill out an incomplete initializer with the various
appropriate representations of zero; it may not just fill the area with zero bytes.

The Committee considered proposals for permitting automatic aggregate initializers to consist of a
brace-enclosed series of arbitrary (execute-time) expressions, instead of just those usable for a
translate-time static initializer. However, cases like this were troubling:

int x[2] ={ f(x[1]), g(x[0]) };

Rather than determine a set of rules which would avoid pathological cases and yet not seem too
arbitrary, the Committee elected to permit only static initializers. Consequently, an implementation
may choose to build a hidden static aggregate, using the same machinery as for other aggregate
initializers, then copy that aggregate to the automatic variable upon block entry.

A structure expression, such as a call to a function returning the appropriate structure type, is
permitted as an automatic structure initializer, since the usage seems unproblematic.

For programmer convenience, even though it is a minor irregularity in initializer semantics, the trailing
null character in a string literal need not initialize an array element, as in:

char nmesg[5] = "help!" ;
(Some widely used implementations provide precedent.)

The Base Document allows a trailing comma in an inttializer at the end of an initializer-list. The
Standard has retained this syntax, since it provides flexibility in adding or deleting members from an
initializer list, and simplifies machine generation of such lists.

Various implementations have parsed aggregate initializers with partially elided braces differently.

The Standard has reaffirmed the (top-down) parse described in the Base Document. Although the
construct is allowed, and its parse well defined, the Committee urges programmers to avoid partially
elided initializers: such inttializations can be quite confusing to read.

64

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

QUIET CHANGE

Code which relies on a bottom-up parse of aggregate initidizers with partidly dided
braces will not yield the expected initialized object.

The Committee has adopted the rule (aready used successtully in some implementations) that the first
member of the union is the candidate for initidlization. Other notations for union initidization were
consdered, but none seemed of sufficient merit to outweigh the lack of prior art.

This rule has a pardlel with the initialization of structures. Members of structures are initidized in the
sequence in which they are declared. The same can now be said of unions, with the significant
difference that only one union member (the first) can be initialized.

A new feature for COX. Desgnated initializers provide a mechanism for initidizing sparse arrays, a
practice common in numerica programming. They add useful functionality that aready exists in
Fortran so that programmers migrating to C need not suffer the loss of a program-text-saving
notational feature.

This feature dso alows initidization of sparse structures, common in systems programming, and
alowsinitigization of unions via any member, regardless of whether or not it is the first member.

Designated initidizers integrate easily into the C grammar and do not impose any additiona run-time

overhead on a usar’s program. Thar initidl C implementation appeared in a compiler by Ken
Thompson at AT&T Bell Laboratories.

6.6 Statements
6.6.1 Labded satements

Since label definition and label reference are syntacticaly distinctive contexts, labels are established asa
Separate name space.

6.6.2 Compound statement, or block

The Committee considered proposals for forbidding a got o into a block from outside, since such a
restriction would make possible much easer flow optimization and would avoid the whole issue of

initidlizing aut o storage (see 86.1.2.4). The Committee rejected such a ban out of fear of invalidating
working code (however undisciplined) and out of concern for those producing machine-generated C.

6.6.3 Expresson and null satements

The voi d cast is not needed in an expression statement, since any value is always discarded. Some
checking compilers prefer this reassurance, however, for functions that return objects of types other

than voi d.
6.6.4 Sdection satements

6.6.4.1 Thei f statement

65

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

See 86.6.2.

6.6.4.2 Thesw t ch statement

The controling expression of aw tch statement may now have any integral type, even
unsi gned | ong. Floating types were rejected for switch statements since exact equality in floating
point is not portable.

case labels are first converted to the type of the controlling expression of the switch, then checked for
equality with other labels; no two may match after conversion.

Case ranges (of the formo .. hi) were seriously considered, but ultimately not adopted in the
Standard on the grounds that it added no new capability, just a problematic coding convenience. The
construct seems to promise more than it could be mandated to deliver:

. A great deal of code (or jump table space) might be generated for an innocent-looking
case range such 4 .. 65535,

. The rangeA. . 'Z' would specify all the integers between the character codé &ord
that for Z. In some common character sets this range would include non-alphabetic
characters, and in others it might not include all the alphabetic characters (especially in
non-English character sets).

No serious consideration was given to making the switch more structured, as in Pascal, out of fear of
invalidating working code.

QUIET CHANGE
| ong expressions and constants in switch statements are no longer truncardd to
6.6.5 Iteration statements
6.6.5.1 Thewhi | e statement
6.6.5.2 Thedo statement
6.6.5.3 Thef or statement
6.6.6. Jump Satements

6.6.6.1 Thegot o statement
See 86.6.2.

6.6.6.2 Thecont i nue statement

The Committee rejected proposed enhancementsaot i nue and br eak which would allow
specification of an iteration statement other than the immediately enclosing one, on grounds of
insufficient prior art.

66

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001
6.6.6.3 The br eak satement
See 86.6.6.2.

6.6.6.4 Ther et ur n statement

6.7 External definitions

6.7.1 Function definitions

A function definition may have its old form (and say nothing about arguments on calls), or it may be
introduced by grototype (which affects argument checking and coercion on subsequent calls). (See

also 86.1.2.2.)

To avoid a nasty ambiguity, the Standard bans the us¢pédef names as formal parameters. For
instance, in translating the text

int f(size_t, at, bt, ct, dt, et, f_t, g.t,
ht, i_t, j_t, kt, |I_t, mt, n_t, o_t,
p_t, q.t, r_t, s_t)

the translator determines that the construct can only be a prototype declaration as soon as it scans the
first si ze_t and following comma. In the absence of this rule, it might be necessary to see the token
following the right parenthesis that closes the parameter list, which would require a sizeable
look-ahead, before deciding whether the text under scrutiny is a prototype declaration or an old-style
function header definition.

An argument list must be explicitly present in the declarator; it cannot be inherited frorpeief
(see 86.5.5.3). That is to say, given the definition

typedef int p(int g, int r);

the following fragment is invalid:

f unk I* weird */
?returnq+r v}

Some current implementations rewrite the type of a (for instand&r parameter as if it were
declaredi nt , since the argument is known to be passed aisrdn(in the absence of prototypes).
The Standard requires, however, that the received argument be coasefteg assignment upon
function entry. Type rewriting is thus no longer permissible.

QUIET CHANGE

Functions that depend odhar or short parameter types being widened itont ,
or fl oat to doubl e, may behave differently.

Notes for implementors: the assignment conversion for argument passing often requires no executable
code. In most twos-complement machinessi@ort or char is a contiguous subset of the bytes

67

WG14/N802 J11/98-001 RATIONALE

comprising the i nt actualy passed (for even the most unusua byte orderings), so that assignment
conversion can be effected by adjusting the address of the argument (if necessary).

For an argument declared f 1 oat , however, an explicit converson must usualy be performed from
the doubl e actually passed to the f 1 oat desired. Not many implementations can subset the bytes
of a doubl etogeta float. (Eventhose that apparently permit smple truncation often get the
wrong answer on certain negative numbers.)

Some current implementations permit an argument to be masked by a declaration of the same identifier
in the outermogt block of afunction. This usage is dmost always an erroneous attempt by a novice C
programmer to declare the argument; it is rarely the result of a deiberate attempt to render the
argument unreachable. The Committee decided, therefore, that arguments are effectively declared in
the outermost block, and hence cannot be quietly redeclared in that block.

The Committee congdered it important that a function taking a variable number of arguments, such as
printf, be expressble portably in C. Hence, the Committee devoted much time to exploring
methods of traversing variable argument lists. One proposal was to require arguments to be passed as
a "brick” (i.e., a contiguous area of memory), the layout of which would be sufficiently well specified
that a portable method of traversing the brick could be determined.

Severa diverse implementations, however, can implement argument passng more efficiently if the
arguments are not required to be contiguous. Thus, the Committee decided to hide the implementation
details of determining the location of successive ements of an argument list behind a standard set of
macros (see 87.12).

The rule which caused undeclared parameters in an old-style function definition to be implicitly
declaredi Nt has been removed; undeclared parameters are now a constraint violation. The
effect is to guarantee that a diagnostic is produced, which will catch an additional category of
programming errors. After issuing the diagnostic, an implementation may choose to assume an
implicit i Nt declaration and continue translation in order to support existing programs that
exploited this feature.

6.7.2 External object definitions
See 8§86.1.2.2.

6.8 Preprocessing directives
For an overview of the philosophy behind the preprocessor, see 85.1.1.2.

Different implementations have had different notions about whether white space is permissible before
and/or after the# signalling a preprocessor line. The Committee decided to allow any white space
before the#, and horizontal white space (spaces or tabs) betwee# toe the directive, since the

white space introduces no ambiguity, causes no particular processing problems, and allows maximum
flexibility in coding style. Note that similar considerations apply for comments, which are reduced to
white space early in the phases of translation (85.1.1.2):

I* here a coorment */ #if BLAH
#/* there a comment */ if BLAH
#if /I* every-

68

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

where a comment */ BLAH
Thelinesdll illustrate legitimate placement of comments.
6.8.1 Conditional incluson
For adiscussion of evaluation of expressionsfollowing #i f | see §6.4.

The operatordef i ned has been added to make possible writing boolean combinations of defined
flags with one another and with other inclusion conditions. If the identifigfi ned were to be

defined as a macrogefi ned(X) would mean the macro expansion in C text proper and the
operator expression in a preprocessing directive (or else that the operator would no longer be
available). To avoid this problem, such a definition is not permitted (86.8.8).

#el i f has been added to minimize the stackingtehdi f directives in multi-way conditionals.

Processing of skipped material is defined such that an implementation need only examine a logical line
for the # and then for a directive name. Thus, assumingxat is undefined, in this example:

i fndef xxx
define xxx "abc"
#elif xxx >0
[* .. *
endif

an implementation is not required to diagnose an error foethd statement, even though ifiere
processed, a syntactic error would be detected.

Various proposals were considered for permitting text other than comments at the end of directives,
particularly #endi f and #el se, presumably to label them for easier matchup with their
corresponding#i f directives. The Committee rejected all such proposals because of the difficulty of
specifying exactly what would be permitted, and how the translator would have to process it.

Various proposals were considered for permitting additional unary expressions to be used for the
purpose of testing for the system type, testing for the presence of a file Hefoce ude, and other
extensions to the preprocessing language. These proposals were all rejected on the grounds of
insufficient prior art and/or insufficient utility.
6.8.2 Sourcefileincluson

Specification of the#i ncl ude directive raises distinctive grammatical problems because the file
name is conventionally parsed quite differently than an "ordinary" token sequence:

. The angle brackets are not operators, but delimiters.
. The double quotes do not delimit a string literal with all its defined escape sequences.

(In some systems, backslash is a legitimate character in a flename.) The construct just
looks like a string literal.

69

5

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

. White space or characters not in the C repertoire may be permissible and significant
within either or both forms.

These points in the description of phases of translation are of particular relevance to the parse of the
#i ncl ude directive:

. Any character otherwise unrecognized during tokenization is an instance of an "invalid
token." As with valid tokens, the spelling is retained so that later phases can, if
necessary, map a token sequence (back) into a sequence of characters.

. Preprocessing phases must maintain the spelling of preprocessing tokens; the filename
is based on the original spelling of the tokens, not on any interpretation of escape
sequences.

. The flename on the#i ncl ude (and #l i ne) directive, if it does not begin witfi

or <, is macro expanded prior to execution of the directive. Allowing macros in the
i ncl ude directive facilitates the parameterization of include fle names, an important
Issue in transportability.

The file search rules used for the flename in tH8 ncl ude directive were left as
implementation-defined. The Standard intends that the rules which are eventually provided by the
implementor correspond as closely as possible to the original K&R rules. The primary reason that
explicit rules were not included in the Standard is the infeasibility of describing a portable file system
structure. It was considered unacceptable to include UNIX-like directory rules due to significant
differences between this structure and other popular commercial file system structures.

Nested include files raise an issue of interpreting the file search rules. In UNIX C an include statement
found within an include file entails a search for the named file relative to the file slistetory that

holds the outer#i ncl ude. Other implementations, including the earlier UNIX C described in K&R,
always search relative to the saroerent directory. The Committee decided, in principle, in favor of

the K&R approach, but was unable to provide explicit search rules as explained above.

The Standard specifies a set of include file names which must map onto distinct host file names. In the
absence of such a requirement, it would be impossible to write portable programs using include files.

Clause 85.2.4.1 on translation limits contains the required number of nesting levels for include files.
The limits chosen were intended to reflect reasonable needs for users constrained by reasonable system
resources available to implementors.

By defining a failure to read an include file as a syntax error, the Standard requires that the failure be

diagnosed. More than one proposal was presented for some form of conditional include, or a directive
such as#i fi ncl udabl e, but none were accepted by then@ittee due to lack of prior art.

6.8.3 Macro replacement
The specification of macro definition and replacement in the Standard was based on these principles:
. Interfere with existing code as little as possible.

70

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

. Keep the preprocessing model simple and uniform.
. Allow macros to be used wherever functions can be.
. Define macro expansion such that it produces the same token sequence whether the

macro calls appear in open text, in macro arguments, or in macro definitions.

Preprocessing is specified in such a way that it can be implemented as a separate (text-to-text) pre-pass
or as a (token-oriented) portion of the compiler itself. Thus, the preprocessing grammar is specified in
terms of tokens.

However, the new-line character must be a token during preprocessing, because the preprocessing
grammar is line-oriented. The presence or absence of white space is also important in several contexts,
such as between the macro name and a following parenthesi#defa ne directive. To avoid

overly constraining the implementation, the Standard allows the preservation of each white space
character (which is easy for a text-to-text pre-pass) or the mapping of white space into a single "white
space" token (which is easier for token-oriented translators).

The Committee desired to disallow "pernicious redefinitions" such as

(in headerl.h)
#defi ne NBUFS 10

(in header2.h)
#defi ne NBUFS 12

which are clearly invitations to serious bugs in a program. There remained, however, the question of
"benign redefinitions,” such as

(in headerl.h)
#defi ne NULL_DEV O

(in header2.h)
#defi ne NULL_DEV O

The Committee concluded that safe programming practice is better served by allowing benign
redefinition where the definitions are the same. This allows independent headers to specify their
understanding of the proper value for a symbol of interest to each, with diagnostics generated only if
the definitions differ.

The defintions are considered "the same” if the identifier-lists, token sequences, and occurrences of
white-space (ignoring the djpeg of white-sgace) in the two definitions are identical.

Existing implementations have differed on whether keywords can be redefined by macro definitions.

71

10

15

20

25

30

35

40

45

50

WG14/N802 J11/98-001 RATIONALE

The Committee has decided to allow this usage; it sees such redefinition as useful during the trangtion
from existing to Standard-conforming trandators.

These definitionsillustrate possble uses:

define char signed char
define sizeof (int) sizeof
define const

The firgt case might be useful in moving extant code from a signed-char implementation to one in
which char is unsigned. The second case might be useful in adapting code which assumes that
si zeof resultsinan int vaue. The redefinition of const could be ussful in retrofitting more
modern C code to an older implementation.

As with any other powerful language feature, keyword redefinition is subject to abuse. Users cannot
expect any meaningful behavior to come about from source files starting with

#define i nt doubl e
#i ncl ude <stdi o. h>

or smilar subversons of common sense.

A new feature for C9X. Function-like macro invocations may now have empty arguments, thet is, an
argument may condst of no preprocessing tokens. In C90, any argument that conssted of no
preprocessing tokens had undefined behavior, but as mentioned in C90 Annex G.5.12, it was a
common extension.

A function-like macro invocation f () has the form of either a call with no arguments, or a call with
one empty argument. Which form it actually is, is determined by the definition of f, which indicates
the expected number of arguments.

The sequence
#define TENTH 0. 1
#define F f
#define D | * expands into no preprocessing tokens */

#define LD L
#define glue(a, b) a # b
#defi ne xglue(a, b) glue(a, b)

f 1 oat f = xglue(TENTH, F) ;

doubl e d = xdgl ueETENI’H ?:)

| ong doubl e | d = xgl ue(TENTH, LD);
resultsin

fl oat f = 0.1f ;

doubl e d=0.1;

| ong double |d = 0. 1L;

The expansion of Xgl ue(TENTH, D) firs expands into 9l ue(0.1,) which is a macro
invocation with an empty second argument, which then expandsinto 0.1.

6.8.3.1 Argument substitution
72

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

6.8.3.2 The # operator

Some implementations have decided to replace identifiers found within a string litera if they match a
macro argument name. The replacement text is a "stringized” form of the actual argument token
sequence. This practice appears to be contrary to the definition, in K& R, of preprocessing in terms of
token sequences. The Committee declined to eaborate the syntax of string literals to the point where
this practice could be condoned. However, since the facility provided by this mechanism seems to be
widely used, the Committee introduced a more tractable mechanism of comparable power.

The # operator has been introduced for stringizing. It may only be used in a #def i ne expansion.

It causes the formal parameter name following to be replaced by a string literal formed by stringizing

the actual argument token sequence. In conjunction with string literal concatenation (see 86.1.4), use
of this operator permits the construction of strings as effectively as by identifier replacement within a
string. An example in the Standard illustrates this feature.

One problem with defining the effect of stringizing is the treatment of white space occurring in macro
definitions. Where this could be discarded in the past, now upwards of one logical line worth (over
500 characters) may have to be retained. As a compromise between token-based and character-based
preprocessing disciplines, the Committee decided to permit white space to be retained as one bit of
information: none or one. Arbitrary white space is replaced in the string by one space character.

The remaining problem with stringizing was to associate a "spelling'eadh token. (The problem

arises in token-based preprocessors, which might, for instance, convert a numeric literal to a canonical
or internal representation, losing information about base, leading 0's, etc.) In the interest of simplicity,
the Committee decided that each token should expand to just those characters used to specify it in the
original source text.

QUIET CHANGE

A macro that relies on formal parameter substitution within a string literal will produce
different results.

6.8.3.3 The ## operator

Another facility relied on in much current practice but not specified in the Base Document is "token
pasting,” or building a new token by macro argument substitution. One existing implementation is to
replace a comment within a macro expansion by zero characters, instead of the single space called for
in K&R. The Committee considered this practice unacceptable.

As with "stringizing," the facility was considered desirable, but not the extant implementation of this
facility, so the Committee invented another preprocessing operator ## loperator within a macro
expansion causes concatenation of the tokens on either side of it into a new composite token.

The specification of this pasting operator is based on these principles:

. Paste operations are explicit in the source.

73

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

. The ## operator is associative.

A formal parameter as an operand ## is not expanded before pasting. (The actual is substituted
for the formal, but the actual is not expanded:

#define a(n) aaa ## n
#define b 2

Given these definitions, the expansionaffb) is aaab, not aaa2 or aaan.)

. A normal operand for## is not expanded before pasting.
. Pasting does not cross macro replacement boundaries.
. The token resulting from a paste operation is subject to further macro expansion.

These principles codify the essential features of prior art, and are consistent with the specification of the
stringizing operator.

6.8.3.4 Rescanning and further replacement

A problem faced by most current preprocessors is how to use a macro name in its expansion without
suffering "recursive death." The Committee agreed simply to turn off the definition of a macro for the
duration of the expansion of that macro. An example of this feature is included in the Standard.

