
UNIX is a trademark of X/Open Co., Ltd..
DEC and PDP-11 are trademarks of Digital Equipment Corporation.
POSIX is a trademark of IEEE.

Rationale for
International Standard -

Programming Language -
C

CONTENTS

i

1. SCOPE...1

1.2 ORGANIZATION OF THE DOCUMENT..5

2. NORMATIVE REFERENCES...7

3. DEFINITIONS AND CONVENTIONS ..9

4. COMPLIANCE ...11

5. ENVIRONMENT..13

5.1 CONCEPTUAL MODELS..13
5.1.1 Translation environment ..13

5.1.1.1 Program structure..13
5.1.1.2 Translation phases ...13
5.1.1.3 Diagnostics ...14

5.1.2 Execution environments..14
5.1.2.1 Freestanding environment...14
5.1.2.2 Hosted environment...15
5.1.2.3 Program execution ...15

5.2 ENVIRONMENTAL CONSIDERATIONS ..17
5.2.1 Character sets ...17

5.2.1.1 Trigraph sequences ..17
5.2.1.2 Multibyte characters...18

5.2.2 Character display semantics ..19
5.2.3 Signals and interrupts ...20
5.2.4 Environmental limits...20

5.2.4.1 Translation limits...20
5.2.4.2 Numerical limits..20

5.2.4.2.1 Sizes of integer types <limits.h> ..21
5.2.4.2.2 Characteristics of floating types <float.h> ...21

6. LANGUAGE...23

6.1 LEXICAL ELEMENTS ...23
6.1.1 Keywords..23
6.1.2 Identifiers ...23

6.1.2.1 Scopes of identifiers...25
6.1.2.2 Linkages of identifiers..26
6.1.2.3 Name spaces of identifiers ..27
6.1.2.4 Storage durations of objects ..28
6.1.2.5 Types ...28
6.1.2.6 Compatible type and composite type..30
6.1.2.7 Predefined identifiers ...31
6.1.2.8 Representations of types ...31

6.1.2.8.1 General...31
6.1.8.2 Integer types...31

6.1.3 Constants..31
6.1.3.1 Floating constants ..31
6.1.3.2 Integer constants..31
6.1.3.3 Enumeration constants ...32
6.1.3.4 Character constants..32

6.1.4 String literals ..33
6.1.5 Operators..35
6.1.6 Punctuators ..35
6.1.7 Header names...35
6.1.8 Preprocessing numbers ...36
6.1.9 Comments ..36

6.2 CONVERSIONS ..37

CONTENTS

II

6.2.1 Arithmetic operands..37
6.2.1.1 Characters and integers ..37
6.2.1.2 Signed and unsigned integers..38
6.2.1.3 Real floating and integer...38
6.2.1.4 Real floating types ...38
6.2.1.5 Complex types...39
6.2.1.6 Real and complex ..39
6.2.1.7 Usual arithmetic conversions ..39

6.2.2 Other operands ...39
6.2.2.1 Lvalues and function designators...39
6.2.2.2 void..39
6.2.2.3 Pointers ..39

6.3 EXPRESSIONS ...41
6.3.1 Primary expressions ..43

6.3.1.1 The identifier __func__..43
6.3.2 Postfix operators ...43

6.3.2.1 Array subscripting..43
6.3.2.2 Function calls..43
6.3.2.3 Structure and union members..45
6.3.2.4 Postfix increment and decrement operators...45
6.3.2.5 Compound literals ...45

6.3.3 Unary operators ..46
6.3.3.1 Prefix increment and decrement operators ..46
6.3.3.2 Address and indirection operators..46
6.3.3.3 Unary arithmetic operators..46
6.3.3.4 The sizeof operator ..46

6.3.4 Cast operators...47
6.3.5 Multiplicative operators...48
6.3.6 Additive operators ...48
6.3.7 Bitwise shift operators ...49
6.3.8 Relational operators ..49
6.3.9 Equality operators...49
6.3.10 Bitwise AND operator..49
6.3.11 Bitwise exclusive OR operator..49
6.3.12 Bitwise inclusive OR operator ..49
6.3.13 Logical AND operator ...50
6.3.14 Logical OR operator..50
6.3.15 Conditional operator ...50
6.3.16 Assignment operators ..50

6.3.16.1 Simple assignment...51
6.3.16.2 Compound assignment ...51

6.3.17 Comma operator ...51
6.4 CONSTANT EXPRESSIONS ..51
6.5 DECLARATIONS ..52

6.5.1 Storage-class specifiers..52
6.5.2 Type specifiers ..53

6.5.2.1 Structure and union specifiers ...55
6.5.2.2 Enumeration specifiers...56
6.5.2.3 Tags ...56

6.5.3 Type qualifiers ..56
6.5.3.1 Formal definition of restrict ..58

6.5.4 Function specifiers..61
6.5.5 Declarators ...61

6.5.5.1 Pointer declarators ...61
6.5.5.2 Array declarators ...61
6.5.5.3 Function declarators (including prototypes) ..62