The rescanning rules incorporate an ambiguity. Given the definitions

#define f(a) a*
#defi ne g() f J

it is clear (or at least unambiguous) that the expansidri(@) (9) is 2*f (9) - the f in the result
clearly was introduced during the expansion of the oridinalo is not further expanded.

However, given the definitions

#definefgag a*g
#define g(a) f(a)

the expansion rules allow the result to be eitB&f (9) or 2*9*g - it is unclear whether the

f (9) token string (resulting from the initial expansion bfand the examination of the rest of the
source file) should be considered as nested within the expansiénasfnot. The Committee
intentionally left this behavior ambiguous: it saw no useful purpose in specifying all the quirks of
preprocessing for such questionably useful constructs.

6.8.3.5 Scope of macro definitions

Some pre-Standard implementations maintain a stackdsff i ne instances for each identifier;
#undef simply pops the stack. The Committee agreed that more than one lét@ebf ne was
more prone to error than utility.

74

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

It is explicitly permitted to #undef a macro that has no current definition. This capability is
exploited in conjunction with the standard library (see §7.1.8).

6.84 Linecontrol

Aside from giving values to_ LINE__ and __FILE__ (see 86.8.8), the effect ofl i ne is
unspecified. A good implementation will presumably provide line and file information in conjunction
with most diagnostics.

A new proposal folC9X to allow the #l i ne directive to appear within macro invocations was
considered. The Committe decided to not allow any preprocessor directives to be recongnized as such
inside of macros.

6.8.5 Error directive

The directive #err or has been introduced to provide an explicit mechanism for forcing translation
to fail under certain conditions. (Formally the Standard only requieesonly require, that a
diagnostic be issued when thiger r or directive is effected. It is the intent of the Committee,
however, that translation ceasamediately upon encountering this directive, if this is feasible in the
implementation; further diagnostics on text beyond the directive are apt to be of litle value.)
Traditionally such failure has had to be forced by inserting text so ill-formed that the translator gagged
onit.

6.8.6 Pragmadirective
The #pr agma directive has been added as the universal method for extending the space of directives.

A new feature for COX. Some directives have been standardized for C9X. Directives whose first
preprocessing token&DC are reserved for standardized directives.

6.8.7 Null directive

The existing practice of using empty # lines for spacing is supported in the Standard.

6.8.8 Predefined macro names

The rule that these macros may not be redefined or undefined reduces the complexity of the name
space that the programmer and implementor must understand; it recognizes that these macros have
special built-in properties.

The macros__DATE__ and __TI ME__ have been added to make available the time of translation.

A particular format for the expansion of these macros has been specified to aid in parsing strings

initialized by them.

The macros__LINE__and __FI LE__ have been added to give programmers access to the source
line number and file name.

75

WG14/N802 J11/98-001 RATIONALE

The macro __STDC__ allows for conditional trandation on whether the trandator claims to be
standard-conforming or not. It is defined as having value 1; future versons of the Standard could
defineit as 2, 3, ..., to dlow for conditional compilation on which verson of the Standard a trandator
conformsto. Thismacro should be of use in the trangition toward conformance to the Standard.

A new feature for C9X. The macros _ STDC VERSIQN, _ STDC | EC 559 and
STDC | EC 559 COVPLEX were added.

6.8.9 Pragma operator

A new feature for C9X. As an dternative syntax for a pragma directive, the pragma operator has the
advantage that it can be used in a macro replacement list. If a trandator is directed to produce a
preprocessed verson of the source file, then pragma unary operator expressions and pragma directives
should be treated consistently in whether they are preserved and in whether macro invocations within
them are expended.

6.9 Futurelanguagedirections

This section includes specific mention of the future direction in which the Committee intends to extend
and/or redtrict the language. The contents of this section should be consdered as quite likely to
become a part of the next verson of the Standard. Implementors are advised that failure to take heed
of the points mentioned herein is consdered undesirable for a conforming hosted or freestanding
implementation. Users are advised that falure to take heed of the points mentioned herein is
consdered undesirable for a conforming program.

6.9.1 Character escape sequences

6.9.2 Storage-class secifiers
See §86.5.1.

6.9.3 Function declarators

The characterization as obsolescent of the use of the "old style" function declarations and definitions -
that is, the traditional style not using prototypes - signals the Committee's intent that the new prototype
style should eventually replace the old style.

The case for the prototype style is presented in 86.3.2.2 and 86.5.5.3. The gist of this case is that the
new syntax addresses some of the most glaring weaknesses of the language defined in the Base
Document, that the new style is superior to the old style on every count.

It was obviously out of the question to remove syntax used in the overwhelming majority of extant C
code, so the Standard specifies two ways of writing function declarations and function definitions.
Characterizing the old style as obsolescent is meant to discourage its use, and to serve as a strong
endorsement by the Committee of the new style. It confidently expects that approval and adoption of
the prototype style will make it feasible for some future C Standard to remove the old style syntax.

6.9.4 Function definitions

76

RATIONALE

See 86.9.4.

6.9.5 Pragmadirectives

WG14/N802 J11/98-001

77

WG14/N802 J11/98-001 RATIONALE

78

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

7. LIBRARY

7.1 Introduction

The Base Document for this section of the Standard was the 1984 /usr/group Standard. The
/usr/group document contains definitions of some facilities which were specific to the UNIX Operating
System and not relevant to other operating environments, such as pipes, ioctls, file access permissions
and process control facilities. Those definitions were dropped from the Standard. Some other
functions were excluded from the Standard because they were non-portable or were ill-defined.

Other facilities not in the library Base Document but present in many UNIX implementations, such as
the curses (termind-independent screen handling) library were considered to be more complex and less
essentid than the facilities of the Base Document; these functions were not added to the Standard.

The prototypes for severd library routines were changed in C9X and they now contain the new
keyword I estri ct as part of some parameter declarations. Therestri ct keyword dlows the
prototype to express what was previoudy expressed by words.

The definition of certain C library routines (e.g., "eNMTPY) contain the words:
If copying takes place between objects that overlap, the behavior is undefined.

These words are present because copying between overlapping objects is quite rare, and this alowed
vendors to provide efficient implementations of these library routines. Now that restri ct alows
users to express these same non-overlapping semantics, it is used in prototype declarations to
demonstrate the utility of the keyword, and to act as guidance to those wishing to understand how to
useit correctly.

In the case of MENTPY above, the prototype is now declared as.

void *nmencpy(void *restrict sl1, const void *restrict s2,
size_ t n);

andtherestrict keywordstell the trandator that the first two parameters, S1 and S2, are pointers
that point to digoint data objects. Essentidly, this keyword provides the same informétion as the
words that indicate copying between overlapping objects is not alowed.

Besides the library functions whose specification state that copying between overlapping objects is not
alowed, severd others have also had their prototype adorned with the r estri ct keyword. For
example:

int printf(const char * restrict format, ...);
A critical question that one asks when deciding if a pointer parameter should be restrict-qualified or not

is, if copying takes place between overlapping objects will the function behave as expected. Inthe case
of thepri nt f function, unexpected behavior occursif acal such as:

79

10

15

20

25

30

35

40

45

50

WG14/N802 J11/98-001 RATIONALE

{
int *p = malloc(n * sizeof(int));
char *cp = (char *) p;
strcpy(cp, "% % %\n");

printf(cp, "stringl", p, "string2");

The unexpected behavior occurs because:

1. character pointers can alias other pointersto objects

2. P and cp arediases for the same dynamic object alocated by the cdl to the Ml | oc function.

3. the % specifier causes an integer value to overwrite the control string pointed at by pointer Cp
(through P)

Remember that the cong-qualifier in the Pri ntf prototype only guarantees that the parameter
pointing at the format string is read-only. Another dlias (i.e., P) is dlowed to modify the same format

gring.

Since the implementation costs are high if vendors are forced to cater to this extremely rare case, the
restrict keywordisused to explicitly forbid situations like these.

Another library routine that usesr estri ct is
char *fgets(char * restrict s, int n, FILE * restrict stream;

Again, since a character pointer can be a potentia aias with other pointers, rest ri ct is used to

make it clear to the trandator that parameter S is never an dias with parameter St r eamwhen the
f get s function is called within awell-defined program.

Findlly, the prototypes of certain library functions are adorned with r est ri ct only if the pointer is
used to accessdata. For example:

wchar _t *westok(wchar _t *restrict sl,

const wchar_t *restrict s2,
wchar _t ** restrict ptr););

The parameter Ptr only has a redtrict-qualifier on the top-level pointer type. The reason the
parameter declaration is not:

wchar _t * restrict * restrict ptr

Is because only the top-level pointer type is used to access an object. The lower-level pointer type is
only used to track the location in the wide character string of where the search terminated. Thus there
Isno possibility of copying take place between overlapping objects through the lower-level pointer.

In generd, aredrict-qudified pointer provides useful information in the prototype of alibrary routine if
more than one parameter with pointer type can dias each other. Sometimes the diasing rules prevent
this from happening (e.g., pointer to integer type can not dias a pointer to afloating-point type). When
the aliasing rules alow two pointers to point at overlapping objects, thenther est ri ct keyword can

80

10

15

20

25

30

35

40

45

50

RATIONALE WG14/N802 J11/98-001

be used to indicate that this function should not be called with pointers to overlapping objects. This
guideline also applies outsde of the library if a parameter can dias afile-scope pointer.

7.1.1 Definitionsof terms

The decimal-point character is the character used in the input or output of floating point numbers, and
may be changed by set | ocal e. Thisisalibrary construct; the decimal point in numeric literas in
C sourcetext is aways a period.

7.1.2 Standard headers

Wheress in prior practice only certain library functions have been associated with header files, the
Standard now mandates that all library functions have a header. Severa headers have therefore been
added, and the contents of afew old ones have been changed.

In many implementations the names of headers are the names of files in specid directories. This
implementation technique is not required, however: the Standard makes no assumptions about the form
that a file name may take on any system. Headers may thus have a specia status if an implementation
s0 chooses. Standard headers may even be built into a trandator, provided that their contents do not
become "known” until after they are explicitly included. One purpose of permitting these header "files”
to be "built in” to the trandator is to dlow an implementation of the C language as an interpreter in an
un-hosted environment, where the only "file” support may be a network interface.

The Committee decided to make library headers "idempotent” - they should be includable any number
of times, and includable in any order. This requirement, which reflects widespread existing practice,
may necessitate some protective wrappers within the headers, to avoid, for instance, redefinitions of
typedefs. To ensurethat such protective wrapping can be made to work, and to ensure proper scoping
of typedefs, headers may only be included outside of any declaration.

Note to implementors: acommon way of providing this " protective wrapping” is.

#i fndef _ ERRNO H
#define _ ERRNO H

5* body of <errno. l7> */
#endi f

where _ ERRNO_His an otherwise unused macro name.

Implementors often desire to provide implementations of C in addition to that prescribed by the
Standard. For instance, an implementation may want to provide system-specific 1/O facilitiesin

<stdi 0. h>, A technique that dlows the same header to be used in both the Standard-conforming
and dternate implementationsisto add the extra, non-Standard, declarations

to the header asin thisillustration:

#i fdef _ EXTENSI ONS_

typedef int file_no;

extern int read(file_no _N, void * _Buffer, int _Noytes);
[*. .. %

#endi f

81

10

15

20

25

30

35

40

WG14/N802 J11/98-001 RATIONALE

The header is usable in an implementation of the Standard in the absence of a definition of
__EXTENSI ONS__, and the non-Standard implementation can provide the appropriate definitions to
enable the extra declarations.

7.1.3 Resrved identifiers

To give implementors maximum latitude in packing library functions into files, all externd identifiers
defined by the library are reserved (in a hosted environment). This means, in effect, that no user
supplied externd names may match library names, not even if the user function has the same
specification. Thus, for instance, St rt od may be defined in the same object module as pri ntf
with no fear that link-time conflicts will occur. Equally, strtod may cal printf or printf

may cal strtod, for whatever reason, with no fear that the wrong function will be called.

Also reserved for the implementor are all externd identifiers beginning with an underscore, and al
other identifiers beginning with an underscore followed by a capital letter or an underscore. This gives
a space of names for writing the numerous behind-the-scenes non-external macros and functions a
library needsto do its job properly.

With these exceptions, the Standard assures the programmer that all other identifiers are available, with
no fear of unexpected collisions when moving programs from one implementation to another®. Note,
in particular, that part of the name space of interna identifiers beginning with underscore is avalable to
the user - trandator implementors have not been the only ones to find use for "hidden” names. C is
such a portable language in many respects that this issue of "name space pollution” is currently one of
the principd barriers to writing completely portable code. Therefore the Standard assures that macro
and typedef names are reserved only if the associated header is explicitly included.

714 Errors <errno. h>

<errno. h> is a header invented to encapsulate the error handling mechanism used by many of the
liorary routinesin mat h. hand stdlib. h®

The error reporting machinery centered about the setting of errno is generaly regarded with
tolerance at best. It requires a "pathological coupling” between library functions and makes use of a
gatic writable memory cell, which interferes with the construction of shareable libraries. Nevertheless,
the Committee preferred to standardize this existing, however deficient, machinery rather than invent
something more ambitious.

The definition of er r no as an lvaue macro grants implementors the license to expand it to something

like *__errno_addr (), where the function returns a pointer to the (current) modifiable copy of
errno.

5
See 8§6.1.2.1 for a discussion of some of the precautions an implementor should take to keep this promise. Note also that any

implementation-defined member names in structures defined in <time.h> and <locals.h> must begin with an underscore, falbemthane
pattern of other names in those structures.

6 In earlier drafts of the Standard, errno and related macros were defined in <stddef.h>. When the Committee decidethé¢hat the o

definitions in this header were os such general utility that they should be required even in freestanding environmesdss éromezh>.

82

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

7.15 Limits <float.h>and <limts.h>

Both <float.h> and <limts.h> ae inventions. Included in these headers are various
parameters of the execution environment which are potentially useful at compile time, and which are
difficult or impossible to determine by other means.

The availability of this information in headers provides a portable way of tuning a program to different
environments. Another possible method of determining some of this information is to evaluate
arithmetic expressions in the preprocessing statements. Requiring that preprocessing aways yield the
same reaults as runtime arithmetic, however, would cause problems for portable compilers
(themselves written in C) or for cross compilers, which would then be required to implement the
(possibly wildly different) arithmetic of the target machine on the host machine. (See 86.4.)

<f | oat . h> makes available to programmers a set of useful quantities for numerical analysis. (See
85.2.4.2.) This set of quantities has seen widespread use for such analysis, in C and in other languages,
and was recommended by the numerical analysts on the Committee. The set was chosen so as not to
prejudice an implementation's selection of floating-point representation.

Most of the limits in <f | oat . h> are specified to be generaloubl e expressions rather than
restricted constant expressions

* to allow use of values which cannot readily (or, in some cases, cannot possibly)
be constructed as manifest constants, and

» to allow for run-time selection of floating-point properties, as is possible, for
instance, in IEEE-854 implementations.

7.1.6 Common definitions <st ddef . h>

<st ddef . h> is a header invented to provide definitions of several types and macros used widely in
conjunction with the library:pt rdi ff _t (see §6.3.6),si ze_t (see 86.3.3.4)Wwchar _t (see
86.1.3.4), andNULL. Including any header that references one of these macros will also define it, an
exception to the usual library rule that each macro or function belongs to exactly one header.

NULL can be defined as anyll pointer constant. Thus existing code can retain definitions gL L

as 0 or OL, but an implementation may choose to define it(a®i d *) O; this latter form of
definition is convenient on architectures where the pointer size(s) do(es) not equal the size of any
integer type. It has never been wise to Udd.L in place of an arbitrary pointer as a function
argument, however, since pointers to different types need not be the same size. The library avoids this
problem by providing special macros for the argumentst@gnal , the one library function that

might see a null function pointer.

The of f set of macro has been added to provide a portable means of determining the offset, in
bytes, of a member within its structure. This capability is useful in programs, such as are typical in
data-base implementations, which declare a large number of different data structures: it is desirable to
provide "generic" routines that work from descriptions of the structures, rather than from the structure

83

10

15

20

25

30

35

WG14/N802 J11/98-001 RATIONALE

declarations themselves.’

In many implementations, of f set of could be defined as one of

(size_t)& ((s_nane*)0)->m nane)

o (size_t)(char *)& ((s_nanme*)0)->m nane)

or, where Xis some predeclared address (or 0) and A(Z) isdefinedas ((char*) &7) ,
(size_t)(Al (s_name*)X->mnane) - Al X))

It was not feasible, however, to mandate any single one of these forms as a construct guaranteed to be
portable.

Other implementations may choose to expand this macro as a call to a built-in function that interrogates
the trandator’s symbol table.

7.1.7 Boolean type and values<st dbool . h>
7.1.8 Useof library functions

To make usage more uniform for both implementor and programmer, the Standard requires that every
library function (unless specifically noted otherwise) must be represented as an actud function, in case
a program wishes to pass its address as a parameter to another function. On the other hand, every
library function is now a candidate for redefinition, in its associated header, as a macro, provided that
the macro performs a"safe” evaluation of its arguments, i.e., it evaluates each of the arguments exactly
once and parenthesizes them thoroughly, and provided that its top-level operator is such that the
execution of the macro is not interleaved with other expressons. Two exceptions are the macros
get c and put ¢, which may evaluate their arguments in an unsafe manner. (See §7.13.7.5.)

If a program requires that a library facility be implemented as an actual function, not as a macro, then

the macro name, if any, may be erased by usingfthedef preprocessing directive (see §6.8.3).

All library prototypes are specified in terms of the "widened" types: an argument formerly declared as
char is now written asi nt. This ensures that most library functions can be called with or without a
prototype in scope (see 86.3.2.2), thus maintaining backwards compatibility with existing,
pre-Standard, code. Note, however, that since functions fikeé ntf and scanf use
variable-length argument lists, they must be called in the scope of a prototype.

The Standard contains an example showing how certain library functions may be "built in" in
an implementation that remaicanforming.

7Consider, for instance, a set of nodes (structures) which are to be dynamically allocated and garbage-collected, and which can contain
pointers to other such nodes. A possible implementation is to have the first field in each node point to a descriptor for that node. The descriptor
includes a table of the offsets of fields which are pointers to other nodes. A garbage-collector "mark™ routine needs no further information about the
content of the node (except, of course, where to put the mark). New node types can be added to the program without requiring the mark routine to be
rewritten or even recomplied.

84

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

7.2 Diagnostics <assert. h>
7.21 Program diagnogtics
7211 The assert macro

Some implementations tolerate an arbitrary scalar expression as the argument to assert, but the
Committee decided to require correct operation only for int expressons. For the sake of
implementors, no hard and fast format for the output of afailing assertion is required; but the Standard
mandates enough machinery to replicate the form shown in the footnote.

It can be difficult or impossible to make assert atrue function, o it is restricted to macro form
only.

To minimize the number of different methods for program termination, assert is now defined in
terms of the abor t function.

Note that defining the macro NDEBUG to disable assertions may change the behavior of a program
with no failing assertion if any argument expresson to assert has sde-effects, because the
expression isno longer evaluated.

It is possble to turn assertions off and on in different functions within a trandation unit by defining (or
undefining) NDEBUG and including <assert. h> again. The implementation of this behavior in
<assert. h>issmple undefine any previous definition of assert before providing the new one.
Thus the header might look like

#undef assert

#i f def NDEBUG

#define assert(ignore) ((void) 0)

#el se

extern void _ gripe(char *_Expr, char *_File, int _Line);
#defi ne assert(expr) \

” ((j_(]gxpr)? (void)O : _ gripe(#expr, __FILE , _LINE))
endi

Notethat assert must expand to a void expression, so the more obvious i f statement does not
suffice as a definition of assert . Note aso the avoidance of names in a header which would conflict
with the user's name space (see86.1.2.1).

7.3 Character Handling <ct ype. h>

Pains were taken to eliminate any ASCII dependencies from the definition of the character handling
functions. One notable result of this policy was the elimination of the fundt®asci i, both

because of the name and because its function was hard to generalize. Nevertheless, the character
functions are often most clearly explained in concrete terms, so ASCII is used frequently to express
examples.

Since these functions are often used primarily as macros, their domain is restricted to the small positive
85

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

integers representableinan unsi gned char | plusthevadueof ECF. ECF istraditiondly -1, but
may be any negative integer, and hence distinguishable from any valid character code. These macros
may thus be efficiently implemented by using the argument as an index into asmall array of attributes.

The Standard (87.20.2) warns that names beginning Wittand t 0, when these are followed by
lower-case letters, are subject to future use in adding itersstiype. h>.

7.3.1 Character testing functions

The definitions ofrinting character andcontrol character have been generalized from ASCII.

Note that none of these functions returns a nonzero value (true) for the argumehiGralue

7.3.1.1 Thei sal numfunction

7.3.1.2 Thei sal pha function

The Standard specifies that the set of letters, in the diefeallt, comprises the 26 upper-case and 26

lower-case letters of the Latin (English) alphabet. This set may vatypaealespecific fashion (that
is, under control of theset | ocal e function, §7.5) so long as

. isupper(c) impliesisalpha(c)

. islower(c) implies isalpha(c)

. isspace(c) , ispunct(c) , iscntrl(c) , or isdigit(c) implies
lisalpha(c)

7.3.1.3 Theisblank function
i sbl ank isa newfeature for COX
7.3.1.4 Theiscntrl function
7.3.15 Theisdigit function
7.3.16 Theisgraph function
7.3.1.7 Theislower function
7.3.1.8 Theisprint function
7.3.1.9 Theispunct function
7.3.1.10 Theisspace function

isspace iswidely used within the library as the working definition of white space.

86

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

7.3.1.11 The i supper function

7.3.1.12 The isxdigit function

7.3.2 Character case mapping functions

Earlier libraries had (almost equivalent) macros, _t ol ower and _t oupper, for these functions.
The Standard now permits any library function to be additionaly implemented as a macro; the

underlying function must till be present. _t oupper and _t ol ower are thus unnecessary and
were dropped as part of the genera standardization of library macros.

7.3.2.1 The tol ower function

7.3.2.2 The toupper function

7.4 Integer types <inttypes. h>

<inttypes. h> s a new feature for C9X The C Standard specifies that the language should
support four, si gned and unsi gned, integer data types, char, short, int and | ong.

However, the Standard places very little requirement on their size (number of bits) other than that
int and short beat least 16-hitsand | ong data type must be at least aslong as i nt and not

smaller than 32-hits. For 16-bit systems, most implementations assign 8, 16, 16 and 32 hitsto char ,
short, int, and | ong, respectively. For 32-bit systems, the common practice is to assign 8, 16,
32 and 32 hits to these types. This differencein i nt size can create some problems for users who
migrate from one system to another which assigns different sizes to integra types, because Standard
C’s integra promotion rule can produce slent changes unexpectedly. The need for defining an
extended integer type increased with the introduction of 64-bit based systemsin the industry.

The purpose of <i nttypes. h> header is to provide a set of integer types whose definitions are
condgent across machines and independent of operating sysems and other implementation
idiosyncrasies. It defines, via t ypedef | integer types of various sizes. Implementations are free to
t ypedef them to Standard C integer types or extensions that they support. Consistant use of this
header will greetly increase the portability of a user’s program across platforms.

7.4.1 Typedef namesfor integer types

7.4.11 Exact-width integer types

7.4.1.2 Minimum-width integer types

7.4.1.3 Fastest minimum-width integer types

7.4.1.4 Integer types capable of holding object pointers

7.4.15 Greatest-width integer types

7.4.2 Limitsof specified-width integer types

87

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

7.4.2.1 Limitsof exact-width integer types

7.4.2.2 Limitsof minimum-width integer types

7.4.2.3 Limitsof fastest minimum-width integer types

7.4.24 Limitsof integer types capable of holding object pointers
7.4.25 Limitsof greastest-width integer types

7.4.3 Macrosfor integer constants

7.4.3.1 Macrosfor minimum-width integer constants

7.4.3.2 Macrosfor grestest-width integer constants

744 Macrosfor format specifiers

7.45 Limitsof other integer types

7.4.6 Conversion functionsfor greatest-width integer types
74.6.1 Thestrtoi max function

7.4.6.2 Thestrtounmax function

7.4.6.3 Thewcst oi max function

7.4.6.4 Thewcst ounax function

7.5 Localization <l ocal e. h>

C has become an international language. Users of the language outside the United States have
been forced to deal with the various Americanisms built into the standard library routines.

Aress dffected by international consderationsinclude:

Alphabet. The English language uses 26 letters derived from the Latin aphabet. This set of letters
auffices for English, Swahili, and Hawaiian; @l other living languages use ether the Latin
alphabet plus other characters, or other, non-Latin aphabets or syllabaries.

In English, each letter has an upper-case and lower-case form. The German "sharp S', R,
occurs only in lower-case. European French usualy omits diacriticals on upper-case letters.
Some languages do not have the concept of two cases.

Collation. Inboth EBCDIC and ASCII the code for 'z is greater than the code for ’a, and so on for
other letters in the aphabet, so a "machine sort” gives not unreasonable results for ordering
drings. In contrast, most European languages use a codeset resembling ASCII in which some

88

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

of the codes used in ASCII for punctuation characters are used for aphabetic characters. (See

85.2.1.) The ordering of these codes is not alphabetic. In some languages letters with
diacritics sort as separate letters; in others they should be collated just as the unmarked form.
In Spanish, "II" sorts as a single letter following "I"; in GermBhgsbrts like "ss".

Formatting of numbers and currency amounts. In the United States the period is invariably used

for the decimal point; this usage was built into the definitions of such functiops iast f

and scanf. Prevalent practice in several major European countries is to use a comma; a
raised dot is employed in some locales. Similarly, in the United States a comma is used to
separate groups of three digits to the left of the decimal point; a period is common in Europe,
and in some countries digits are not grouped by threes. In printing currency amounts, the
currency symbol (which may be more than one character) may precede, follow, or be
embedded in the digits.

Date and time. The standard functio@sct i me returns a string which includes abbreviations for
month and weekday names, and returns the various elements in a format which might be
considered unusual even in its country of origin.

Various common date formats include

1776-07-04 ISO Format

4.7.76 customary central European and British usage
714176 customary U.S. usage

4.VI.76 Italian usage

76186 Julian date (YYDDD)

04JUL76 airline usage

Thursday, July 4, 1776 full U.S. format

Donnerstag, 4. Juli 1776 full German format

Time formats are also quite diverse:

3:30 PM customary U.S. and British format
1530 U.Smilitary format

15h.30 Italian usage

15.30 German usage

15:30 common European usage

The Committee has introduced mechanisms into the C library to allow these and other issues to
be treated in the appropridteal e-specific manner.

The localization features of the Standard are based on these principles:

English for C source. The C language proper is based on English. Keywords are based on English
words. A program which uses "national characters” in identifiers is not strictly conforming.
(Use of national characters in comments is strictly conforming, though what happens when
such a program is printed in a different locale is unspecified.) The decimal point must be a
period in C source, and no thousands delimiter may be used.

89

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

Runtime sdlectability. The locale must be sdlectable at runtime, from an implementation-defined set
of posshilities. Trandate-time selection does not offer sufficient flexibility. Software vendors
do not want to supply different object forms of their programs in different locales. Users do
not want to use different versons of a program just because they dedl with several different
locales.

Function interface. Locae is changed by cdling a function, thus dlowing the implementation to
recognize the change, rather than by, say, changing a memory location that contains the
decimal point character.

Immediate effect. When a new locale is selected, affected functions reflect the change immediately.
(Thisis not meant to imply if a signal-handling function were to change the selected locale and
return to alibrary function, that the return value from that library function must be completely
correct with respect to the new locale)

75.1 Localecontrol

75.1.1 The setl ocal e function

set | ocal e provides the mechanism for controlling locale-specific features of the library. The
cat egory argument alows parts of the library to be localized as necessary without changing the
entire locale-specific environment. Specifying the | ocal e argument as a string gives an
implementation maximum flexibility in providing a set of locales. For instance, an implementation
could map the argument string into the name of a file containing appropriate localization parameters -
these files could then be added and modified without requiring any recompilation of a localizable
program.

7.5.2 Numeric formatting convention inquiry

75.21 The | ocal econv function

The | ocal econv function gives a programmer access to information about how to format numeric
quantities (monetary or otherwise). This sort of interface was congdered preferable to defining

converson functions directly: even with a specified locale, the set of distinct formats that can be
congtructed from these dementsis large, and the ones desired very application-dependent.

7.6 Floating-point environment <fenv. h>
<fenv. h> isanewfeature for COX.

7.6.1 TheFENV_ACCESS pragma

A new feature for C9X

7.6.2 Exceptions

76.21 The fecl earexcept function

90

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001
7.6.22 The feget except fl ag function
7.6.2.3 The ferai seexcept function
76.24 The fesetexceptfl ag function
7.6.25 The fetestexcept function
7.6.3 Rounding

7.6.31 The fegetround function
7.6.32 The fesetround function

7.6.4 Environment

7.6.4.1 The fegetenv function

7.6.4.2 The fehol dexcept function
7.6.43 The fesetenv function

7.6.44 The feupdat eenv function

7.7 Mathematics <mat h. h>

For hitorica reasons, the math library is only defined for the floating type doubl e. All the names

formed by appending f or | to anamein <mat h. h> are reserved to dlow for the definition of
fl oat and | ong doubl e libraries.

Thefunctions ecvt, fcvt, and gcvt have been dropped since their capability is available through
sprintf.

Traditiondly, HUGE_VAL has been defined as a manifest constant that approximates the largest
representable doubl e vaue. As an approximation to infinity it is problematic. As a function return

value indicating overflow, it can cause trouble if first assigned to a f 1 oat before testing, since a
f 1 oat may not necessarily hold all values representableina doubl e.

After considering severa dternatives, the Committee decided to generdize HUGE_VAL to a positive
double expression, so that it could be expressed as an external identifier naming a location initialized
precisely with the proper bit pattern. It can even be a specid encoding for machine infinity, on
implementations that support such codes. It need not be representable asa f | oat | however.

Similarly, domain errors in the past were typicaly indicated by a zero return, which is not necessarily
distinguishable from a valid result. The Committee agreed to make the return value for domain errors
implementation-defined, so that specia machine codes can be used to advantage. This makes possible
an implementation of the math library in accordance with the IEEE P854 proposa on floating point
representation and arithmetic.

91

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

7.7.1 Treatment of error conditions

Whether underflow should be considered a range error, and cause €r r no to be s, is specified as
implementation-defined since detection of underflow isinefficient on some systems.

The Standard has been crafted to neither require nor preclude any popular implementation of floating
point. This principle affects the definition of domain error: an implementation may define extra domain
errorsto deal with floating-point arguments such as infinity or "not-a-number”.

The Committee considered the adoption of the mat her r capability from UNIX Sysem V. In this
feature of that system’'s math library, any error (such as overflow or underflow) resultsin acal from the
library function to a user-defined exception handler named mat herr . The Committee rejected this
approach for severd reasons.

. This style is incompatible with popular floating point implementations, such as IEEE

754 (with its special return codes), or that of VAX/VMS.

. It conflicts with the error-handling style of FORTRAN, thus making it more difficult to

translate useful bodies of mathematical code from that language to C.

. It requires the math library to be reentrant (since math routines could be called from

mat her r), which may complicate some implementations.

. It introduces a new style of library interface: a user-defined library function with a
library-defined name. Note, by way of comparison, the signal and exit handling

mechanisms, which provide a way of "registering” user-defined functions.
7.7.2 TheFP_CONTACT pragma
7.7.3 Classfication macros
7.7.3.1 Thef pcl assi fy macro
7.7.3.2 Thesi gnbi t macro
7.7.3.3 Thei sfinite macro
7.7.3.4 Thei snor mal macro
7.7.3.5 Thei snan macro
7.7.3.6 Thei si nf macro

7.7.4 Trigonometric functions

Implementation note: trigonometric argument reduction should be performed by a method that causes
no catastrophic discontinuities in the error of the computed result. In particular, methods based solely

92

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001
on naive gpplication of a calculation like
X - (2xpi) * (int)(x/(2*pi))
areill-advised.
7.7.41 The acos function
7.74.2 The asi n function
7.74.3 The at an function
7744 The at an2 function

The atan2 function is modeled after FORTRAN's. It is described in terms of arctan y/x for
smplicity; the Committee did not wish to complicate the descriptions by specifying in detail how to
determine the appropriate quadrant, since that should be obvious from norma mathematical
convention. at an2(y, x) iswell-defined and finite, even when X is 0; the one ambiguity occurs
when both arguments are O, because at that point any value in the range of the function could logically
be sdlected. Since valid reasons can be advanced for dl the different choices that have been in this
gtuation by various implements, the Standard preserves the implementor’'s freedom to return an
arbitrary well-defined value such as 0, to report adomain error, or to return an IEEE NaN code.

7745 The cos function
7.74.6 The Si n function
7.7.4.7 The tan function

The tangent function has singularities at odd multiples of 1/ 2, approaching +eo from one side and

- 0o from the other. Implementations commonly perform argument reduction using the best machine
representation of ¢ for argumentsto t an sufficiently close to a singularity, such reduction may yield
avaue on the wrong side of the singularity. In view of such problems, the Committee has recognized

that tan is an exception to the range error rule (87.7.1) that an overflowing result produces

HUGE_VAL properly signed.)
7.7.5 Hyperbalic functions
7.7.5.1 Thecosh function
7.7.5.2 Thesi nh function
7.7.5.3 Thet anh function
7.7.5.4 Theacosh function

7.7.5.5 Theasi nh function

93

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

7.75.6 The at anh function

7.7.6 Exponential and logarithmic functions

7.7.6.1 The exp function

7.76.2 The frexp function

Thefunctions frexp, | dexp, and nodf are primitives used by the remainder of the library. There
was some sentiment for dropping them for the same reasons that ecvt, fcvt, and gcvt were
dropped, but their adherents rescued them for general use. Ther use is problematic: on nonbinary
architectures | dexp may lose precision, and f r exp may be inefficient.

7.7.6.3 The | dexp function
See 87.7.6.2.

7.7.6.4 Thel og function
Whether | 0g(0.) is a domain error or a range error is arguable. The choice in the Staaadged,
error, is for compatibility with EEE P854. Some such implementations would represent the result as

- 00, IN Which case no error is raised.

7.7.6.5 Thel 0910 function
See §87.7.6.4.

7.7.6.6 Thenodf function
See 87.7.6.2.

7.7.6.7 Theexp2 function

7.7.6.8 Theexpmil function

7.7.6.9 Thel 0g1p function

7.7.6.10 Thel 092 function

7.7.6.11 Thel ogb function

7.7.6.12 Thescal bn function

7.7.6.13 Thescal bl n function
7.7.6.14 Thel | ogb function

7.7.7 Power and absolute value functions

7.7.7.1 Thef abs function

94

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

Adding an absolute value operator was rejected by the Committee. An implementation can provide a
built-in function for efficiency.

7.7.7.2 The powfunction

7.7.7.3 The sqrt function

| EEE P854, unlike the Standard, requires sqrt (-0.) to return a negatively signed magnitude-zero
result. This is an issue on implementations that support a negative floating zero. The Standard
specifies that taking the square root of a negative number (in the mathematical sense: less than 0) isa
domain error which requires the function to return an implementation-defined value. This rule permits
implementations to support either the |EEE P854 or vendor-specific floating point representations.
7.7.74 The cbrt function

7.7.75 The hypot function

7.7.8 Error and gamma functions

7.78.1 The erf function

7.7.8.2 The erfc function

7.7.8.3 The gama function

7.7.84 The | ganmma function

7.7.9 Neared integer functions

7.79.1 The ceil function

Implementation note: The cei | function returns the smallest integral value in double format not less

than X, even though that integer might not be representable in a C integral type. cei | (X) equds
X for dl X sufficiently large in magnitude. Animplementation that caculates cei | (X) as

(double)(int) x
isill-advised.
7.79.2 The fl oor function
7.7.9.3 The near byi nt function
7.79.4 The rint function
7.795 The | rint function

7796 The |l rint function
95

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

7.79.7 The round function

7.79.8 The | round function

7.79.9 The || round function

7.79.10 The trunc function

7.7.10 Remainder functions

7.7.10.1 The f nod function

f mod is defined even if the quotient X/ Y is not representable - this function is properly implemented
by scaled subtraction rather than by divison. The Standard defines the result in terms of the formula

X-i*y, wherei issomeinteger. Thisinteger need not be representable, and need not even be explicitly
computed. Thus implementations are advised not to compute the result using aformulalike

X -y * (int)(x/y)
Instead, the result can be computed in principle by subtracting | dexp(y, n) from X, for
appropriately chosen decreasing N, until the remainder is between 0 and X - efficiency consderations
may dictate a different actua implementation.

The result of fnod(x, 0. 0) is either a domain error or 0.0; the result dways lies between 0.0 and
Y, S0 specifying the non-erroneous result as 0.0 Ssmply recognizes the limit case.

The Committee considered and rejected a proposal to use the remainder operator %for this function;
the operators in genera correspond to hardware facilities, and f nmod is not supported in hardware on
most machines.

7.7.10.2 The remai nder function

7.7.10.3 The r enguo function

7.7.11 Manipulation functions

7.7.11.1 The copysi gn function

7.7.11.2 The nan function

7.7.11.3 The next after function

7.7.11.4 The nextafter x function

7.7.12 Maximum, minimum, and pogtive difference functions

7.7.12.1 The fdi mfunction
9%

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

7.7.12.2 The f max function

7.7.12.3 The fm n function

7.7.13 Floating multiply-add

7.7.13.1 The f nma function

7.7.14 Comparison macros

77141 The i sgreater macro
7.7.142 The isgreaterequal macro
7.7.143 The i sl ess macro

7.7.14.4 The i sl essequal macro
7.7.145 The i sl essgreater macro
7.7.14.6 The i sunor der ed macro
7.8 Complex arithmetic <conpl ex. h>
781 TheCX_ LI M TED_RANGE pragma
7.8.2 Complex functions

7.8.21 Branchcuts

7.8.22 The cacos function

7.8.2.3 The casi n function

7.8.24 The cat an function

7.8.25 The ccos function

7.8.26 The csi n function

7.8.2.7 The ct an function

7.8.28 The cacosh function

7.8.29 The casi nh function

7.82.10 The cat anh function
97

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

7.8.2.11 The ccosh function
7.8.2.12 The csi nh function
7.8.2.13 The ct anh function
7.8.2.14 The cexp function
7.8.2.15 The cl og function
7.8.2.16 The csqrt function
7.8.2.17 The cabs function
7.8.2.18 The cpowfunction
7.8.2.19 The car g function
7.8.2.20 The conj function
7.8221 The ci mag function
7.8.222 The cproj function
7.8.2.23 The creal function

7.9 Typegeneric math <t gnat h. h>

7.9.1 TheType-generic macros

7.10 Nonlocal jumps <setj np. h>

j mp_buf must be an array type for compatibility with existing practice: programs typically omit the
address operator beforea j mp_buf argument, even though a pointer to the argument is desired, not
the value of the argument itsalf. Thus, a scalar or struct type is unsuitable. Note that a one-element
array of the appropriate type is a vaid definition.

set] np is congrained to be a macro only: in some implementations the information necessary to
restore context is only available while executing the function making thecal to set j np.