6.5.6 Type names ..63
6.5.7 Type definitions ..63

CONTENTS

iii

6.5.8 Initialization ...64
6.6 STATEMENTS..65

6.6.1 Labeled statements..65
6.6.2 Compound statement, or block...65
6.6.3 Expression and null statements..65
6.6.4 Selection statements ..65

6.6.4.1 The if statement...65
6.6.4.2 The switch statement ...66

6.6.5 Iteration statements...66
6.6.5.1 The while statement...66
6.6.5.2 The do statement ...66
6.6.5.3 The for statement...66

6.6.6. Jump statements ..66
6.6.6.1 The goto statement...66
6.6.6.2 The continue statement...66
6.6.6.3 The break statement...67
6.6.6.4 The return statement ..67

6.7 EXTERNAL DEFINITIONS..67
6.7.1 Function definitions..67
6.7.2 External object definitions...68

6.8 PREPROCESSING DIRECTIVES...68
6.8.1 Conditional inclusion ..69
6.8.2 Source file inclusion..69
6.8.3 Macro replacement ...70

6.8.3.1 Argument substitution..72
6.8.3.4 Rescanning and further replacement ..74
6.8.3.5 Scope of macro definitions..74

6.8.4 Line control ..75
6.8.5 Error directive...75
6.8.6 Pragma directive...75
6.8.7 Null directive ..75
6.8.8 Predefined macro names ...75
6.8.9 Pragma operator...76

6.9 FUTURE LANGUAGE DIRECTIONS..76
6.9.1 Character escape sequences...76
6.9.2 Storage-class specifiers..76
6.9.3 Function declarators ...76
6.9.4 Function definitions..76
6.9.5 Pragma directives ...77

7. LIBRARY ...79

7.1 INTRODUCTION ..79
7.1.1 Definitions of terms...81
7.1.2 Standard headers ..81
7.1.3 Reserved identifiers ...82
7.1.4 Errors <errno.h>..82
7.1.5 Limits <float.h> and <limits.h> ..83
7.1.6 Common definitions <stddef.h>..83
7.1.7 Boolean type and values <stdbool.h>...84
7.1.8 Use of library functions ...84

7.2 DIAGNOSTICS <ASSERT.H>...85
7.2.1 Program diagnostics..85

7.2.1.1 The assert macro..85
7.3 CHARACTER HANDLING <CTYPE.H>...85

7.3.1 Character testing functions..86
7.3.1.1 The isalnum function ...86
7.3.1.2 The isalpha function...86

CONTENTS

IV

7.3.1.3 The isblank function ..86
7.3.1.4 The iscntrl function..86
7.3.1.5 The isdigit function..86
7.3.1.6 The isgraph function ..86
7.3.1.7 The islower function ..86
7.3.1.8 The isprint function..86
7.3.1.9 The ispunct function...86
7.3.1.10 The isspace function...86
7.3.1.11 The isupper function ..87
7.3.1.12 The isxdigit function ..87

7.3.2 Character case mapping functions ...87
7.3.2.1 The tolower function ..87
7.3.2.2 The toupper function..87

7.4 INTEGER TYPES <INTTYPES.H> ..87
7.4.1 Typedef names for integer types...87

7.4.1.1 Exact-width integer types ...87
7.4.1.2 Minimum-width integer types ...87
7.4.1.3 Fastest minimum-width integer types...87
7.4.1.4 Integer types capable of holding object pointers...87
7.4.1.5 Greatest-width integer types..87

7.4.2 Limits of specified-width integer types..87
7.4.2.1 Limits of exact-width integer types ..88
7.4.2.2 Limits of minimum-width integer types..88
7.4.2.3 Limits of fastest minimum-width integer types..88
7.4.2.4 Limits of integer types capable of holding object pointers...88
7.4.2.5 Limits of greatest-width integer types...88

7.4.3 Macros for integer constants..88
7.4.2.5 Macros for minimum-width integer constants ...88
7.4.3.2 Macros for greatest-width integer constants ..88

7.4.4 Macros for format specifiers ..88
7.4.5 Limits of other integer types...88
7.4.6 Conversion functions for greatest-width integer types ...88

7.4.6.1 The strtoimax function ...88
7.4.6.2 The strtoumax function...88
7.4.6.3 The wcstoimax function ...88
7.4.6.4 The wcstoumax function...88

7.5 LOCALIZATION <LOCALE.H>..88
7.5.1 Locale control...90

7.5.1.1 The setlocale function ..90
7.5.2 Numeric formatting convention inquiry ...90

7.5.2.1 The localeconv function..90
7.6 FLOATING-POINT ENVIRONMENT <FENV.H>..90

7.6.1 The FENV_ACCESS pragma..90
7.6.2 Exceptions ..90

7.6.2.1 The feclearexcept function..90
7.6.2.2 The fegetexceptflag function ...91
7.6.2.3 The feraiseexcept function..91
7.6.2.4 The fesetexceptflag function ...91
7.6.2.5 The fetestexcept function..91