7.10.1 Savecalling environment
7.10.1.1 The setj nmp macro

One proposed requirement on set j np isthat it be usable like any other function - that it be callable
in any expression context, and that the expression evaluate correctly whether the returnfrom set j np
isdirect or viaacdl to | ongj np. Unfortunately, any implementation of set j np as a conventiond

98

10

15

20

25

30

35

RATIONALE WG14/N802 J11/98-001

called function cannot know enough about the calling environment to save any temporary registers or
dynamic stack locations used part way through an expression evauation. (A Set j np macro seems
to help only if it expands to inline assembly code or a cal to a specid built-in function.) The
temporaries may be correct on the initid cal to setj np, but are not likely to be on any return
initiated by a corresponding cal to | ongj np. These considerations dictated the congtraint that
setj np be cdled only from within fairly smple expressions, ones not likely to need temporary
storage.

An dternative proposal considered by the Committee is to require that implementations recognize that
cdling setj np is a specia case”, and hence that they take whatever precautions are necessary to
restore the setj np environment properly upon a | ongj np cal. This proposa was rejected on
grounds of consstency: implementations are currently allowed to implement library functions specidly,
but no other Situations require specid treatment.

7.10.2 Redore calling environment
7.10.21 The | ongj np function

The Committee also considered requiring that a cal to | ongj np restore the (set j np) caling
environment fully - that upon execution of a | ongj np, al loca variables in the environment of
set] np have the values they did a the time of the | ongj np cal. Register varidbles create
problems with this idea. Unfortunately, the best that many implementations attempt with register
varidblesis to save them (in j np_buf) at the time of the initid set j np call, then restore them to
that state on each return initiated by a | ongj np cdl. Since compilers are certainly a liberty to
change register variables to automatic, it is not obvious that a register declaration will indeed be rolled
back. And since compilersare at liberty to change automatic variables to register (if their addresses are
never taken), it is not obvious that an automatic declaration will not be rolled back. Hence the vague
wording. Infact, the only reliable way to ensure that alocal variable retain the value it had at the time
of thecdl to | ongj np isto defineit withthe vol ati | e attribute.

Some implementations leave a process in a specid satewhilea si gnal isbeing handled. An explicit
reassurance must be given to the environment when the signal handler is done. To keep this job
manageable, the Committee agreed to restrict | ongj np to only one level of signd handling.

The | ongj np function should not be caled in an exit handler (i.e,, a function registered with the

at exi t function (see§7.14.4.2)), since it might jump to some code which is no longer in scope.

7.11 Signal Handling <si gnal . h>

This facility has been retained from the Base Document since the Committee felt it important to
provide some standard mechanism for dealing with exceptional program conditions. Thus a subset of
the signals defined in UNIX were retained in the Standard, along with the basic mechanisms of
declaring signal handlers and (with adaptations, see 87.11.2.1) raising signals. For a discussion of the
problems created by including signals, see 85.2.3.

8This proposal was considered prior to the adoption of the stricture that setjmp be a macro. It can be considered as equivalent to proposing
that the setjmp macro expand to a call to a special built-in compiler function.

99

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

The signal machinery contains many misnomers. SI GFPE, SI G LL, and Sl GSEGV have their
roots in PDP-11 hardware terminology, but the names are too entrenched to change. (The occurrence
of Sl GFPE, for instance, does not necessarily indicate a floating-point error.) A conforming
implementation is not required to field any hardware interrupts.

The Committee has reserved the space of names beginning with Sl G to permit implementations to
add loca namesto <si gnal . h>, Thisimplies that such names should not be otherwise used ina C
source filewhichincludes <si gnal . h>,

7.11.1 Specify signal handling
7.11.1.1 The signal function

When asigna occurs the normal flow of control of a program isinterrupted. If asignd occursthat is
being trapped by a sgnd handler, that handler isinvoked. When it is finished, execution continues at
the point at which the signa occurred. This arrangement could cause problems if the signal handler
invokes a library function that was being executed at the time of the signal. Since library functions are
not guaranteed to be re-entrant, they should not be cdled from a sgna handler that returns. (See
85.2.3.) A specific exception to this rule has been granted for cadls gmal from within the signal
handler; otherwise, the handler could not reliably reset the signal.

The specification that some signals may be effectively seblt€& | GN instead of SI G_DFL at
program startup allows programs under UNIX systems to inherit this effective setting from parent
processes.

For performance reasons, UNIX does not r&b&l LL to default handling when the handler is called
(usually to emulate missing instructions). This treatment is sanctioned by specifying that whether reset
occurs for SI G LL isimplementation-defined.

7.11.2 Send €gnal

7.11.2.1 Ther ai se function

The function r ai se replaces the Base Documerk’! | function. The latter has an extra argument
which refers to the "process ID" affected by the signal. Since the execution model of the Standard does
not deal with multi-processing, the Committee deemed it preferable to introduce a function which

requires no (dummy) process argument. The Committee anticipates that IEEE ilL@ashwo
standardize theki | | function in the POSIX specification.

7.12 Variable Arguments <stdarg. h>

For a discussion of argument passing issues, see 86.7.1.

These macros, modeled after the UN§Xar ar gs. h> macros, have been added to enable the
portable implementation in C of library functions suchps nt f and scanf (see §7.13.6). Such

implementation could otherwise be difficult, considering newer machines that may pass arguments in
machine registers rather than using the more traditional stack-oriented methods.

100

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

The definitions of these macrosin the Standard differ from their forebears. they have been extended to
support argument lists that have afixed set of arguments preceding the varigble list.

va_start and va_arg must exist as macros, since va_start uses an argument that is passed
by name and va_ar g uses an argument which is the name of adatatype. Using #undef onthese
names leads to undefined behavior.

The va_list type is not necessarily assignable. However, a function can pass a pointer to its

initialized argument list object, as noted below. The wording has been changed to state clearly that
va_l i st isan object type.

7.12.1 Variableargument list access macros

71211 The va_start macro

va_start mug be cdled within the body of the function whose argument list is to be traversed.
That function can then pass a pointer to its va_l i st object ap to other functions to do the actua
traversal. (It can, of course, traversethelist itself.)

The par mN argument to va_start isan ad to writing conforming ANSI C code for existing C
implementations. Many implementations can use the second parameter within the structure of existing
C language congtructs to derive the address of the first variable argument. (Declaring par miNto be of
storage class r egi st er would interfere with use of these constructs, hence the effect of such a
declaration is undefined behavior. Other restrictions on the type of par mN are imposed for the same
reason.) New implementations may choose to use hidden machinery that ignores the second argument
to va_start possbly even hiding afunction cal inside the macro.

Multiple va_l i st variables can be in use smultaneoudly in the same function; each requires its own
cdlsto va_start and va_end.

7.12.1.2 The va_ar g macro

Changing an arbitrary type name into a type name which is a pointer to that type could require
sophisticated rewriting. To dlow the implementation of va_ar g asamacro, va_arg need only
correctly handle those type names that can be transformed into the appropriate pointer type by
appending a *, which handles most smple cases. (Typedefs can be defined to reduce more
complicated types to a tractable form.) When using these macros it is important to remember that the
type of an argument in avariable argument list will never be an integer type smdler than i nt |, nor will
iteverbe fl oat. (See 86.5.5.3.)

va_ar g can only be used to access the value of an argument, not to obtain its address.
7.12.1.3 Theva_coOpy macro

7.12.1.4 Theva_end macro

va_end must also be called from within the body of the function having the variable argument list. In
many implementations, this is a do-nothing operation; but those implementations that need it probably

101

WG14/N802 J11/98-001 RATIONALE

need it badly.

7.13 Input/Output <stdi 0. h>

5 Many implementations of the C runtime environment (most notably the UNIX operating system)
provide, aside from the standard 1/O library (f open, fcl ose, fread, fwite, fseek), ast
of unbuffered 1/0 sarvices (open, cl ose, read, wite, | seek). The Committee has decided
not to sandardize the latter set of functions.

10 A suggested semantics for these functions in the UNIX world may be found in the emerging IEEE
P1003 standard. The standard 1/O library functions use a file pointer for referring to the desired 1/0
stream. The unbuffered 1/0 services use a file descriptor (a smal integer) to refer to the desred 1/0
Stream.

15 Due to wesk implementations of the standard 1/0O library, many implementors have assumed that the
gtandard 1/O library was used for small records and that the unbuffered 1/0O library was used for large
records. However, a good implementation of the standard 1/0 library can match the performance of
the unbuffered services on large records. The user aso has the capability of tuning the performance of
the standard I/O library (with set vbuf) to suit the application.

20
Some subtle differences between the two sets of services can make the implementation of the
unbuffered 1/0 services difficult:
. The model of a file used in the unbuffered 1/O services is an array of characters. Many
25 C environments do not support this file model.
. Difficulties arise when handling the new-line character. Many hosts use conventions

other than an in-stream new-line character to mark the end of a line. The unbuffered
I/O services assume that no translation occurs between the program's data and the file

30 data when performing 1/O, so either the new-line character translation would be lost
(which breaks programs) or the implementor must be aware of the new-line translation
(which results in non-portable programs).

. On UNIX systems, file descriptors 0, 1, and 2 correspond to the standard input,
35 output, and error streams. This convention may be problematic for other systems in
that (1) file descriptors O, 1, and 2 may not be available or may be reserved for another
purpose, (2) the operating system may use a different set of services for terminal 1/0
than file 1/0.

40 In summary, the Committee chose not to standardize the unbuffered 1/0 services because:

. They duplicate the facilities provided by the standard I/O services.
. The performance of the standard I/O services can be the same or better than the
45 unbuffered I/O services
. The unbuffered 1/0 fle model may not be appropriate for many C language
environments.

102

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

7.13.1 Introduction

Themacros _| OFBF, _I OLBF, _I ONBF are enumerations of the third argument to set vbuf | a
function adopted from UNIX Sysem V.

SEEK_CUR, SEEK END, and SEEK_SET have been moved to <st di 0. h> from a header
specified in the Base Document and not retained in the Standard.

FCPEN_MAX and TMP_NAX are added environmentd limits of some interest to programs that
manipulate multiple temporary files.

FI LENAME_NAX is provided so that buffers to hold file names can be conveniently declared. If the
target system supports arbitrarily long filenames, the implementor should provide some reasonable
value (807, 255?, 5097?) rather than something unusable like USHRT_NVAX,

f pos_t wording has been changed to exclude array type objects. If f pos_t were an array, then a
function would not be able to handle f POS_t parameters in the same manner as other f pos_t
variables.

7.13.2 Streams

C inherited its notion of text streams from the UNIX environment in which it was born. Having each
line delimited by a single nen+line character, regardless of the characteristics of the actua termindl,
supported a simple model of text asa sort of arbitrary length scroll or "gdley.” Having achannel that is
"transparent” (no file structure or reserved data encodings) eiminated the need for a digtinction
between text and binary streams.

Many other environments have different properties, however. If aprogramwrittenin Cisto produce a
text file digestible by other programs, by text editors in particular, it must conform to the text
formatting conventions of that environment.

The 1/0O facilities defined by the Standard are both more complex and more redrictive than the
ancegtrd 1/0 facilities of UNIX. This is judtified on pragmetic grounds. most of the differences,
restrictions and omissions exist to permit C 1/0 implementations in environments which differ from the
UNIX 1/0 model.

Troublesome aspects of the stream concept include:

The definition of lines. In the UNIX modd, divison of a file into lines is effected by new-line
characters. Different techniques are used by other systems - lines may be separated by CR-LF
(carriage return, line feed) or by unrecorded areas on the recording medium, or each line may
be prefixed by its length. The Standard addresses this diversity by specifying that new-line be
used as a line separator a the program level, but then permitting an implementation to
transform the data read or written to conform to the conventions of the environment.

Some environments represent text lines as blank-filled fixed-length records. Thus the Standard
specifies that it is implementation-defined whether trailing blanks are removed from a line on

103

5

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

input. (This specification aso addresses the problems of environments which represent text as
variable-length records, but do not alow a record length of O: an empty line may be written as
aone-character record containing a blank, and the blank is stripped on input.)

Transparency. Some programs require access to externa data without modification. For instance,
transformation of CR-LF to new-line character is usually not desirable when object code is
processed. The Standard defines two stream types, text and binary, to alow a program to
define, when a file is opened, whether the preservation of its exact contents or of its line
structure is more important in an environment which cannot accurately reflect both.

Random access. The UNIX /0O model features random access to data in afile, indexed by character
number. On systems where a new-line character processed by the program represents an
unknown number of physcaly recorded characters, this smple mechanism cannot be
consgtently supported for text streams. The Standard abstracts the sgnificant properties of
random access for text streams:. the ability to determine the current file position and then later
reposition the file to the same location. ftel | returns afile position indicator, which has
no necessary interpretation except that an f seek operation with that indicator value will
postion the file to the same place. Thus an implementation may encode whatever file
positioning information is most appropriate for atext file, subject only to the constraint thet the
encoding be representable asa | ong. Useof fget pos and f set pos removes even this
congraint.

Buffering. UNIX allows the program to control the extent and type of buffering for various purposes.
For example, a program can provide its own large 1/0O buffer to improve efficiency, or can
request unbuffered terminal 1/0 to process each input character asit is entered. Other systems
do not necessarily support this generaity. Some systems provide only line-at-a-time access to
termina input; some systems support program-allocated buffers only by copying data to and
from sysem-allocated buffers for processng. Buffering is addressed in the Standard by
specifying UNIX-like set buf and setvbuf functions, but permitting great latitude in
their implementation. A conforming library need neither attempt the impossible nor respond to
aprogram attempt to improve efficiency by introducing additional overhead.

Thus, the Standard imposes a clear distinction between text streams, which must be mapped to suit
local custom, and binary streams, for which no mapping takes place. Loca custom on UNIX (and
related) systems is of course to treat the two sorts of streams identicaly, and nothing in the Standard
requires any changesto this practice.

Even the specification of binary streams requires some changes to accommodate a wide range of
systems. Because many systems do not keep track of the length of a file to the nearest byte, an
arbitrary number of characters may appear on the end of a binary stream directed to a file. The
Standard cannot forbid this implementation, but does require that this padding consst only of null
characters. The aternative would be to restrict C to producing binary files digestible only by other C
programs, this dternative runs counter to the spirit of C.

The set of characters required to be preserved in text stream 1/O are those needed for writing C
programs, the intent is the Standard should permit a C trandator to be written in a maximally portable
fashion. Control characters such as backspace are not required for this purpose, so their handling in
text streamsis not mandated.

104

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

It was agreed that some minimum maximum line length must be mandated; 254 was chosen.
7.13.3 Files

The asif principle is once again invoked to define the nature of input and output in terms of just two
functions, fgetc and f put c. Theactua primitivesin agiven syssem may be quite different.

Buffering, and unbuffering, is defined in a way suggesting the desired interactive behavior; but an
implementation may till be conforming even if delays (in a network or termina controller) prevent
output from appearing intime. It istheintent that matters here.

No congraints are imposed upon file names, except that they must be representable as strings (with no
embedded null characters).

7.13.4 Operationson files
7.134.1 The r enove function

The Base Document providesthe unl i nk system call to remove files. The UNIX-specific definition
of this function prompted the Committee to replace it with a portable function.

7.13.4.2 The r enane function

This function has been added to provide a system-independent atomic operation to change the name of
an exigting file; the Base Document only provided the | i nk system call, which gives the file a new
name without removing the old one, and which is extremely system-dependent.

The Committee consdered a proposa that r enane should quietly copy a file if smple renaming
couldnt be performed in some context, but rejected this as potentialy too expensve at execution time.

renarme is meant to give access to an underlying facility of the execution environment’s operating
system. When the new name is the name of an exigting file, some systems dlow the renaming (and
delete the old file or make it inaccessible by that name), while others prohibit the operation. The effect
of renane isthusimplementation-defined.

7.13.4.3 The tnpfil e function

The t npfi | e function isintended to alow usersto create binary "scratch” files. The as if principle
implies that the information in such afile need never actualy be stored on afile-structured device.

The temporary file is created in binary update mode, because it will presumably be first written and
then read as trangparently as possible. Trailing null-character padding may cause problems for some
exigting programs.

7.13.4.4 The t npnamfunction

This function alows for more control than t npfi | e: afile can be opened in binary mode or text

105

10

15

20

25

30

WG14/N802 J11/98-001 RATIONALE

mode, and files are not erased a completion.

There is aways some time between the cal to t npnamand the use (in f open) of the returned
name. Hence it is conceivable that in some implementations the name, which named no file a the call
to t npnam has been used as afilename by the time of the cdll to f open. Implementations should
devise name-generation grategies which minimize this posshility, but users should dlow for this
possibility.

7.13.5 Fileaccessfunctions
7.135.1 The fcl ose function

On some operating systems it is difficult, or impossible, to creste a file unless something is written to
thefile. A maximally portable program which relies on afile being created must write something to the
associated stream before closing it.

7.135.2 The ffl ush function

The ffl ush function ensures that output has been forced out of interna 1/0 buffers for a specified
sream. Occasondly, however, it is necessary to ensure that all output is forced out, and the
programmer may not conveniently be able to specify al the currently-open streams (perhaps because
some streams are manipulated within library pat:kag;;eﬁ).9 To provide an implementation-independent
method of flushing all output buffers, the Standard specifiesthat thisisthe result of caling ffl ush
withaNULL argument.

7.135.3 The fopen function

The b type modifier has been added to deal with the text/binary dichotomy (see §7.13.2). Because of
the limited ability to seek within text files (see §7.13.9.1), an implementation is at liberty to treat the old

update + modes as i were also specified.

Table 4.1 tabulates the capabilities and actions associated with the various specified mode string

arguments tof open.

9
For instance, on a system (such as UNIX) which supports process forks, it is usually necessary to flush all output buffers just prior to the
fork.

106

10

15

20

25

30

35

RATIONALE WG14/N802 J11/98-001

Table 4.1: File and stream properties of f open modes

r w a r+ | w+ | at

file must exist before open 0 0
old file contents discarded on open 0

stream can be read 0

stream can be written O

stream can be written only at end

Other specifications for files, such as record length and block size, are not specified in the Standard,
due to their widely varying characteristics in different operating environments. Changes to file access
modes and buffer sizes may be specified using the setvbuf function. (See §7.13.5.6.) An
implementation may choose to allow additional file specifications as part oftttle string argument.
For instance,

filel = fopen(filelnane, "wb, recl en=80");

might be a reasonable way, on a system which provides record-oriented binary files, for an
implementation to allow a programmer to specify record length.

A change of input/output direction on an update file is only allowed followifigg @t pos, fseek,
rew nd, or ffl ush operation, since these are precisely the functions which assure that the I/O
buffer has been flushed.