7.6.3 Rounding..91
7.6.3.1 The fegetround function..91
7.6.3.2 The fesetround function..91

7.6.4 Environment...91
7.6.4.1 The fegetenv function...91
7.6.4.2 The feholdexcept function...91
7.6.4.3 The fesetenv function...91
7.6.4.4 The feupdateenv function ...91

7.7 MATHEMATICS <MATH.H> ..91
7.7.1 Treatment of error conditions ..92

CONTENTS

v

7.7.2 The FP_CONTACT pragma..92
7.7.3 Classification macros ..92

7.7.3.1 The fpclassify macro ..92
7.7.3.2 The signbit macro..92
7.7.3.3 The isfinite macro..92
7.7.3.4 The isnormal macro ...92
7.7.3.5 The isnan macro..92
7.7.3.6 The isinf macro ...92

7.7.4 Trigonometric functions..92
7.7.4.1 The acos function...93
7.7.4.2 The asin function...93
7.7.4.3 The atan function...93
7.7.4.4 The atan2 function...93
7.7.4.5 The cos function ..93
7.7.4.6 The sin function...93
7.7.4.7 The tan function ..93

7.7.5 Hyperbolic functions...93
7.7.5.1 The cosh function ..93
7.7.5.2 The sinh function...93
7.7.5.3 The tanh function...93
7.7.5.4 The acosh function...93
7.7.5.5 The asinh function ...93
7.7.5.6 The atanh function...94

7.7.6 Exponential and logarithmic functions ..94
7.7.6.1 The exp function..94
7.7.6.2 The frexp function ...94
7.7.6.3 The ldexp function...94
7.7.6.4 The log function ..94
7.7.6.5 The log10 function...94
7.7.6.6 The modf function ...94
7.7.6.7 The exp2 function..94
7.7.6.8 The expm1 function ...94
7.7.6.9 The log1p function...94
7.7.6.10 The log2 function...94
7.7.6.11 The logb function...94
7.7.6.12 The scalbn function..94
7.7.6.13 The scalbln function...94
7.7.6.14 The ilogb function..94

7.7.7 Power and absolute value functions ...94
7.7.7.1 The fabs function...94
7.7.7.2 The pow function...95
7.7.7.3 The sqrt function ...95
7.7.7.4 The cbrt function ...95
7.7.7.5 The hypot function...95

7.7.8 Error and gamma functions ...95
7.7.8.1 The erf function...95
7.7.8.2 The erfc function ...95
7.7.8.3 The gamma function ..95
7.7.8.4 The lgamma function ...95

7.7.9 Nearest integer functions..95
7.7.9.1 The ceil function..95
7.7.9.2 The floor function ..95
7.7.9.3 The nearbyint function ...95
7.7.9.4 The rint function..95
7.7.9.5 The lrint function...95
7.7.9.6 The llrint function..95
7.7.9.7 The round function...96
7.7.9.8 The lround function..96
7.7.9.9 The llround function...96
7.7.9.10 The trunc function..96

CONTENTS

VI

7.7.10 Remainder functions ...96
7.7.10.1 The fmod function..96
7.7.10.2 The remainder function ..96
7.7.10.3 The remquo function ..96

7.7.11 Manipulation functions ...96
7.7.11.1 The copysign function...96
7.7.11.2 The nan function..96
7.7.11.3 The nextafter function ..96
7.7.11.4 The nextafterx function...96

7.7.12 Maximum, minimum, and positive difference functions...96
7.7.12.1 The fdim function ..96
7.7.12.2 The fmax function..97
7.7.12.3 The fmin function ..97

7.7.13 Floating multiply-add..97
7.7.13.1 The fma function..97

7.7.14 Comparison macros ..97
7.7.14.1 The isgreater macro..97
7.7.14.2 The isgreaterequal macro..97
7.7.14.3 The isless macro ..97
7.7.14.4 The islessequal macro ..97
7.7.14.5 The islessgreater macro ..97
7.7.14.6 The isunordered macro...97

7.8 COMPLEX ARITHMETIC <COMPLEX.H> ..97
7.8.1 The CX_LIMITED_RANGE pragma ...97
7.8.2 Complex functions ..97

7.8.2.1 Branch cuts ...97
7.8.2.2 The cacos function ...97
7.8.2.3 The casin function..97
7.8.2.4 The catan function ...97
7.8.2.5 The ccos function...97
7.8.2.6 The csin function ...97
7.8.2.7 The ctan function...97
7.8.2.8 The cacosh function ...97
7.8.2.9 The casinh function..97
7.8.2.10 The catanh function..97
7.8.2.11 The ccosh function ...98
7.8.2.12 The csinh function..98
7.8.2.13 The ctanh function ...98
7.8.2.14 The cexp function ..98
7.8.2.15 The clog function ...98
7.8.2.16 The csqrt function ..98
7.8.2.17 The cabs function...98
7.8.2.18 The cpow function ...98
7.8.2.19 The carg function...98
7.8.2.20 The conj function...98
7.8.2.21 The cimag function ..98
7.8.2.22 The cproj function..98
7.8.2.23 The creal function ..98

7.9 TYPE-GENERIC MATH <TGMATH.H> ..98
7.9.1 The Type-generic macros...98

7.10 NONLOCAL JUMPS <SETJMP.H>..98
7.10.1 Save calling environment ..98

7.10.1.1 The setjmp macro ..98
7.10.2 Restore calling environment ..99

7.10.2.1 The longjmp function ...99
7.11 SIGNAL HANDLING <SIGNAL.H>..99

7.11.1 Specify signal handling ... 100
7.11.1.1 The signal function...100

7.11.2 Send signal ... 100
7.11.2.1 The raise function ..100

CONTENTS

vii

7.12 VARIABLE ARGUMENTS <STDARG.H> ... 100
7.12.1 Variable argument list access macros... 101

7.12.1.1 The va_start macro...101
7.12.1.2 The va_arg macro ..101
7.12.1.3 The va_copy macro ..101
7.12.1.4 The va_end macro..101

7.13 INPUT/OUTPUT <STDIO.H>... 102
7.13.1 Introduction.. 103
7.13.2 Streams... 103
7.13.3 Files ... 105
7.13.4 Operations on files .. 105

7.13.4.1 The remove function ..105
7.13.4.2 The rename function ..105
7.13.4.3 The tmpfile function...105
7.13.4.4 The tmpnam function ...105

7.13.5 File access functions ... 106
7.13.5.1 The fclose function...106
7.13.5.2 The fflush function...106
7.13.5.3 The fopen function ...106
7.13.5.4 The freopen function ..107
7.13.5.5 The setbuf function ..107
7.13.5.6 The setvbuf function...107

7.13.6 Formatted input/output functions... 108
7.13.6.1 The fprintf function ..108
7.13.6.2 The fscanf function...109
7.13.6.3 The printf function ...109
7.13.6.4 The scanf function..109
7.13.6.5 The sprintf function..109
7.13.6.6 The snprintf function..109
7.13.6.7 The sscanf function ..110
7.13.6.8 The vfprintf function ..110
7.13.6.9 The vprintf function ...110
7.13.6.10 The vsprintf function ..110
7.13.6.11 The vsnprintf function ..110
7.13.6.12 The vfscanf function...110
7.13.6.13 The vscanf function ...110
7.13.6.14 The vsscanf function...110

7.13.7 Character input/output functions ... 110
7.13.7.1 The fgetc function ..110
7.13.7.2 The fgets function ..110
7.13.7.3 The fputc function..110
7.13.7.4 The fputs function..110
7.13.7.5 The getc function ...110
7.13.7.6 The getchar function...111
7.13.7.7 The gets function ...111
7.13.7.8 The putc function...111
7.13.7.9 The putchar function ..111
7.13.7.10 The puts function ...111
7.13.7.11 The ungetc function..111

7.13.8 Direct input/output functions ... 112
7.13.8.1 The fread function..112
7.13.8.2 The fwrite function...112

7.13.9 File positioning functions .. 112
7.13.9.1 The fgetpos function...112
7.13.9.2 The fseek function..112
7.13.9.3 The fsetpos function...112
7.13.9.4 The ftell function ...112
7.13.9.5 The rewind function...113

7.13.10 Error-handling functions ... 113
7.13.10.1 The clearerr function ..113

CONTENTS

VIII

7.13.10.2 The feof function..113
7.13.10.3 The ferror function ...113
7.13.10.4 The perror function...113

7.14 GENERAL UTILITIES <STDLIB.H>.. 113
7.14.1 String conversion functions ... 113

7.14.1.1 The atof function..113
7.14.1.2 The atoi function..113
7.14.1.3 The atol function..113
7.14.1.4 The atoll function...114
7.14.1.5 The strtod function...114
7.14.1.6 The strtof function..114
7.14.1.7 The strtold function..114
7.14.1.8 The strtol function..114
7.14.1.9 The strtoll function...114
7.14.1.10 The strtoul function ..114
7.14.1.11 The strtoull function ...114

7.14.2 Pseudo-random sequence generation functions .. 114
7.14.2.1 The rand function...114
7.14.2.2 The srand function ...114

7.14.3 Memory management functions... 114
7.14.3.1 The calloc function...115
7.14.3.2 The free function..115
7.14.3.3 The malloc function ...115
7.14.3.4 The realloc function ...115

7.14.4 Communication with the environment ... 116
7.14.4.1 The abort function..116
7.14.4.2 The atexit function...116
7.14.4.3 The exit function..116
7.14.4.4 The getenv function..116
7.14.4.5 The system function ...116