The Standard (§7.13.2) imposes the requirement that binary files not be truncated when they are
updated. This rule does not preclude an implementation from supporting additional file types that do
truncate when written to, even when they are opened with the same $avpef call. Magnetic

tape files are an example of a file type that must be handled this way. (On most tape hardware it is
impossible to write to a tape without destroying immediately following data.) Hence tape files are not
"binary files" within the meaning of the Standard. A conforming hosted implementation must provide
(and document) at least one file type (on disk, most likely) that behaves exactly as specified in the
Standard.

7.13.5.4 Thef r eopen function

7.13.5.5 Theset buf function

set buf is subsumed byset vbuf | but has been retained for compatibility with old code.
7.13.5.6 Theset vbuf function

set vbuf has been adopted from UNIX System V, both to control the nature of stream buffering and
to specify the size of I/O buffers. An implementation is not required to make actual use of a buffer

107

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

provided for a stream, so aprogram must never expect the buffer’s contents to reflect 1/0O operations.
Further, the Standard does not require that the requested buffering be implemented; it merely mandates
astandard mechanism for requesting whatever buffering services might be provided.

Although three types of buffering are defined, an implementation may choose to make one or more of
them equivalent. For example, a library may choose to implement line-buffering for binary files as
equivaent to unbuffered 1/0 or may choose to aways implement full-buffering as equivalent to
line-buffering.

The generd principle is to provide portable code with a means of regquesting the most appropriate
popular buffering style, but not to require an implementation to support these styles.

7.13.6 Formatted input/output functions
7.136.1 The fprintf function

A new feature for C9X. The modifier Mhas been added to the integer conversion specifiers, indicating
that the corresponding argument hastypei nt max_t or ui nt max_t .

Use of the L modifier with floating conversions has been added to ded with formatted output of the
new type | ong doubl e,

Note that the %X and % formats expect a corresponding i nt argument; % X or % X must be
suppliedwitha | ong i nt argument.

The conversion specification %9 has been added for pointer conversion, since the size of a pointer is
not necessarily the same as the size of an | Nt . Because an implementation may support more than
one size of pointer, the corresponding argument is expectedto bea (voi d *) pointer.

The % format has been added to permit ascertaining the number of characters converted up to that
point in the current invocation of the formatter.

Some pre-Standard implementations switch formats for %@ at an exponent of -3 instead of (the
Standard’s) -4: existing code which requires the format switch at -3 will have to be changed.

Some exigting implementations provide D and % as synonyms or replacementsfor % d and % o.
The Committee considered the latter notation preferable.

The Committee has reserved lower case conversion specifiers for future standardization.

The use of leading zero in field widths to specify zero padding has been superseded by a precision field.
The older mechanism has been retained.

Some implementations have provided the format % as a means of indirectly passing a variable-length
argument lis. The functions vfprintf etc., are considered to be a more controlled method of
effecting thisindirection, so % was not adopted in the Standard. (See §7.13.6.8.)

The printing formats for numbers is not entirely specified. The requirements of the Standard are loose

108

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

enough to alow implementations to handle such cases as Signed zero, not-a-number, and infinity in an
appropriate fashion.

7.13.6.2 The fscanf function
The specification of f scanf isbased in part on these principles:
. As soon as one specified conversion fails, the whole function invocation fails.

. One-character pushback is sufficient for the implementatiohssfanf . Given the
invalid field "™ . X", the characters " " are not pushed back.

. If a "flawed field" is detected, no value is stored for the corresponding argument.

. The conversions performed bffscanf are compatible with those performed by
strtodandstrtol.

Input pointer conversion witt?® has been added, although it is obviously risky, for symmetry with
fprintf. The % format has been added to permit the scanner to determine the radix of the
number in the input stream; tHdn format has been added to make available the number of characters
scanned thus far in the current invocation of the scanner.

White space is now defined by thesspace function. (See §7.3.1.10.)

An implementation must not use thenget ¢ function to perform the necessary one-character
pushback. In particular, since the unmatched text is left "unread," the file position indicator as reported
by the ft el | function must be the position of the character remaining to be read. Furthermore, if the
unread characters were themselves pushed backnggt ¢ calls, the pushback if scanf must

not affect the push-back stack imget c. A scanf call that matches N characters from a stream
must leave the stream in the same state as if N conse@étive calls had been issued.

7.13.6.3 Thepri ntf function

See comments of section §7.13.6.1 above.

7.13.6.4 Thescanf function

See comments in section §7.13.6.2 above.

7.13.6.5 Thesprintf function

See §7.13.6.1 for comments on output formatting.

In the interests of minimizing redundancgpri ntf has subsumed the older, rather uncommon,
ecvt, fcvt,and gcvt.

7.13.6.6 Thesnpri ntf function

109

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

snprintf isanewfeature for COX. Thespri ntf function is very useful, but can overrun the
output buffer; that has been exploited in attacks on computer and network security. C9X
addresses this problem by adding the snpri ntf function, modeled after the 4.4BSD version,
which performs bounds checking on the output array.

7.13.6.7 The sscanf function

The behavior of sscanf on encountering end of string has been clarified. See adso comments in
section §7.13.6.2 above.

7.13.6.8 Thevfprintf function

The functionsVvf printf vprintf, and vsprintf have been adopted from UNIX System V
to facilitate writing special purpose formatted output functions.

7.13.6.9 Thevprintf function
See 87.13.6.8.

7.13.6.10 Thevspri ntf function
See §7.13.6.8.

7.13.6.11 Thevsnprintf function
See 8§87.13.6.6

7.13.6.12 Thevf scanf function
7.13.6.13 Thevscanf function
7.13.6.14 Thevsscanf function
7.13.7 Character input/output functions
7.13.7.1 Thef get ¢ function

Because much existing code assumes thggt ¢ and f put ¢ are the actual functions equivalent to
the macrosget ¢ and put c, the Standard requires that they not be implemented as macros.

7.13.7.2 Thef get s function

This function subsumeget s, which has no limit to prevent storage overwrite on arbitrary input (see
§7.13.7.7).

7.13.7.3 Thef put ¢ function
See §7.13.7.1.

7.13.7.4 Thef put s function

7.13.7.5 Theget c function
110

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

get c and put ¢ have often been implemented as unsafe macros, sinceit is difficult in such a macro to
touchthe st reamargument only once. Since thisdanger iscommon in prior art, these two functions
are explicitly permitted to evduate St r eammore than once.

7.13.7.6 The get char function

7.13.7.7 The get s function
See 87.13.7.2.

7.13.7.8 Theput c function
See §7.13.7.5.

7.13.7.9 Theput char function
7.13.7.10 Theput s function

put s('s) is not exactly equivalent té put s(st dout, s); puts also writes a new line after the
argument string. This incompatibility reflects existing practice.

7.13.7.11 Theunget c function

The Base Document requires that at least one character be readWaf®eC is called, in certain
implementation-specific cases. The Committee has removed this requirement, thus olffiging a
structure to have room to store one character of pushback regardless of the state of the buffer; it felt
that this degree of generality makes clearer the ways in which the function may be used.

It is permissible to push back a different character than that which was read; this accords with common
existing practice. The last-in, first-out naturewiget C has been clarified.

unget ¢ is typically used to handle algorithms, such as tokenization, which involve one-character
lookahead in text files. f seek and ftel | are used for random access, typically in binary fles. So
that these disparate file-handling disciplines are not unnecessarily linked, the value of a text file's file
position indicator immediately afteunget ¢ has been specified as indeterminate.

Existing practice relies on two different models of the effectusiget c. One model can be
characterized as writing the pushed-back character "on top of" the previous character. This model
implies an implementation in which the pushed-back characters are stored within the file buffer and
bookkeeping is performed by setting the file position indicator to the previous character position.
(Care must be taken in this model to recover the overwritten character values when the pushed-back
characters are discarded as a result of other operations on the stream.) The other model can be
characterized as pushing the character "between" the current character and the previous character.
This implies an implementation in which the pushed-back characters are specially buffered (within the
FILE structure, say) and accounted for by a flag or count. In this model it is matu@move the

fle position indicator. The indeterminacy of the file position indicator while pushed-back characters
exist accommodates both models.

Mandating either model (by specifying the effectwfiget ¢ on a text file's file position indicator)
111

10

15

20

25

30

35

40

WG14/N802 J11/98-001 RATIONALE

crestes problems with implementations that have assumed the other model. Requiring the file postion
indicator not to change after unget ¢ would necessitate changes in programs which combine random
access and tokenization on text files, and rely on the file position indicator marking the end of a token
even after pushback. Requiring the file postion indicator to back up would creste severe
implementation problems in certain environments, since in some file organizations it can be impossible
to find tq% previous input character position without having read the file sequentialy to the point in
question.

7.13.8 Direct input/output functions
7.13.8.1 The fread function

si ze_t is the appropriate type both for an object size and for an array bound (see 8§6.3.3.4), so this is
the type ofsi ze and nel em

7.13.8.2 Thef wri t e function
See §7.13.8.1.

7.13.9 Filepostioning functions
7.13.9.1 Thef get pos function

f get pos and f set pos have been added to allow random access operations on files which are too
large to handle withf seek and ftel | .

7.13.9.2 Thef seek function

Whereas a binary file can be treated as an ordered sequence of bytes, counting from zero, a text file
need not map one-to-one to its internal representation (see 87.13.2). Thus, only seeks to an earlier
reported position are permitted for text fles. The need to encode both record position and position
within a record in al ong value may constrain the size of text files upon wHigeek-ftel I can

be used to be considerably smaller than the size of binary files.

Given these restrictions, the Committee still felt that this function has enough utility, and is used in
sufficient existing code, to warrant its retention in the Standaifdget pos and f set pos have
been added to deal with files which are too large to handlefvgitek and ftel | .

The f seek function will reset the end-of-file flag for the stream; the error flag is not changed unless
an error occurs, when it will be set.

7.13.9.3 Thef set pos function

7.13.9.4 Theftell function

10
Congder, for instance, a sequential file of variable-length records in which a lineis represented as a count field followed by the characters

intheline. Thefile position indicator must encode a character position as the position of the count field plus an offset into the line; from the position of
the count field and the length of the line, the next count field can be found. Insufficient information is available for finding the previous count field, so
backing up from thefirst character of aline necessitates, in the general case, a sequential read from the start of thefile.

112

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

ftell canfail for at least two reasons:

. the stream is associated with a terminal, or some other file type for fillaipbsition
indicator is meaningless; or

. the file may be positioned at a location not representablé ibreg i nt .
Thus a method foif t el | to report failure has been specified. See also §7.13.9.1.
7.13.9.5 Ther ew nd function

Resetting the end-of-file and error indicators was added to the specificati@wohd to
make the specification more logically consistent.

7.13.10 Error-handling functions

7.13.10.1 Thecl earerr function

7.13.10.2 Thef eof function

7.13.10.3 Thef error function

7.13.10.4 Theperror function

At various times, the Committee considered providing a fornp@fr or that delivers up an error

string version of errno without performing any output. It ultimately decided to provide this
capability in a separate functiost rerror. (See §7.15.6.1).

7.14 General Utilities <stdlib. h>

The header<st dl i b. h> was invented by the Committee to hold an assortment of functions that
were otherwise homeless.

7.141 String converson functions

7.14.1.1 Theat of function

atof , atoi, and at ol are subsumed bgt rtod and strtol , but have been retained because

they are used extensively in existing code. They are less reliable, but may be faster if the argument is

known to be in a valid range.

7.14.1.2 Theat oi function
See §7.14.1.1.

7.14.1.3 Theat ol function
See §7.14.1.1.

113

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

7.141.4 The atol | function
7.14.15 The strt od function

strtodand strtol have been adopted (from UNIX System V) because they offer more control
over the conversion process, and because they are required not to produce unexpected results on
overflow during conversion.

7.14.1.6 The strtof function
7.14.1.7 The strtol d function

7.14.1.8 The strtol function
See §7.14.1.5.

7.14.19 Thestrtoll function
7.14.1.10 Thestrtoul function

strtoul was introduced by the Committee to provide a facility lier t ol for unsi gned
| ong values. Simply usingst rt ol in such cases could result in overflow upon conversion.

7.14.1.11 Thestrtoul | function
7.14.2 Pseudo-random sequence generation functions
7.14.2.1 Ther and function

The Committee decided that an implementation should be allowed to prowvidedfunction which
generates the best random sequence possible in that implementation, and therefore mandated no
standard algorithm. It recognized the value, however, of being able to generate the same
pseudo-random sequence in different implementations, and so it has published as an example in the
Standard an algorithm that generates the same pseudo-random sequence in any conforming
implementation, given the same seed.

7.14.2.2 Thesr and function
7.143 Memory management functions

The treatment of null pointers and 0-length allocation requests in the definition of these functions was
in part guided by a desire to support this paradigm:

BJ * p; /* pointer to a variable list of BJ's */

I* initial allocation */
p=(0BJ *) calloc(0, sizeof (0BJ));
[* ... *l

*

I* reallocations until size settles */
114

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

while(/* |ist changes size to ¢ *I) {
p = (0BJ *) realloc((void *)p, c*sizeof (CBJ));

[* o0 %

}

This coding style, not necessarily endorsed by the Committee, is reported to be in widespread use.

Some implementations have returned non-null values for allocation requests of O bytes. Although this
strategy has the theoretical advantage of distinguishing between "nothing” and "zero” (an unalocated
pointer vs. a pointer to zero-length space), it has the more compelling theoretical disadvantage of
requiring the concept of a zero-length object. Since such objects cannot be declared, the only way they
could come into existence would be through such alocation requests.

The Committee has decided not to accept the idea of zero-length objects. The dlocation functions
may therefore return a null pointer for an alocation request of zero bytes. Note that this treatment
does not preclude the paradigm outlined above.

QUIET CHANGE

A program which relies on size-0 allocation requests returning a non-null pointer will
behave differently.

Some implementations provide a function (often called al | oca) which alocates the requested object
from automatic storage; the object is automaticaly freed when the cdling function exits. Such a
function is not efficiently implementable in a variety of environments, so it was not adopted in the
Standard.

7.14.3.1 The cal | oc function

Both nel emand el si ze must be of type Si ze_t , for reasons similar to those for fread (see
§7.13.8.1).

If a scalar with all bits zero is not interpreted as a zero value by an implementationatHepc may
have astonishing results in existing programs transported there.

7.14.3.2 Thef r ee function

The Standard makes clear that a program may only free that which has been allocated, that an
allocation may only be freed once, and that a region may not be accessed once it is freed. Some
implementations allow more dangerous license. The null pointer is specified as a valid argument to this

function to reduce the need for special-case coding.
7.14.3.3 Themal | oc function

7.14.3.4 Ther eal | oc function

A null first argument is permissible. If the first argument is not null, and the second argument is O, then
the call frees the memory pointed to by the first argument, and a null argument may be returned; this

specification is consistent with the policy of not allowing zero-size objects.
115

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

7.14.4 Communication with the environment
7.14.41 The abort function

The Committee vacillated over whether acall to abort should returnif the si gnal Sl GABRT is
caught or ignored. To minimize astonishment, the final decisonwasthat abor t never returns.

71442 The atexit function

at exi t provides a program with a convenient way to clean up the environment before it exits. It is
adapted from the Whitesmiths C run-time library function onexi t .

A suggested dternative wasto use the SI GTERM{acility of the signal/raise machinery, but that would
not give the lagt-in first-out stacking of multiple functions so useful with at exi t .

It is the responsibility of the library to maintain the chain of registered functions so that they are
invoked in the correct sequence upon program exit.

7.14.4.3 The exit function

The argument to exi t is a status indication returned to the invoking environment. In the UNIX
operating system, avalue of 0 is the successful return code from a program. As usage of C has spread
beyond UNIX, exit (0) has often been retained as an idiom indicating successful termination, even
on operating sysems with different syssems of return codes. This usage is thus recognized as
standard. There has never been a portable way of indicating a non-successful termination, since the
argumentsto exi t are then implementation-defined. The macro EXI T_FAI LURE has been added
to provide such a capability. (EXI T_SUCCESS has been added as well.)

Aside from calls explicitly coded by a programmer, exi t isinvoked on return from nai n. Thusin
at least this case, the body of exi t cannot assume the existence of any objects with autometic storage
duration (except those declared in exi t).

7.144.4 The get env function

The definition of get env is designed to accommodate both implementations that have al in-memory
read-only environment strings and those that may have to read an environment string into a static
buffer. Hence the pointer returned by the get env function points to a string not modifiable by the
cdler. If an attempt is made to change this string, the behavior of future cals to getenv is
undefined.

A corresponding put env function was omitted from the Standard, since its utility outsde a
multi-process environment is questionable, and since its definition is properly the domain of an
operating system standard.

7.14.45 The syst emfunction

The syst emfunction allows a program to suspend its execution temporarily in order to run another
116

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001
program to completion.

Information may be passed to the called program in three ways. through command-line argument
srings, through the environment, and (most portably) through data files. Before cdling the system
function, the calling program should close al such datafiles.

Information may be returned from the called program in two ways through the
implementation-defined return value (in many implementations, the termination status code which is the
argument to the exi t function is returned by the implementation to the caller asthe value returned by
the syst emfunction), and (most portably) through datafiles.

If the environment is interactive, information may also be exchanged with users of interactive devices.
Some implementations offer built-in programs cdled "commands® (for example, "date”) which may
provide useful information to an application program via the system function. The Standard does not
attempt to characterize such commands, and their useis not portable.

On the other hand, the use of the syst emfunction is portable, provided the implementation supports
the capability. The Standard permits the application to ascertain this by caling the syst emfunction
with anull pointer argument. Whether more levels of nesting are supported can aso be ascertained this
waly; assuming more than one such level is obvioudy dangerous.

7.145 Searching and sorting utilities

7.145.2 The bsear ch function

7.145.1 The gsort function

7.14.6 Integer arithmetic functions

abs was moved from <mat h. h> as it was the only function in that library which did not involve
doubl e arithmetic. Some programs have included <mat h. h> splely to gain accessto abs, but in
some implementations this results in unused floating-point run-time routines becoming part of the
trandated program.

7.14.6.1 The abs function

The Committee relected proposals to add an absolute value operator to the language. An
implementation can provide a built-in function for efficiency.

7.14.6.2 The di v function

div and 1div provide a well-specified semantics for signed integral divison and remainder
operations. The semantics were adopted to be the same asin FORTRAN. Since these functions return
both the quotient and the remainder, they also serve as a convenient way of efficiently modelling
underlying hardware that computes both results as part of the same operation. Table 7.2 summarizes
the semantics of these functions.

Table 7.2: resultsof di v and | div

117

10

15

20

25

30

35

40

WG14/N802 J11/98-001 RATIONALE

number denom quot rem
7 3 2 1
-7 3 -2 -1
7 -3 -2 1
-7 -3 2 -1

Divide-by-zero is described as undefined behavior rather than as setting errno to EDOM The
program can as easlly check for a zero divisor before adivison as for an error code afterwards, and the
adopted scheme reduces the burden on the function.

7.14.6.3 The | abs function

7.14.6.4 The || abs function

7.14.65 The | di v function

7.14.6.6 The || di v function

7.14.7 Multibyte character functions

See 85.2.1.2 for an overall discussion of multibyte character representations and widecharacters.
7.14.7.1 Thenbl en function

7.14.7.2 Thenbt owc function

7.14.7.3 Thewct onb function

7.14.8 Multibyte tring functions

See 85.2.1.2 for an overall discussion of multibyte character representations and wide characters.
7.14.8.1 Thenbst owcs function

7.14.8.2 Thewcst onbs function

7.15 String Handling <string. h>

The Committee felt that the functions in this section were all excellent candidates for replacement by
high-performance built-in operations. Hence many simple functions have been retained, and several
added, just to leave the door open for better implementations of these common operations.

The Standard reserves function names beginning $tith or memfor possible future use.

118

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

7.151 String function conventions

mencpy, nenset, nencnp, and nenthr have been adopted from severa exigting
implementations. The general god was to provide equivaent capabilities for three types of byte
sequences.

. null-terminated stringssg r -),
. null-terminated strings with a maximum lengsit { n-), and
. transparent data of specified lengtei(t).

7.15.2 Copying functions

A block copy routine should be "right™ it should work correctly even if the blocks being copied
overlap. Otherwise it is more difficult to correctly code such overlapping copy operations, and
portability suffers bcause the optimal C-coded algorithm on one machine may be horribly slow on
another.

A block copy routine should be “fast": it should be implementable as a few inline instructions which
take maximum advantage of any block copy provisions of the hardware. Checking for overlapping
copies produces too much code for convenient inlining in many implementations. The programmer
knows in a great many cases that the two blocks cannot possibly overlap, so the space and time
overhead are for naught.

These arguments are contradictory but each is dimgpe Therefore the Standard mandates two
block copy functions:memrmove is required to work correctly even if the source and destination
overlap, while mentpy can presume nonoverlapping operands and be optimized accordingly.

7.15.2.1 Thenmentpy function

7.15.2.2 Themenmove function

7.15.2.3 Thestr cpy function

7.15.2.4 Thestrncpy function

st rncpy was initially introduced into the C library to deal with fixed-length name fields in structures
such as directory entries. Such fields are not used in the same way as strings: the trailing null is
unnecessary for a maximum-length field, and setting trailing bytes for shorter names to null assures
efficient field-wise comparisons. strncpy is not by origin a "boundedstrcpy,” and the
Committee has preferred to recognize existing practice rather than alter the function to better suit it to
such use.

7.15.3 Concatenation functions

7.15.3.1 Thestrcat function

119

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001 RATIONALE

7.15.3.2 The strncat function
Note that thisfunction may add n+1 charactersto the string.
7.154 Comparison functions

7.15.4.1 The mentnp function
See 87.15.1.

7.15.4.2 Thestr cnp function

7.15.4.3 Thestrcol | function

strcol | and strxfrmprovide forlocale-specific string sorting. strcol | is intended for
applications in which the number of comparisons is sradll; xf r mis more appropriate when items
are to be compared a number of times - the cost of transformation is then only paid once.

7.15.4.4 Thestrncnp function

7.15.4.5 Thest r xf r mfunction
See §7.15.4.3.

7.155 Search functions

7.15.5.1 Thenenthr function
See §7.15.1.

7.15.5.2 Thestrchr function
7.15.5.3 Thest r cspn function
7.155.4 Thest r pbr Kk function
7.155.5 Thestrrchr function
7.15.5.6 Thest r spn function
7.15.5.7 Thestrstr function

The strstr function is an invention of the Committee. It is included as a hook for efficient
substring algorithms, or for built-in substring instructions.

7.15.5.8 Thest rt ok function

This function has been included to provide a convenient solution to many simple problems of lexical
analysis, such as scanning command line arguments.

7156 Miscdlaneousfunctions
120

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

7.156.1 The nenset function
See §7.15.1, and §7.14.3.1.

7.15.6.2 Thestrerror function

This function is a descendant gfer r or (see §7.13.10.4). It is defined such that it can return a
pointer to an in-memory read-only string, or can copy a string into a static buffer on each call.

7.15.6.3 Thest rl en function

This function is now specified as returning a value of tgpee_t . (See §6.3.3.4.)

7.16. DATEANDTIME <time. h>
7.16.1 Componentsof time

The typescl ock_t and ti me_t are arithmetic because values of these types must, in accordance
with existing practice, on occasion be compared with -1 (a "don't-know" indication) suitably cast. No
arithmetic properties of these types are defined by the Standard, however, in order to allow
implementations the maximum flexibility in choosing ranges, precisions, and representations most
appropriate to their intended application. The representation need not be a count of some basic unit; an
implementation might conceivably represent different components of a temporal value as subfields of
an integral type.

Many C environments do not support the Base Document library concepts of daylight savings or time
zones. Both notions are defined geographically and politically, and thus may require more knowledge
about the real world than an implementation can support. Hence the Standard specifies the date and
time functions such that information about DST and time zones is not required. The Base Document
function t zset , which would require dealing with time zones, has been excluded altogether. An
implementation reports that information about DST is not available by settifgnthesdst field in

a broken-down time to a negative value. An implementation may return a null pointer from a call to
gnt i me if information about the displacement between Universal TirdeGMT) and loca time is

not available.

7.16.2 Timemanipulation functions
7.16.21 The cl ock function

The function isintended for measuring intervals of execution time, in whatever units an implementation
desires. The conflicting goals of high resolution, long interval capacity, and low timer overhead must
be balanced carefully in the light of thisintended use.

7.16.2.2 The di ffti me function

di ffti me isaninvention of the Committee. It is provided so that an implementation can store an
indication of the date/time vaue in the most efficient format possble and ill provide a method of
caculating the difference between two times.

121

10

15

20

25

30

35

40

45

50

WG14/N802 J11/98-001 RATIONALE

7.16.2.3 The nkti ne function

mkt i me was invented by the Committee to complete the set of time functions. With this function it
becomes possible to perform portable calculations involving clock times and broken-down times.

The rules on the ranges of the fields within the *ti meptr record are crafted to permit useful
arithmetic to be done. For instance, here is a paradigm for continuing some loop for an hour:

#1 ncl ude <tine. h>
struct tm when;

tinme t now,
tinme t deadl i ne;
[* ... *

now = tinme(0);

when = *| ocal ti me(&ow);

when.tmbhour +=1; /* result is in the range [1,24] *I
deadl i ne = nkti me(&when);

rlntfg"LooniII finish: %\n", asctine(&hen));
while (difftinme(deadline, tine(0)) > 0) whatever();

The specification of nkti me guarantees that the addition to the t m hour field produces the
correct result even when the new value of t m_hour is 24, i.e,, a vaue outside the range ever
returned by alibrary functionina struct t mobject.

One of the reasons for adding this function is to replace the capability to do such arithmetic which is
lost when a programmer cannot depend on ti me_t being an integra multiple of some known time
unit.

Severd readers of earlier versons of this Rationade have pointed out apparent problemsin this example
if nowisjust before atrangtion into or out of daylight savings time. However, when. t m i sdst
indicates what sort of time was the basis of the calculation. Implementors, take heed. If thisfield is set
to -1 on input, one truly ambiguous case involves the trangtion out of daylight savingstime. As DST
Is currently legidated in the USA, the hour 0100-0159 occurs twice, first as DST and then as standard
time. Hence an unlabeled 0130 on this date is problematic. An implementation may choose to take
this as DST or standard time, marking its decision inthe t m_i sdst field. It may aso legitimately
takethisasinvaid input (and return (tinme_t) (-1)).

7.16.24 The nkxti me function

7.16.25 The ti me function

Since no measure is given for how precise an implementation’'s best approximation to the current time
must be, an implementation could aways return the same date, instead of amore honest -1. Thisis, of
course, not the intent.

7.16.2.6 Normalization of broken-down times

122

10

15

20

25

30

35

40

45

RATIONALE WG14/N802 J11/98-001

7.16.3 Timeconverson functions
7.16.3.1 The ascti ne function

asct i me Although the name of this function suggests a conflict with the principle of removing ASCI|
dependencies from the Standard, the name has been retained due to prior art. For the same reason of
exigting practice, a proposa to remove the newline character from the string format was not adopted.
Proposals to dlow for the use of languages other than English in naming weekdays and months met
with objections on grounds of prior art, and on grounds that a truly international verson of this
function was difficult to specify: three-letter abbreviation of weekday and month names is not
universally conventiond, for instance. The strfti me function (87.16.3.6) provides appropriate
facilities for locale-specific date and time strings.

7.16.3.2 Thect i ne function

7.16.3.3 Thegnt i me function

This function has been retained, despite objections that GMT - that is, Coordinated Universal Time
(UTC) - is not available in some implementations, since UTC is a useful and widespread standard
representation of time. If UTC is not available, a null pointer may be returned.

7.16.3.4 Thel ocal ti e function

7.16.3.5 Thezonet i e function

7.16.3.6 Thestrfti me function

strftime provides a way of formatting the date and time in the appropriate locale-specific fashion,
using the %€, %, and %X format specifiers. More generally, it allows the programmer to tailor
whatever date and time format is appropriate for a given application. The facility is based on the UNIX
systemdat e command. See 87.5 for further discussion of locale specification. For the field controlled
by %°, an implementation may wish to provide special symbols to mark noon and midnight.

7.16.3.7 Thestrfxti me function

7.17 Alternative spellings <i s0646. h>

7.18 Wide-chatacer classification and mapping utilities <wct ype. h>
7.181 Introduction

7182 Wide-character classfication utilities

7.18.2.1 Wide-character classification functions

7.18.2.1.1 Théeswal numfunction

7.18.2.1.2 Theswal pha function
123

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001

7.18.2.1.3 Thei swbl ank function

7.182.1.4 Theiswentr!| function

7.18.2.15 Thei swdi gi t function

7.182.1.6 Thei swgr aph function

7.18.2.1.7 Thei sw ower function

7.18.2.1.8 Thei swpri nt function

7.18.2.1.9 Thei swpunct function

7.182.1.10 Thei swspace function

7182111 Thei swupper function

7.18.2.1.12 Thei swxdi gi t function

7.18.2.2 Extensble wide-character classfication functions
7.18.2.2.1 Thewct ype function

7.18222 Thei swct ype function

7.18.3 Wide-character mapping utilities

7.18.3.1 Wide-character case-mapping functions
7.18.3.1.1 Thetow ower function

7.18.3.1.2 Thet owupper function

7.18.3.2 Extensble wide-character mapping functions
7.18.3.2.1 Thewctrans function

7.18.3.2.2 Thet owct r ans function

Extended multibyte and wide-char acter utilities <wchar . h>

7.19.1 Introduction
7.19.2 Formatted wide-character input-output functions

71921 Thefwprintf function
124

RATIONALE

10

15

20

25

30

35

40

45

RATIONALE

7.19.2.2

7.19.2.3

7.19.24

7.19.2.5

7.19.2.6

7.19.2.7

7.19.2.8

7.19.2.9

Thef wscanf function
Thewpr i nt f function
Thewscanf function
Theswpri nt f function
Theswscanf function
Thevfwprintf function
Thevwpri nt f function

Thevswpr i nt f function

7.19.2.10 Thevfwscanf function

7.19.211 Thevwscanf function

7.19.2.12 Thevswscanf function

7.19.3 Wide-character input-output functions

7.193.1

7.19.3.2

7.19.33

7.19.34

7.19.35

7.19.3.6

7.19.3.7

7.19.3.8

7.19.39

Thef get we function
Thef get ws function
Thef put we function
Thef put ws function
Theget we function
Theget wehar function
The put we function
The put wehar function

Theunget wc function

7.19.3.10 Thef w de function

7.19.4 General wide-gtring utilities

7.19.4.1 Wide-string numeric conversion functions

WG14/N802 J11/98-001

125

10

15

20

25

30

35

40

45

WG14/N802 J11/98-001

719411

7.194.1.2

7.194.1.3

7.194.14

7.194.15

7.19.4.1.6

7.194.1.7

Thewcst od function
Thewcst of function
Thewcst ol d function
Thewcst ol function
Thewcst ol | function
Thewcst oul function

Thewcst oul | function

7.19.4.2 Wide-gtring copying functions

719421

7.194.2.2

Thewcscpy function

Thewcsncpy function

7.19.4.3 Wide-gtring concatenation functions

719431

7.19.4.3.2

Thewcscat function

Thewcsncat function

7.19.44 Wide-string comparison functions

719441

7.19.4.4.2

719443

719444

Thewcscnp function
Thewcscol | function
Thewcsncnp function

Thewcsxf r mfunction

7.19.45 Wide-gtring search functions

719451

7.19.4.5.2

7.1945.3

719454

7.19455
126

Thewcschr function

Thewcscspn function
Thewcspbr k function
Thewcsr chr function

Thewcsspn function

RATIONALE

10

15

20

25

30

35

40

45

RATIONALE

719456 Thewcsstr function
7.19.45.7 Thewcst ok function
7.19.45.8 Thewcsl! en function
7.19.4.6 Wide-character array functions
7.19.4.6.1 Thewrenthr function
7.19.4.6.2 Thewrentnp function
7.19.4.6.3 Thewrentpy function
7.19.4.6.4 Thewremmove function
7.194.65 Thewrenset function
7195 Thewcsfti e function

7.19.6 Thewcsf xt i me function

7.19.7 Extended multibyte and wide-character conversion utilities

7.19.7.1 Single-byte wide-character conversion functions

7.19.7.1.1 Thebt owc function

7.19.7.1.2 Thewct ob function

7.19.7.2 Thenbsi nit function

7.19.7.3 Redstartable multibyte-wide-character conversion functions
7.19.7.3.1 Thenbrl en function

7.19.7.3.2 Thenbrt owc function

7.19.7.3.3 Thewcrt onb function

7.19.7.4 Redtartable multibyte-wide-string conversion functions
7.19.7.4.1 Thenbsrtowcs function

7.19.7.4.2 Thewcsrt onbs function

7.20 Futurelibrary directions

WG14/N802 J11/98-001

127

10

15

20

WG14/N802 J11/98-001 RATIONALE

7.20. Errors <errno. h>

7.20.2 Character handling <ctype. h>

7.20.3 Integral types <i nttypes. h>

7.20.4 Localization <l ocal e. h>

7.205 Sgnal handling <si gnal . h>

7.20.6 Input/output <stdi o. h>

7.20.7 General utilities <stdl i b. h>

7.20.8 Complex arithmetic <conpl ex. h>

7209 Stringhandling <string. h>

7.20.10 Wide-character classfication and mapping utilities <wct ype. h>

7.20.11 Extended multibyte and wide-character utilities <wchar . h>

128

RATIONALE WG14/N802 J11/98-001

8. ANNEXES

Most of the material in the appendices is not new. It is Smply a summary of information in the
Standard, collated for the convenience of users of the Standard.

New (advisory) information is found in Annex J (Common warnings) and in Annex K.5 (Common

extensons). The section on common extensions is provided in part to give programmers even further
information which may be useful in avoiding features of loca dialects of C.

129

WG14/N802 J11/98-001 RATIONALE

130

10

15

20

25

30

35

40

45

MSE RATIONALE

A. MSE ANNEX (new text)

This annex text was taken from the rational e furnished with the AMENDMENT SO 9899: 1990/DAM
1 document. The references to the AMENDMENT document are correct for the AMENDMENT 10
9899: 1990/DAM 1 document but are not correct for the C9X working paper.

A.1 M SE Background

Mogt traditional computer systems and computer languages, including traditiona C, have an
assumption (sometimes undocumented) that a "character” can be handled as an atomic quantity
associated with a single memory storage unit — a "byte” or something similar. This is not true in

generd. For example, a Japanese, Chinese, or Korean character usualy requires a representation of

two or three bytes, thisis a multibyte character as defined by ISO/IEC 9899:1990 § 6.13. Even in the
Latin world, a multibyte coded character set may appear in the near future. This confiict is called a
byte and character problem.

A related concern in this area is how to address having at least two different meanings for string length:
number of bytes and number of characters.

To cope with these problems, many technical experts, particularly in Japan, have developed their own
sets of additional multibyte character functions, sometimes independently and sometimes cooperatively.
Fortunately, the developed extensions are actually quite similar. It can be said that in the process they
have found common features for multibyte character support. Moreover, the industry currently has
many good implementations of such support.

The above in no way denigrates the important groundwork in multibyte and wide-character
programming provided by ISO/IE€899:1990:

» Both the source and execution character sets can contain multibyte characters (with possibly
different encodings), even in the "C" locale.

» Multibyte characters are permitted in comments, string literals, character constants, and header
names.

* The language supports wide-character constants and strings.
» The library has five basic functions that convert between multibyte and wide characters.

However, these five functions are often too restrictive and too primitive to develop portable
international programs that manage characters. Consider a simple program that wants to count the
number of characters, not bytes, in its input.

The prototypical program,

#i ncl ude <stdio. h>
int main(void) {
int ¢, n=0;
while ((c = getchar()) != ECF)
n++;

10

15

20

25

30

MSE RATIONALE

printf("Count = %\\n", n);
return O;

does not work as expected if the input contains multibyte characters; it dways counts the number of
bytes. It is certainly possble to rewrite this program using just some of the five basic conversion
functions, but the smplicity and elegance of the above are lost.

ISO/IEC 9899:1990 deliberately chose not to invent a more complete multibyte and wide-character
library, choosing instead to await their natura development as the C community acquired more
experience with wide characters. The task of committee 1SO JTC1/SC22/WG14 weas to study the
various existing implementations and, with care, develop this first amendment to |SO/IEC 9899:1990.
The st of developed library functionsis commonly called the MSE (Multibyte Support Extension).

Similarly, 1ISO/IEC 9899:1990 deliberately chose not to address in detail the problem of writing C
source code with character sets such as the nationd variants of 1SO 646. These variants often redefine
severa of the punctuation characters used to write a number of C tokens. The (admittedly partial)
solution adopted was to add trigraphsto the language. Thus, for example, ??< can appear anywhere
inaC programthat { can appear, even within a character constant or a string literal.

This amendment responds to an international sentiment that more readable alternatives should also be
provided, wherever possble. Thus, it adds to the language dternate spellings of several tokens. It adso
adds a library header, <i s0646. h>, that defines a number of macros that expand to ill other
tokens which are less readable when spelled with trigraphs. Note, however, that trigraphs are ill the
only aternative to writing certain characters within a character constant or a string literd.

An important god of any amendment to an internationa standard is to minimize quiet changes —
changes in the definition of a programming language that transform a previoudy valid program into
another valid program, or into an invalid program that need not generate a diagnostic message, with
different behavior. (By contrast, changes that invalidate a previoudy vaid program are generaly
conddered paatable if they generate an obligatory diagnostic message at trandation time.)
Nevertheless, this amendment knowingly introduces two classes of quiet changes:

* new tokens— The tokens % and % % are just sequences of preprocessing tokens in
ISO/IEC 9899:1990 but become single preprocessing tokens with specific meanings in this
amendment. An existing program that uses either of these tokens in a macro argument can
behave differently as a result of this amendment.

* new function names— Several names (with external linkage) not reserved to the
implementation in ISO/IEC 9899:1990, such & owc, are now so reserved #ny
translation unit in the program includes either of the headewctype. h> or
<wchar. h>, even though none of the translation units using the name include the new
header. An existing program that uses any of these names can behave differently as a result of
this amendment.

A.2 Programming model based on wide characters

Using theMSE functions, a multibyte-character handling program can be written as easily and in the
same style as a traditional single-byte based program. A programming model bk fanction
2

10

15

20

25

30

35

40

45

50

MSE RATIONALE

is as follows. Firgt, a multibyte character or a multibyte string is read from an externd file into a
wchar _t object or a wehar _t aray object by the f getwe function, or other input functions
based on the fgetwc function such as getwchar, getwc, or fgetws. During this read
operation, a code converson occurs — the input function converts the multibyte character to the
corresponding wide character asif by acadl to the nbt owc function.