7.14.5 Searching and sorting utilities.. 117
7.14.5.2 The bsearch function ..117
7.14.5.1 The qsort function..117

7.14.6 Integer arithmetic functions... 117
7.14.6.1 The abs function ..117
7.14.6.2 The div function...117
7.14.6.3 The labs function ...118
7.14.6.4 The llabs function ..118
7.14.6.5 The ldiv function..118
7.14.6.6 The lldiv function...118

7.14.7 Multibyte character functions .. 118
7.14.7.1 The mblen function..118
7.14.7.2 The mbtowc function..118
7.14.7.3 The wctomb function..118

7.14.8 Multibyte string functions.. 118
7.14.8.1 The mbstowcs function...118
7.14.8.2 The wcstombs function...118

7.15 STRING HANDLING <STRING.H> ... 118
7.15.1 String function conventions ... 119
7.15.2 Copying functions ... 119

7.15.2.1 The memcpy function...119
7.15.2.2 The memmove function ..119
7.15.2.3 The strcpy function...119
7.15.2.4 The strncpy function...119

7.15.3 Concatenation functions.. 119
7.15.3.1 The strcat function ...119
7.15.3.2 The strncat function..120

7.15.4 Comparison functions ... 120
7.15.4.1 The memcmp function..120
7.15.4.2 The strcmp function ...120

CONTENTS

ix

7.15.4.3 The strcoll function ..120
7.15.4.4 The strncmp function..120
7.15.4.5 The strxfrm function...120

7.15.5 Search functions ... 120
7.15.5.1 The memchr function ...120
7.15.5.2 The strchr function...120
7.15.5.3 The strcspn function...120
7.15.5.4 The strpbrk function...120
7.15.5.5 The strrchr function..120
7.15.5.6 The strspn function ..120
7.15.5.7 The strstr function..120
7.15.5.8 The strtok function...120

7.15.6 Miscellaneous functions .. 120
7.15.6.1 The memset function..121
7.15.6.2 The strerror function...121
7.15.6.3 The strlen function...121

7.16. DATE AND TIME <TIME.H>... 121
7.16.1 Components of time .. 121
7.16.2 Time manipulation functions... 121

7.16.2.1 The clock function..121
7.16.2.2 The difftime function..121
7.16.2.3 The mktime function..122
7.16.2.4 The mkxtime function ..122
7.16.2.5 The time function...122
7.16.2.6 Normalization of broken-down times ...122

7.16.3 Time conversion functions.. 123
7.16.3.1 The asctime function ..123
7.16.3.2 The ctime function ...123
7.16.3.3 The gmtime function ..123
7.16.3.4 The localtime function..123
7.16.3.5 The zonetime function..123
7.16.3.6 The strftime function..123
7.16.3.7 The strfxtime function ..123

7.17 ALTERNATIVE SPELLINGS <ISO646.H> ... 123
7.18 WIDE-CHATACER CLASSIFICATION AND MAPPING UTILITIES <WCTYPE.H>... 123

7.18.1 Introduction.. 123
7.18.2 Wide-character classification utilities... 123

7.18.2.1 Wide-character classification functions...123
7.18.2.1.1 The iswalnum function ..123
7.18.2.1.1 The iswalpha function..123
7.18.2.1.3 The iswblank function ...124
7.18.2.1.4 The iswcntrl function...124
7.18.2.1.5 The iswdigit function...124
7.18.2.1.6 The iswgraph function ...124
7.18.2.1.7 The iswlower function ...124
7.18.2.1.8 The iswprint function...124
7.18.2.1.9 The iswpunct function..124
7.18.2.1.10 The iswspace function..124
7.18.2.1.11 The iswupper function ...124
7.18.2.1.12 The iswxdigit utilities ..124

7.18.2.2 Extensible wide-character classification functions ...124
7.18.2.2.1 The wctype function ...124
7.18.2.2.2 The iswctype function...124

7.18.3 Wide-character mapping utilities ... 124
7.18.2.2 Extensible wide-character classification functions ...124

7.18.2.2.2 The iswctype function...124
7.18.2.2.2 The iswctype function...124

7.18.2.2 Extensible wide-character classification functions ...124
7.18.2.2.2 The iswctype function...124
7.18.2.2.2 The iswctype function...124

CONTENTS

X

7.19 EXTENDED MULTIBYTE AND WIDE-CHARACTER UTILITIES <WCHAR.H>... 124
7.19.1 Introduction.. 124
7.19.2 Formatted wide-character input-output functions ... 124

7.19.2.1 The fwprintf function...124
7.19.2.2 The fwscanf function...125
7.19.2.3 The wprintf function..125
7.19.2.4 The wscanf function ..125
7.19.2.5 The swprintf function ..125
7.19.2.6 The swscanf function...125
7.19.2.7 The vfwprintf function...125
7.19.2.8 The vwprintf function..125
7.19.2.9 The vswprintf function ...125
7.19.2.10 The vfwscanf function..125
7.19.2.11 The vwscanf function...125
7.19.2.12 The vswscanf function ...125