After dl necessary multibyte characters are read and converted, the wchar _t objects are processed
in memory by the MSE functions, such as i Swxxx, wcst od, wescpy, wrentnp, and so on.
Findly, the resulting wchar _t objects are written to an externd file as a sequence of multibyte
characters by the f put we function or other output functions based on the f put we function, such
as putwchar, putwe, or fputws. During thiswrite operation, a code conversion occurs — the
output function converts the wide character to the corresponding multibyte character asif by a cdl to
the wct onb function.

In the case of the formatted input/output functions, a smilar programming style can be applied, except

that the character code converson may aso be done through extended conversion specifiers, such as
% s and % c. For example, the wide-character based program corresponding to that shown in § A.1

can be written as follows:

#1 ncl ude <stdi o. h>
#i ncl ude <wchar . h>

int main(void) ({

W nt t wc;

int n = 0;

while ((w = getwchar()) != WEOF)
n++;

wprintf(L"Count = %\\n", n);

return O;

}

A.3 Paralldism versus improvement

When defining theMSE library functions, the committee could have chosen a design policy based
either onparalldism or onimprovement. "Parallelism" means that a function interface defined in this
amendment is similar to the corresponding single-byte function in ISG8E2:1990. The number of
parameters in corresponding functions are exactly same, and the types of parameters and the types of
return values have a simple correspondence:

char <==> wchar _t int <==>wnt_t
An approach using this policy is relatively easy.

On other hand, "improvement” means that a function interface in this amendment is changed from the
corresponding single-byte functions in ISO/IEC 9899:1990 in order to resolve problems potentially
contained in the existing functions. Or, a corresponding function is not introduced in this amendment
when the functionality can be better attained through other functions. In an attempt to achieve
improvement, there were numerous collisions of viewpoints on how to get the most appropriate
interface. Moreover, much careful consideration and discussion among various experts in this area was

3

MSE RATIONALE

necessary to decide which policy should be taken for each function. The current amendment is the
result of this process.

Thefollowing isalist of the functions that manipulate charactersin parald:
| SO | EC 9899: 1990 Anmendnent

10

15

20

25

30

35

40

45

50

55

I sal num I swal num
I sal pha I swal pha
I scntrl I swentrl
I sdigit I swdi gi t
I sgraph I swgr aph
I sl ower I swl ower
I sprint I swpri nt
I spunct I swpunct
| sspace | swspace
| supper I swupper
I sxdigit I swxdi gi t
t ol ower t ow ower
t oupper t owupper
fprintf fwprintf
f scanf f wscanf
printf wpri nt f
scanf wscanf
sprintf swprintf
sscanf swscanf
viprintf vw print f
vprintf vwpri nt f
vsprintf vswpri nt f
fgetc f getwc
fgets fgetws
fputc f put we
fputs f put ws
getc getwe
get char get wchar
put c put we
put char put wechar
unget c unget we
strtod wcst od
strtol west ol
strtoul west oul
mencpy wnemntpy
nmenmove wnenmove
strcpy wcscpy
strncpy wcsnecpy
strcat wcscat
strncat wcsncat
mencnp wnentnp
strcnp wcscnp
strcoll wescol |
strncnp wecsnenp
strxfrm wesxfrm
menchr wrenthr
strchr weschr
strcspn wcscspn

4

10

15

20

25

30

35

40

45

50

MSE RATIONALE

strpbrk wespbr k
strrchr wesr chr
strspn wcsspn
strstr wcsstr
menset wnenset
strlen wesl en
strftine wesftinme

Note that there may gtill be subtle differences, see for example A.6.2
The following functions have different interfaces between single-byte and wide-character versons:

- Members of the sprintf family based on wide characters al have an extra si ze_t
parameter, in order to repair the security hole that the existing functions carry. Compare:

int sprintf(char *s, const char *format, ...);

int sworintf(whar_t *s, size t n, const wchar_t *format, ...);

int vsprintf(char *s, const char *format, va_ list arg);

Int vswprintf(wchar_t *s, size_ t n, const wchar_t *fornmat,
va_list arg);

- west ok, the wide-character verson of strt ok, hasanextra wchar _t ** parameter, in
order to diminate the internal memory that the strtok function has to maintain. Compare:

char *strtok(char *sl1, const char *s2);
wchar _t *wcstok(wchar _t *sl1, const wchar _t *s2,wchar _t **ptr);

The following isaligt of the functions in ISO/IEC 9899:1990 that do not have corresponding partners
in the amendment for any of severa reasons, such as redundancy, dangerous behavior, or a lack of
need in a wide-character based program. Most of these can be rather directly replaced by other
functions:

gets

at of
put s
at oi
perror
at ol
strerror

Findly, the following is a list of the functions in this amendment that do not have corresponding
partners in 1ISO/IEC 9899:1990. They were introduced to achieve better control over the conversion
between multibyte characters and wide character, or to give character handling programs greeter
flexibility and simplicity:

wct ype

I swct ype
wct rans

t owct rans
fw de

bt owc

wct ob

10

15

20

25

30

35

40

45

MSE RATIONALE

nbsinit
nbrl en
nbrt owc
wert onb
nbsrt owcs
wesrt onbs

A.4 Support for invariant 1SO 646

With its rich set of operators and punctuators, the C language makes heavy demands on the ASCII
character set. Even before the language was standardized, it presented problems to those who would
move C to EBCDIC machines. More than one vendor provided aternate spellings for some of the
tokens that used characters with no EBCDIC equivalent. With the spread of C throughout the world,
such representation problems have only grown worse.

SO 646, the international standard corresponding to ASCII, permits nationa variants of a number of
the characters used by C. Strictly speaking, thisis not a problem in representing C programs, since the
necessary characters exist in all such variants. They just print oddly. Displaying C programs for human
edification suffers, however, since the operators and punctuators can be hard to recognize in ther
various dtered forms.

I SO/IEC 9899:1990 addresses the problem in a different way. It provides replacements at the level of
individual characters using three-character sequences called trigraphs. For example, ?7< is entirely
equivalent to {, even within a character constant or string literal. While this gpproach provides a
complete solution for the known limitations of EBCDIC and 1SO 646, the result is arguably not highly
readable.

Thus, this amendment provides a set of more readable digraphs. These are two-character dternate
gpellings for several of the operators and punctuators that can be hard to read with 1SO 646 national
variants. Trigraphs are ill required within character congtants and string literals, but at least the
commoner operators and punctuators can have more suggestive spellings using digraphs.

The added digraphs were intentiondly kept to a minimum. Wherever possible, the committee instead
provided aternate spellings for operators in the form of macros defined in the new header
<i s0646. h>, Alternate spellings are provided for the preprocessing operators # and ## because
they cannot be replaced by macro names. Digraphs are also provided for the punctuators [,], {,
and } because macro names proved to be a less readable aternative. The committee recognizes that
the solution offered in this amendment is incomplete and involves a mixture of approaches, but
nevertheless believes that it can help make Standard C programs more readable.

A.5 Headers
A.5.1 <wchar.h>
A5.1.1 Prototypes in <wchar . h>

Function prototypes for the MSE library functions had to be included in some header. The Committee
consdered following ideas.

10

15

20

25

30

35

40

MSE RATIONALE

1. Introduce new headers such as <wctype. h> <wstdi o.h> ad <wstring.h>,

corresponding to the existing headers specified in ISO/IEC 9899:1990, such as <ctype. h>,
<stdi 0. h> and <string. h>,

2. Declareal the MSE function prototypesin <stdl i b. h>, where wchar _t isaready defined.
3. Introduce anew header and declare al the MSE function prototypes in the new header.

4. Declare the MSE function prototypes in the existing headers specified in ISO/IEC 9899:1990
which are most closdly related to these functions.

The drawback to idea 1 is that the relationship between new headers and existing ones becomes
complicated. For example, there may be dependencies between the old and the new headers, so one or
more headers may have to be included prior to including <wst di 0. h>, asin:

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <wstdi o. h>

The drawback to idea 2 is that the program has to include many prototype declarations even if the
program does not need declarationsin <st dl i b. h> other than existing ones.

And the committee strongly opposed adding any identifiersto existing headers.

The drawback to idea 3 is that it introduces an asymmetry between existing headers and the new
header.

The drawback to idea 4 is that the committee strongly opposed adding any identifiers to existing
headers.

So the committee decided to introduce a new header <wchar . h> as the least objectionable way to

declare all MSE function prototypes. (Later, the committee split off the functions analogous to those in
<ctype. h> and placed their declarations in the new header <wctype. h>, as described in §

A5.2)
A5.1.2 Types and macros fwchar . h>

The committee was concerned that the definitions of types and macremar . h> be specified
efficiently. One goal was to require that only the heagleghar . h> need be included to use the
MSE library functions. But there were strong objections to declaring existing types std¢h-&sin
the new header.

The definitions in <wchar. h> are thus limited to those types and macros that are largely
independent of the existing library. The existing headet di 0. h> must also be included along
with <wchar . h> when the program needs explicit definitions of either of the tylpekE and
fpos_t. (How these types are defined #st di 0. h> may need to be revised so that suitable
synonyms, with reserved names, can be used withinhar . h>))

10

15

20

25

30

35

40

45

MSE RATIONALE

Ab52 <wtype. h>

The committee originaly intended to place al MSE functionality in a single header, <wchar . h>, as

explained in 8 A.5.1.1. It found, however, that this header was excessively large, even compared to the
existing large headersst di 0. h> and <stdl i b. h>, The committee also observed that the
wide-character classification and mapping functions seemed to form a separate group. (These are
functions that typically have names of the foirBWXXX or t OWxXX.) A translation unit could well

make use of most of the functionality of thESE without using this separate group. Equally, a
translation unit might need the wide-character classification and mapping functions without needing the
otherMSE functions.

Hence, the committee decided to form a separate hesadet, ype. h>, closely analogous to the
existing <ctype. h>, That division also reduced the size schar . h> to more manageable
proportions.

A.6 Wide-character classfication functions

Eleven i swxxXx functions have been introduced to correspond to the character-testing functions
defined in ISO/IEC 9899:1990. Each wide-character testing function is specified in parallel with the
matching single-byte character handling function. However, the following changes were also
introduced.

A.6.1 Locale dependency of iswxxx functions

The behavior of character-testing functions in ISO/IEC 9899:1990 is affected by the current locale, and
some of the functions have implementation-defined aspects only when not in the "C" locale. For
example, in the "C" localel s| ower returns true (nonzero) only for lower-case letters (as defined in
§5.2.1).

This existing "C" locale restriction for character testing functions in ISO/IEC 9899:1990 has been
replaced with a supersetting constraint for wide-character testing functions. There is no special
description of "C" locale behavior for theswxxx functions. Instead, the following rule is applied to

any locale. When a charactércausesi Sxxx(c) to return true, the corresponding wide character

we shall cause the corresponding function ¢gMXXX(Wc) to return true.

i sxxx(c) !'= 0 ==> iswxxx(wc) !=0
where ¢ == wct ob(wc) . Note that the converse relationship does not necessarily hold.

A.6.2 Changed space-character handling

The space character (' ') is treated specially iisprint, isgraph, and ispunct.
Space-character handling in the corresponding wide-character functions differs from that specified in
ISO/IEC 9899:1990. The corresponding wide-character functions return true for all wide characters
for which | swspace returns true, instead of just the single space character. Therefore, the behaviors
of the i swgr aph and i swpunct functions may differ from their matching functions in ISO/IEC
9899:1990 in this regard. (See the footnote concerning iswgraph in this amendment).

10

15

20

25

30

35

40

45

MSE RATIONALE
A.7 Extensble classfication and mapping functions

There are dleven standard character-testing functions defined in | SO/IEC 9899:1990. As the number of
supported locales increases, the requirements for additional character classifications grows, and varies
from locale to locde. To satisfy this requirement, many existing implementations, especialy for
non-English speaking countries, have been defining new i SxxX functions, such as i skanj i,
i shanzi , etc.

However, this approach adds to the globa namespace clutter (although the names have been reserved)
and is not flexible a al in supporting additiond classfication requirements. Therefore, in this
amendment, a pair of extensible wide-character classification functions, wet ype and i swet ype,
are introduced to satisfy the open-ended requirements for character classification. Since the name of a
character classfication is passed as an argument to the WCt ype function, it does not add to problem
of globa namespace pollution. And these generic interfaces alow a program to test if the classification
isavailablein the current locale, and to test for locale-specific character classifications, such as kanj i

or hi ragana in Japanese.

In the same way, a pair of wide-character mapping functions, Wctrans and towctrans, are
introduced to support locale-specific character mappings. One of the example of applying this
functionality is the mappings between hi r agana and kat akana in a Japanese character sgt.

A.8 Generalized multibyte characters

SO/IEC 9899:1990 intentiondly restricted the class of acceptable encodings for multibyte characters.
One goa was to ensure that, at least in the initid shift state, the charactersin the basic C character set
have multibyte representations that are single characters with the same code as the single-byte
representation. The other was to ensure that the null byte should aways be available as an
end-of-gtring indicator. Hence, it should never appear as the second or subsequent byte of any
multibyte code. Hence, the one-byte sequence " @' should dwaysrepresent L' @’ (at least initially)
and '\ 0" should alwaysrepresent L'\ O’ | to put matters most smply.

While these may be reasonable restrictions within a C program, they hamper the ability of the MSE
functions to read arbitrary wide-oriented files. For example, a system may wish to represent files as
sequences of 1SO 10646 characters. Reading or writing such afile as awide-oriented stream should be
an easy matter. At mogt, the library may have to map between native and some canonical byte order in
thefile. In fact, it is easy to think of an 1SO 10646 file as being some form of multibyte file — except
that it violates both restrictions described above. (The code for " @' can look like the four-byte
sequence "\ 0\ 0\ 0a", for example.)

Thus, the MSE introduces the notion of a generalized multibyte encoding. It subsumes al the ways the
committee can currently imagine that operating systems will represent files containing characters from a
large character set. (Such encodings are valid only in files — they are il not permitted as internal
multibyte encodings.)

A.9 Streams and files

A.9.1 Converson sate

10

15

20

25

30

35

40

45

MSE RATIONALE

It is necessary to convert between multibyte characters and wide characters within wide-character
input/output functions. The conversion state, introduced in § 4.5.3.2 of this amendment, is used to help
perform this conversion. Every wide-character input/output function makes use of (and updates) the
conversion state held in thel LE object controlling the wide-oriented stream.

The conversion state in thiel LE object augments the file position within the corresponding multibyte
character stream with the parse state for the next multibyte character to be obtained from that stream.
For state-dependent encodings, the remembered shift state is a part of this parse state, and hence a part
of the conversion state. (Note that a multibyte encoding thainpaaracters requiring two or more

bytes needs a nontrivial conversion state, even if it is not a state-dependent encoding.)

The wide-character input/output functions behave as ff:

» a Fl LE object includes a hiddenbst at e_t object;

» the wide-character input/output functions use this hidden object as the state argument to the
mbrt owc or wer t onb functions that perform the conversion between multibyte characters

in the file and wide characters inside the program.
A.9.2 Implementation

The committee assumed that only wide-character input/output functions can maintain consistency
between the conversion-state information and the stream. The byte input/output functions do nothing
with the conversion state information in tthé LE object. The wide-character input/output functions

are designed on the premise that they always begin executing with the stream positioned at the
boundary between two multibyte characters.

The committee felt that it would be intolerable to require implementors to implement these functions
without such a guarantee. Since executing a byte input/output function on a wide-oriented stream may
well leave the file position indicator at other than the boundary between two multibyte characters, the
committee decided to prohibit such use of the byte input/output functions.

A.9.2.1 Seek operations

An fpos_t object for a stream in a state-dependent encoding includes the shift state information for
the corresponding stream. In order to ensure the behavior of subsequent wide-character input/output
functions in a state-dependent encoding environment, a seek operation should reset the conversion
state corresponding to the file position as well as restoring the file position.

The traditional seek function$ seek and ftel |l may not be adequate in such an environment,
because a long object may be too small to hold both the conversion state information and the file
position indicator. Thus, the newdrset pos and f get pos are preferred, since they can store as
much information as necessary in Bpos_t object.

A.9.2.2 State-dependent encodings

With state-dependent encodingsFaLE object must include the conversion state for the stream. The
committee felt strongly that programmers should not have to handle the tedious details of keeping

10

10

15

20

25

30

35

MSE RATIONALE

track of converson sates for wide-character input/output. There is no means, however, for
programmers to access the internd shift state or conversion stateina FI LE object.

A.9.2.3 Multiple encoding environments

A multiple encoding environment has two or more different encoding schemes for files. In such an
environment, some programmers will want to handle two or more multibyte character encodings on a
sngle platform, possbly within a single program. There is, for example, an environment in Japan that
has two or more encoding rules for a single character set. Mogt implementations for Japanese
environments should provide for such multiple encodings.

During program execution, the wide-character input/output functions get information about the current
encodings fromthe LC_CTYPE category of the current locale when the conversion state is bound, as
described immediately below. When writing a program for a multiple encoding environment, the
programmer should be aware of the proper LC_CTYPE category when opening afile and establishing
its orientation. During subsequent accesses to the file, the LC_CTYPE category need not be restored
by the program.

The encoding-rule information is effectively a part of the converson state. Thus, the encoding-rule
information should be stored with the hidden nbst at e_t object within the FI LE object. (Some
implementations may even choose to store the encoding rule as part of the value of an f pos_t
object.)

The converson state just created when afile is opened is said to have unbound state because it has no
relations to any of the encoding rules. Just after the first wide-character input/output operation, the
conversion state is bound to the encoding rule which corresponds to the LC_CTYPE category of the
current locale. The following is a summary of the relations between various objects, the shift state, and
the encoding rules:

fpos t FILE
shift state included included
encoding rule maybe included
changing LC_CTY PE (unbound) no effect affected
changing LC_CTY PE (bound) no effect no effect

A.9.3 Byte versus wide-character input/output

Both the wide-character input/output functions and the byte input/output functions refer the same type

of object (a FI LE object). As described in § A.9.2, however, there is a constraint on mixed usage of
the two type of input/output functions. That is, if a wide-character input/output functions is executed
for a Fl LE object, its stream becomes wide-oriented and no byte input/output functions shall be
applied later (and conversely).

11

10

20

30

40

45

50

55

60

65

MSE RATIONALE

The reason for this condtraint is to ensure consistency between the current file position and the current
converson sae in the Fl LE object. Executing one of the byte input/output functions for a
wide-oriented stream breaks this consstency, because the byte input/output functions may (or should)
ignore the conversion state information inthe FI LE object.

The diagram Al shows the state trandgtions of a stream in response to various input/output functions.

Diagram Al

A.9.4 Text versus binary input/output

In some implementations, such as UNIX, there are streams which look the same whether read or
written astext or binary. (For example, arbitrary file-positioning operations are supported even in text
mode.) In such an implementation, the committee specifies the following usage of the wide-character
input/output functions. A file opened as abinary stream should obey the usage congtraints placed upon
text streams when accessed as a wide-oriented stream. (For example, the redtrictions on
file-positioning operations should be obeyed.)