7.19.3 Wide-character input-output functions ... 125
7.19.3.1 The fgetwc function..125
7.19.3.2 The fgetws function..125
7.19.3.3 The fputwc function ...125
7.19.3.4 The fputws function ...125
7.19.3.5 The getwc function...125
7.19.3.6 The getwchar function..125
7.19.3.7 The putwc function ..125
7.19.3.8 The putwchar function..125
7.19.3.9 The ungetwc function...125
7.19.3.10 The fwide function ...125

7.19.4 Gerenal wide-string utilities ... 125
7.19.4.1 Wide-string numeric conversion functions ..125

7.19.4.1.1 The wcstod function ...126
7.19.4.1.2 The wcstof function..126
7.19.4.1.3 The wcstold function ..126
7.19.4.1.4 The wcstol function ..126
7.19.4.1.5 The wcstoll function ...126
7.19.4.1.6 The wcstoul function ..126
7.19.4.1.7 The wcstoull function ...126

7.19.4.2 Wide-string copying functions ...126
7.19.4.2.1 The wcscpy function...126
7.19.4.2.2 The wcsncpy function ...126

7.19.4.3 Wide-string concatenation functions...126
7.19.4.3.1 The wcscat function..126
7.19.4.3.2 The wcsncat function..126

7.19.4.4 Wide-string comparison functions..126
7.19.4.4.1 The wcscmp function..126
7.19.4.4.2 The wcscoll function...126
7.19.4.4.3 The wcsncmp function..126
7.19.4.4.4 The scxfrm function..126

7.19.4.5 Wide-string search functions ...126
7.19.4.5.1 The wcschr function ...126
7.19.4.5.2 The wcscspn function ...126
7.19.4.5.3 The wcspbrk function ...126
7.19.4.5.4 The wcsrchr function ..126
7.19.4.5.5 The wcsspn function...126
7.19.4.5.6 The wcsstr function ..127
7.19.4.5.7 The wcstok function ...127
7.19.4.5.8 The wcslen function ...127

7.19.4.6 Wide-character array functions ..127
7.19.4.6.1 The wmemchr function...127
7.19.4.6.2 The wmemcmp function ...127
7.19.4.6.3 The wmemcpy function...127
7.19.4.6.4 The wmemmove function..127
7.19.4.6.5 The wmemset function..127

CONTENTS

xi

7.19.5 The wcsftime function ... 127
7.19.6 The wcsfxtime function ... 127
7.19.7 Extended multibyte and wide-character conversion utilities... 127

7.19.7.1 Single-byte wide-character conversion functions..127
7.19.7.1.1 The btowc function...127
7.19.7.1.2 The wctob function...127

7.19.7.2 The mbsinit function ..127
7.19.7.3 Restartable multibyte-wide-character conversion functions...127

7.19.7.3.1 The mbrlen function ...127
7.19.7.3.2 The mbrtowc function...127
7.19.7.3.3 The wcrtomb function...127

7.19.7.4 Restartable multibye-wide-string conversion functions...127
7.19.7.4.1 The mbsrtowcs function..127
7.19.7.4.2 The wcsrtombs function..127

7.20 FUTURE LIBRARY DIRECTIONS .. 127
7.20.1 Errors <errno.h> .. 128
7.20.2 Character handling <ctype.h>... 128
7.20.3 Integral types <inttypes.h> .. 128
7.20.4 Localization <locale.h>... 128
7.20.5 Signal handling <signal.h> ... 128
7.20.6 Input/output <stdio.h> .. 128
7.20.7 General utilities <stdlib.h>.. 128
7.20.8 Complex arithmetic <complex.h> .. 128
7.20.9 String handling <string.h> .. 128
7.20.10 Wide-character classification and mapping utilities <wctype.h>.. 128
7.20.11 Extended multibyte and wide-character utilities <wchar.h>... 128

8. ANNEXES... 129

A. MSE ANNEX (NEW TEXT)..1

A.1 MSE BACKGROUND ..1
A.2 PROGRAMMING MODEL BASED ON WIDE CHARACTERS ..2
A.3 PARALLELISM VERSUS IMPROVEMENT ...3
A.4 SUPPORT FOR INVARIANT ISO 646 ...6
A.5 HEADERS ..6

A.5.1 <wchar.h> ...6
A.5.1.1 Prototypes in <wchar.h> ..6
A.5.1.2 Types and macros in <wchar.h>..7

A.5.2 <wctype.h> ..8
A.6 WIDE-CHARACTER CLASSIFICATION FUNCTIONS ..8

A.6.1 Locale dependency of iswxxx functions ..8
A.6.2 Changed space-character handling ...8

A.7 EXTENSIBLE CLASSIFICATION AND MAPPING FUNCTIONS..9
A.8 GENERALIZED MULTIBYTE CHARACTERS...9
A.9 STREAMS AND FILES..9

A.9.1 Conversion state ..9
A.9.2 Implementation..10

A.9.2.1 Seek operations ...10
A.9.2.2 State-dependent encodings..10
A.9.2.3 Multiple encoding environments...11

A.9.3 Byte versus wide-character input/output ...11
A.9.4 Text versus binary input/output ..12

A.10 FORMATTED INPUT/OUTPUT FUNCTIONS ..12
A.10.1 Enhancing existing formatted input/output functions ...12
A.10.2 Formatted wide-character input/output functions..13

A.11 ADDING THE FWIDE FUNCTION ..13
A.12 SINGLE-BYTE WIDE-CHARACTER CONVERSION FUNCTIONS...14

CONTENTS

XII

A.13 EXTENDED CONVERSION UTILITIES ...14
A.13.1 Conversion state ..15
A.13.2 Conversion utilities...15

A.13.2.1 Initializing conversion states...15
A.13.2.2 Comparing conversion states ..15
A.13.2.3 Testing for initial shift state..16
A.13.2.4 Restartable multibyte functions...16

A.14 COLUMN WIDTH ..16

INDEX...1

RATIONALE WG14/N802 J11/98-001

1

1. SCOPE

This Rationale summarizes the deliberations of X3J11, the Technical Committee charged by ANSI
with devising a standard for the C programming language. It has been published along with the draft5
Standard to assist the process of formal public review.

The X3J11 Committee represents a cross-section of the C community: it consists of about fifty active
members representing hardware manufacturers, vendors of compilers and other software development
tools, software designers, consultants, academics, authors, applications programmers, and others. In10
the course of its deliberations, it has reviewed related American and international standards both
published and in progress. It has attempted to be responsive to the concerns of the broader
community: as of September 1988, it had received and reviewed almost 200 letters, including dozens
of formal comments from the first public review, suggesting modifications and additions to the various
preliminary drafts of the Standard.15

Upon publication of the Standard, the primary role of the Committee will be to offer interpretations of
the Standard. It will consider and respond to all correspondence received.

The Committee’s overall goal was to develop a clear, consistent, and unambiguous Standard for the C20
programming language which codifies the common, existing definition of C and which promotes the
portability of user programs across C language environments.

The X3J11 charter clearly mandates the Committee to codify common existing practice. The
Committee has held fast to precedent wherever this was clear and unambiguous. The vast majority of25
the language defined by the Standard is precisely the same as is defined in Appendix A of The C
Programming Language by Brian Kernighan and Dennis Ritchie, and as is implemented in almost all C
translators. (This document is hereinafter referred to as K&R.)

K&R is not the only source of “existing practice.” Much work has been done over the years to30
improve the C language by addressing its weaknesses. The Committee has formalized enhancements
of proven value which have become part of the various dialects of C.

Existing practice, however, has not always been consistent. Various dialects of C have approached
problems in different and sometimes diametrically opposed ways. This divergence has happened for35
several reasons. First, K&R, which has served as the language specification for almost all C
translators, is imprecise in some areas (thereby allowing divergent interpretations), and it does not
address some issues (such as a complete specification of a library) important for code portability.
Second, as the language has matured over the years, various extensions have been added in different
dialects to address limitations and weaknesses of the language; these extensions have not been40
consistent across dialects.

One of the Committee's goals was to consider such areas of divergence and to establish a set of clear,
unambiguous rules consistent with the rest of the language. This effort included the consideration of
extensions made in various C dialects, the specification of a complete set of required library functions,45
and the development of a complete, correct syntax for C.

WG14/N802 J11/98-001 RATIONALE

2

The work of the Committee was in large part a balancing act. The Committee has tried to improve
portability while retaining the definition of certain features of C as machine-dependent. It attempted to
incorporate valuable new ideas without disrupting the basic structure and fabric of the language. It tried
to develop a clear and consistent language without invalidating existing programs. All of the goals
were important and each decision was weighed in the light of sometimes contradictory requirements in5
an attempt to reach a workable compromise.

In specifying a standard language, the Committee used several guiding principles, the most important
of which are:

10
Existing code is important, existing implementations are not. A large body of C code exists of
considerable commercial value. Every attempt has been made to ensure that the bulk of this code will
be acceptable to any implementation conforming to the Standard. The Committee did not want to
force most programmers to modify their C programs just to have them accepted by conforming
translator.15

On the other hand, no one implementation was held up as the exemplar by which to define C it is
assumed that all existing implementations must change somewhat to conform to the Standard.

C code can be portable. Although the C language was originally born with the UNIX operating20
system on the DEC PDP-11, it has since been implemented on a wide variety of computers and
operating systems. It has also seen considerable use in cross-compilation of code for embedded systems
to be executed in a free-standing environment. The Committee has attempted to specify the language
and the library to be as widely implementable as possible, while recognizing that a system must meet
certain minimum criteria to be considered a viable host or target for the language.25

C code can be non-portable. Although it strove to give programmers the opportunity to write truly
portable programs, the Committee did not want to force programmers into writing portably, to
preclude the use of C as a "high-level assembler’’: the ability to write machine-specific code is one of
the strengths of C. It is this principle which largely motivates drawing the distinction between strictly30
conforming program and conforming program (§4).