So an implementation of the wide-character input/output functions can rely on the premise that
programmers use the wide-character input/output functions with a binary stream under the same
congraints as for a text stream. An implementation may aso provide wide-character input/output
functions that behave correctly on an unconstrained binary stream. However, the behavior of the
wide-character input/output functions on such an unconstrained binary stream cannot be ensured by all
implementations.

A.10 Formatted input/output functions
A.10.1 Enhancing exising formatted input/output functions

The smplest extenson for wide-character input/output is to use existing formatted input/output
functions with existing (byte-oriented) streams. In this case, data consisting of characters only (such as
strings) are treated as sequences of wide characters and other data (such as numerica vaues) are
treated as sequences of single-byte characters. Though thisis not a complete model for wide-character
processing, it is acommon extenson among some existing implementations in Japan. So the committee
decided to include asimilar extension.

12

10

15

20

25

30

35

40

45

MSE RATIONALE

The origind intent was to add the new conversion specifiers %6 and %€ to the existing formatted

input and output functions, to handle a wide-character string and a wide character respectively. After

long discussions about the actual implementation and future library directions (in § 7.20.6 of ISO/IEC
9899:1990), these specifiers were withdrawn. They were replaced with the qualified conversion
specifiers % s and % c (with the addition of % [. . .] in the formatted input functions). Note

that even though the new qualifier is introduced as an extension for wide-character processing, the field
width and the precision still specify the number of bytes (in the multibyte representation in the stream).

To implement these new conversion specifiers efficiently, a new set of functions is required. These
parse or generate multibyte sequences "restartably.” Thus, the functions described in § 4.6.5.1, §
46.5.2, §84.6.5.3, and 8§ 4.6.5.4 of this amendment were introduced.

Because these new conversions are pure extensions to ISO/IEC 9899:1990, they have several essential
restrictions on their expected, therefore, that they will be most useful in implementations that are not
state-dependent. The restrictions are:

« fscanf function— In a state-dependent encoding, one or more shift sequences may be
included in the format, to be matched as part of an ordinary multibyte character literal text
directive. And shift sequences may also be included in an input string. Becadisecthef
function treats these shift sequences in exactly the same way as for single-byte characters, an
unexpected match may occur or an expected match might not occur. See the examples in §
4.6.2.3.2 of this amendment.

o fprintf function— In a state-dependent encoding, redundant shift sequences may be
written.

A.10.2 Formatted wide-character input/output functions

In the earlyMSE, formatted wide-character input/output functions were not introduced because an
extension to existing formatted input/output functions seemed to be sufficient. After considering the
complete model for wide-character handling, the need for formatted wide-character input/output
functions was recognized.

Formatted wide-character input/output functions have much the same conversion specifiers and
gualifiers as existing formatted input/output functions, even including the qualified conversion
specifiers% ¢, % s,and %[...]. But because the format string consists of wide characters and
the field width and precision specify the number of wide characters, some of the restrictions on existing
functions are removed in the new functions. This means that wide characters are read and written
under tighter control of the format string.

A.11 Adding the fwide function

While the committee believes that tHdSE provides reasonably complete functionality for
manipulating wide-oriented files, it noticed that no reliable mechanism existed for testing or setting the
orientation of a stream. (The program can try certain operations to see if they fail, but that is risky and
still not a complete strategy.) Hence, the committee introduced the fuheligte as a means of
forcing a newly opened stream into the desired orientation without attempting any input/output on the

13

10

15

20

25

30

35

40

45

MSE RATIONALE

stream. The function aso serves as a passive means of testing the orientation of a stream, either before
or after the orientation has been fixed. And it serves as a way to bind an encoding rule to a
wide-oriented stream under more controlled circumstances. (See § A.9.2.3.)

A.12 Single-byte wide-character conversion functions

Two single-byte wide-character conversion functidHsYWc andwct ob, have been introduced in
this amendment. These functions simplify mappings between a single-byte character and its
corresponding wide character (if any).

ISO/IEC 9899:1990 specifies the rulé X’ == "X’ for a memberX of the basic character set.

The committee discussed whether to relax or tighten this rule. In this amendment, this rule is preserved
without any changes. Applying the rule to all single-byte characters, however, imposes an unnecessary
constraint on implementation with regard to wide-character encodings. It prohibits an implementation
from having a common wide-character encoding for multiple multibyte encodings.

On the other hand, relaxing or removing the rule was considered to be inappropriate in terms of
practical implementations. The new functigt ob can be used to test safely and quickly whether a
wide character corresponds to some single-byte character. For example, when the format string on a
scanf function call is parsed and searched for a white space charactegtibe function can be

used in conjunction with thé sspace function. (See the specification of thesWxxX functions in §

4.5.2.1 of this amendment.)

Similarly, there are frequentccasions in wide-character processing code, especially in the
wide-character handling library functions, where it is necessary to test quickly and efficiently whether a
single-byte character is the first and only character of a valid multibyte character. This is the reason for
introducing the bt owc function. Note that, for some encodind¥, owc can be reduced to a simple
in-line expression.

A.13 Extended conversion utilities

Although ISO/IEC 9899:1990 allows multibyte characters to have state-dependent encoding (8
5.2.1.2), the original functions are not always sufficient to efficiently support state-dependent
encodings, due to the following limitations of the multibyte character conversion functions (8§ 7.14.7):

1. Since the functions maintain shift state information internally, they cannot handle multiple strings at
the same time.

2. The formatted output functions may write redundant shift sequences, and the formatted input
functions cannot reliably parse input with arbitrary or redundant shift sequences. The
multibyte-string conversion functions (8 7.14.8) have an inconvenient shortcoming, regardless of
state dependency of the encoding. When an encoding error occurs, these functions return 1961
without any information on the location where the conversion stopped.

For all these reasons, the committee felt it necessary to augment the set of conversion functions in this
amendment.

14

10

15

20

25

30

35

40

45

MSE RATIONALE

A.13.1 Converson state

To handle multiple strings with a state-dependent encoding, the committee introduced the concept of
conversion state. The conversion state determines the behavior of a converson between multibyte and
wide-character encodings. For conversion from multibyte to wide character, the conversion state stores
information such as the position within the current multibyte character (as a sequence of charactersor a
wide-character accumulator). And for conversons in ether direction, the converson state stores the
current shift state (if any) and possibly the encoding rule.

The non-array object type nbst at e_t is defined to encode the conversion state. A zero-valued
nmbst at e_t object is assumed to describe the initia conversion state. (It is not necessarily the only
way to encode theinitial conversion state, however.) Before any operations are performed on it, such a
zero-valued object is unbound. Once a multibyte or wide-character conversion function executes with
the nbstate_t object as an argument, however, the object becomes bound and holds the above
information.

The conversion functions maintain the conversion state in an nbst at e_t object according to the
encoding specified in the LC_CTYPE category of the current locae. Once the conversion starts, the
functions will work as if the encoding scheme were not changed provided al three of the following
conditions obtain:

« the function is applied to the same string as whemibst at e_t object was first bound;

» the LC_CTYPE category setting is the same as when thebst at e_t object was first
bound;

» the conversion direction (multibyte to wide character, or wide character to multibyte) is the

same as when thebst at e_t object was first bound.

A.13.2 Converson utilities

Once the nbstat e_t object was introduced, the committee discussed the need for additional

functions to manipulate such objects.

A.13.2.1 Initializing conversion states

Though a method to initialize the object is needed, the committee decided that it would be better not to
define too many functions in this amendment. Thus the committee decided to specify only one way to

make annbst at e_t object represent the initial conversion statly initializing it with zero. No
initializing function is supplied.

A.13.2.2 Comparing conversion states

The committee reached the conclusion that it may be impossible to define the equality between two
conversion states. If twarbst at e_t objects have the same values for all attributes, they might be
the same. However, they might also have different values and still represent the same conversion state.

No comparison function is supplied.

15

10

15

20

25

30

35

40

45

MSE RATIONALE
A.13.2.3 Tegting for initia shift sate

The function nbsi nit was added to test whether an nbst at e_t object describes the initid
conversion state or not, because this state does not aways correspond to a certain set of component
vaues (and the components cannot be portably compared anyway). The function is necessary because
many functions in the amendment treet the initia shift state as a specia condition.

A.13.2.4 Regartable multibyte functions

Regarding problems 2 and 3 described at the beginning of 8 A.13, the committee introduced a method
to distinguish between an invalid sequence of bytes and a valid prefix to a still incomplete multibyte
character. When encountering such an incomplete multibyte sequenedrthen and nbrt owc

functions return 1962 instead of 1961, and the character accumulator imbteat e_t object

stores the partial character information. Thus, the user can resume the pending conversion later, and
can even convert a sequence one byte at a time.

The new multibyte/wide-string conversion utilities are thus nmasiartable by using the character
accumulator and shift-state information stored inrdrst at e_t object argument. As part of this
enhancement, the functions also have a parameter of type pointer to pointer to the source to the
position where the conversion stopped.

A.14 Column width

The number of characters to be read or written can be specified in existing formatted input/output
functions. On a traditional display device that displays characters with fixed pitch, the number of
characters is directly proportional to the width occupied by these characters. So the display format can
be specified through the field width and/or the precision.

In formatted wide-character input/output functions, the field width and the precision specify the
number of wide characters to be read or written. The number of wide characters is not always directly
proportional to the width of their display. For example, with Japanese traditional display devices, a
single-byte character such as an ASCII character has half the width of a Kanji character, even though
each of them is treated as one wide character. To control the display format for wide characters, a set
of formatted wide-character input/output functions were proposed whose metric was the column width
instead of the character count.

This proposal was supported only by Japan. Critics observed that the proposal was based on such
traditional display devices with a fixed width of characters, while many modern display devices support

a broad assortment of proportional pitch type faces. Hence, it was questioned whether the extra
input/output functions in this proposal were really needed or were sufficiently general. Also considered
were another set of functions that return the column width for any kind of display devices for a given
wide character or wide-character string; but these seemed to be beyond the scope of C language. Thus
all proposals regarding column width were withdrew.

If an implementor needs this kind of functionality, there are a few ways to extend wide-character

output functions and still remain conforming to this amendment. For example, the field width prefixed
with a # can specify the column width as shown below:

16

MSE RATIONALE

98N - st the counting mode to "printing positions” and reset the % counter;

9N - st the counting mode back to "wide characters” and reset the %9 counter.

17

MSE RATIONALE

18

Index

#else, 69

#endif, 69

#error, 75

#f, 13, 52, 69
#include, 69

#pragma, 75

#undef, 84, 101

/I comments, 36
lust/group, 79

?7? escape diagraph, 18
_DATE _, 75
_FLE _,75
__func__, 43
__LINE_, 75
__SIDC_, 76
__STDC_IEC 559, 76
__STDC_VERSION, 76
TIME, 75
<complex.h>, 97
<ctype.h>, 85
<errno.h>, 82

<fenv.h>, 90

<float.n>, 83
<inttypes.h>, 87
<is0646.h>, 123, 2
<locadleh>, 88
<math.h>, 91, 117
<sdtjmp.h>, 98
<dgna.h>, 99
<ddarg.h>, 100
<stddef.h>, 46, 48, 83
<dtdio.h>, 102, 103
<gdlib.h>, 113
<dgring.h>, 118
<tgmath.h>, 98
<timeh>, 121
<varargs.h>, 100
<wchar.h>, 124
<wctype.h>, 123, 2
1984 /usr/group Standard, 79
abort, 85, 116

abs, 117

abstract machine, 15, 16
Ada, 17

agreement point, 15, 41
diasing, 42

alignment, 9

dloca, 115

ambiguous expression, 50
ANS| X3.64, 33

ANSI X3L2, 19

age, 15

argument promation, 44
agv, 15

asif, 13, 67

ASCII, 17, 18, 19, 33, 85, 88, 123

I ndex

asctime, 123

asm, 23

assart, 85

assoddtivity, 41

AT&T Bell Laboratories, 65
aan2, 93

atexit, 15, 99, 116

atof, 113

aoi, 113

aol, 113

Backus-Naur Form, 23
benign redefinition, 71
binary numeration systems, 30, 46
binary streams, 104

hit, 9

bit fields, 55

bit-fields, 56

break, 66

brtowc, 16

btowc, 14

byte, 9, 46

C++, 61, 62

cdloc, 115

case ranges, 66

cal, 95

dock, 121

dock t, 121

codeset, 17, 88

collating sequence, 17
comments, 36

common extensions, 23, 27, 34
common storage, 26
compatible types, 30, 61
complex, 23

compliance, 11

composite types, 30, 61
Compound literds, 45
concatenation, 34
conforming freestanding, 11
conforming hosted, 11
conforming program, 2
oongt, 23

constant expressions, 51
constraint error, 45
continue, 66

control character, 86
conversions, 37

cross compiler, 31
cross-compilation, 13, 52, 83
curses, 79

data abstraction, 46

DEC PDP-11, 2
decimal-paint character, 81
dedarations, 52

defined, 51

Designated initidizers, 65

I ndex

diagnostic messege, 14 header names, 35
diagnostics, 2, 14, 38, 71, 75 Hiragana, 9

diagraph, 18 hosted environment, 15
difftime, 121 HUGE_VAL, 91
Digraphs, 6 IEEE 1003, 100

div, 48, 117 IEEE 754 floating point standard, 21, 92
domain error, 92 IEEE P1003, 102
DRAM, 54 IEEE P854, 83, 91, 95
EBCDIC, 19, 33, 88 imaginary, 23

entry, 23 implementation-defined behavior, 9, 33, 55, 91, 92, 95, 100,
enum, 23, 53 103, 105
enumerations, 32, 52 implicit int, 55

EOF, 86 infinity, 109

errno, 82, 92 inline, 23

erroneous program, 14 int64_t, 55

executable program, 13 integral constant expression, 52
exit, 15, 116, 117 integrd promoations, 37
EXIT_FAILURE, 116 integra widening conversions, 62
EXIT_SUCCESS, 116 interactive devices, 16
expressions, 41 interleaving, 41

Extended integer, 87 internationalization, 123
externa identifiers, 23 invalid pointers, 40
external linkage, 13 isascii, 85

fdase, 102 ishlank, 86

fflush, 106, 107 ISO, 17

frexp, 94 ISO 646, 18, 2

foetc, 105, 110 1S0 9899:1990/DAM 1, 1
foetpos, 112 isspace, 86, 109

foets, 110 iswctype, 9

FILE, 111 jmp_buf, 98

file pointer, 102 Kanji, 9

file position indicator, 104, 113 Katakana, 9
FILENAME_MAX, 103 Ken Thompson, 65
float.h, 21 kill, 100

fmod, 48, 96 labels, 65

fopen, 102, 106 Idexp, 94

fopen modes, 107 Idiv, 48, 117
FOPEN_MAX 103 lexical dements, 23
fortran, 23 libraries, 13

FORTRAN, 21, 26, 61, 117 limitsh, 21
FORTRAN-to-C trandation, 21, 41, 92 linkage, 25, 26

fpos_t, 103 locale, 86

fputc, 105 |ocaleconv, 90

fread, 102, 112 locale-specific, 120

freg, 115 locdtime, 123

fscanf, 109 log function, 94

fseek, 102, 104, 107, 112 long double, 30, 31, 53, 108
fsetpos, 107 long long, 53

ftell, 104 longjmp, 20, 98, 99

full expression, 15 Ivalue, 9, 39, 45, 51
function definition, 67 Ivalues, 42, 45

function prototypes, 62 machine generation of C, 14, 52, 61, 64, 65
futuredirections, 76 main, 15

fwide, 13 manifest congtant, 91
fwrite, 102 mantissa, 21

getc, 111 matherr, 92

getenv, 116 mbrlen, 16

GMT, 123 mbrtomb, 10

gmtime, 121, 123 mbrtowc, 10

goto, 65 mbstate t, 11, 15

Gray code, 30 memchr, 119

grouping, 41 memcmp, 119

I ndex

memcpy, 119 scope, 25

memmove, 119 sequence points, 15, 41
memset, 119, 121 sequenced expression, 50
mktime, 122 sequencing, 15

mkxtime, 122 setbuf, 104, 107

modf, 94 setjmp, 98

modifiable lvalue, 39 stlocae, 86, 90
multibyte character, 9 setvbuf, 102, 103, 104, 107
multibyte cheracters, 18, 118 Sde effect, 50

Multibyte Support Extension, 2 sig_atomic_t, 20
Multiple encoding environment, 11 SIGABRT, 116
multi-processing, 100 SIGILL, 100

name space, 25 signd, 16, 28, 83, 99, 116
new-line, 19 signa function, 20
not-a-number, 109 signa.h, 20

NULL, 49, 83 signed, 23, 53

null pointer constant, 83 significand, 21
numerations, 30 sign-magnitude, 21
object, 9 SIGTERM, 116
obsolescent, 23, 52, 76 Sze t, 46, 83, 112, 115, 121
Obsolesoent, 52 Szedf, 9, 46, 47, 48, 52
offsetof, 62, 83 sizeof operator, 46
ones-complement, 21 snprintf 110
onexit, 116 sourcefile 13
optimization, 52 spirit of C, 49

order of evaluation, 41 sprintf, 91

Overlapping objects, 79 sscanf, 110

Pascal, 30, 66 standardized pragmas, 75
perror, 113, 121 satements, 65

phases of trandation, 13, 14 daticinitializers, 52
pointer subtraction, 48 STDC IEC 559 COMPLEX, 76
POSIX, 100 storage duration, 25
pragma operator, 76 streoll, 120

precedence, 41 streams, 103
preprocessing, 13, 14, 23, 34, 35, 36, 83, 84 srerror, 121
preprocessing directives, 68 srtime, 123

primary expression, 43 strixtime, 123

printf, 30, 84 grictly conforming program, 2, 11, 15
printing character, 86 stringizing, 73

program startup, 14, 52 strlen, 121

prototype, 67 strnecat, 120

prototypes, 76 strncpy, 119

ptrdiff_t, 48, 83 grstr, 120

pure function, 50 grtod, 114

putc, 84, 111 strtok, 120

putenv, 116 grtol, 114

puts, 111 grtoul, 114

quality of implementation, 14 structures, 56

quiet change, 23 strxfrm, 120

Quiet Change, 2 system, 116

rand, 114 tags, 52

range error, 93 text streams, 104
register, 52 time, 122

remove, 105 time t, 121

rename, 105 tm_isdst, 121

repertoire, 17 TMP_MAX, 103
restrict, 23, 58, 79 tmpfile, 105

rewind, 107, 113 tmpnam, 105

Ritchie, DennisM., 26 token pasting, 35, 73
safe evaluation, 84 trigraph sequences, 17
sametype, 31 Trigraphs, 2

scanf, 84 twos-complement, 29

Index

type modifier, 61

type quaifiers, 56

typedef, 63, 67

typedef, 61

undefined behavior, 9, 14, 16, 25, 29, 33, 45, 47, 101, 116,
118

ungetc, 111

UNIX, 2, 38, 70, 79, 92, 99, 100, 102, 103, 105, 110

unlink, 105

unsequenced expression, 50

unsigned preserving, 37

unspecified behavior, 9, 75

va arg, 101

va _end, 101

va lig, 101

va start, 101

value preserving, 37

VAXIVMS, 92

vfprintf, 108, 110

void, 23, 53

void *, 29, 40, 47, 49, 50, 108

voldtile, 23

vprintf, 110

vsnprintf, 110

vsprintf, 110

wchar_t, 83

wctob, 14

wctype, 9

white space, 23

wide character, 33

wide string, 35

widened types, 84

zonetime, 123