Avoid "quiet changes." Any change to widespread practice altering the meaning of existing code
causes problems. Changes that cause code to be so ill-formed as to require diagnostic messages are at
least easy to detect. As much as seemed possible consistent with its other goals, the Committee has35
avoided changes that quietly alter one valid program to another with different semantics, that cause a
working program to work differently without notice. In important places where this principle is
violated, the Rationale points out a QUIET CHANGE.

A standard is a treaty between implementor and programmer. Some numerical limits have been40
added to the Standard to give both implementors and programmers a better understanding of what
must be provided by an implementation, of what can be expected and depended upon to exist. These
limits are presented as minimum maxima (i.e., lower limits placed on the values of upper limits
specified by an implementation) with the understanding that any implementor is at liberty to provide
higher limits than the Standard mandates. Any program that takes advantage of these more tolerant45
limits is not strictly conforming, however, since other implementations are at liberty to enforce the
mandated limits.

RATIONALE WG14/N802 J11/98-001

3

Keep the spirit of C. The Committee kept as a major goal to preserve the traditional spirit of C.
There are many facets of the spirit of C, but the essence is a community sentiment of the underlying
principles upon which the C language is based. Some of the facets of the spirit of C can be summarized
in phrases like

5
• Trust the programmer.
• Don’t prevent the programmer from doing what needs to be done.
• Keep the language small and simple.
• Provide only one way to do an operation.
• Make it fast, even if it is not guaranteed to be portable.10

The last proverb needs a little explanation. The potential for efficient code generation is one of the most
important strengths of C. To help ensure that no code explosion occurs for what appears to be a very
simple operation, many operations are defined to be how the target machine's hardware does it rather
than by a general abstract rule. An example of this willingness to live with what the machine does can15
be seen in the rules that govern the widening of char objects for use in expressions: whether the
values of char objects widen to signed or unsigned quantities typically depends on which byte
operation is more efficient on the target machine.

One of the goals of the Committee was to avoid interfering with the ability of translators to generate20
compact, efficient code. In several cases the Committee has introduced features to improve the
possible efficiency of the generated code; for instance, floating point operations may be performed in
single-precision if both operands are float rather than double.

At the WG14 meeting in Tokyo, Japan, in July 1994, the original principles were re-endorsed and the25
following new ones were added:

Support international programming. During the initial standardization process, support for
internationalization was something of an afterthought. Now that internationalization has proved to be
an important topic, it should have equal visibility with other topics. As a result, ala revision proposals30
submitted shall be reviewed with regard to their impact on internationalization as well as for other
technical merit.

Codify existing practice to address evident deficiencies. Only those concepts that have some prior
art should be accepted. (Prior art may come from implementations of languages other than C.) Unless35
some proposed new feature addresses an evident deficiency that is actually felt by more than a few C
programmers, no new inventions should be entertained.

Minimize incompatibilities with C90 (ISO/IEC 9899:1990). It should be possible for existing C
implementations to gradually migrate to future conformance, rather than requiring a replacement of the40
environment. It should also be possible for the vast majority of existing conforming C programs to run
unchanged.

Minimize incompatibilities with C++. The committee recognizes the need for a clear and defensible
plan with regard to how it intends to address the compatibility issue with C++. The committee45
endorses the principle of maintaining the largest common subset clearly and from the outset. Such a
principle should satisfy the requirement to maximize overlap of the languages while maintaining a
distinction between them and allowing them to evolve separately.

WG14/N802 J11/98-001 RATIONALE

4

Regarding our relationship with C++, the committee is content to let C++ be the big and ambitious
language. While some features of C++ may well be embraced, it is not the committee’s intention that C
become C++.

5
Maintain conceptual simplicity. The committee prefers an economy of concepts that do the job.
Members should identify the issues and prescribe the minimal amount of machinery that will solve
them. The committee recognizes the importance of being able to describe and teach new concepts in a
straightforward and concise manner.

10
During the revision process, it will be important to consider the following observations:

• Regarding the 11 principles, there is a tradeoff between them—none is absolute. However, the
more the committee deviates from them, the more rationale needed to explain the deviation.

15

• There has been a very positive reception of the standard from both the user and vendor
communities.

• The standard is not considered to be broken. Rather, the revision is needed to track emerging
and/or changing technologies and internationalization requirements.20

• Most users of C view it as a general-purpose high-level language. While higher level constructs
can be added, they should be done so only if they don't contradict the basic principles.

• There are a good number of useful suggestions to be found from the public comments and defect25
report processing.

Areas to which the committee shall look when revising the C Standard include:

• Incorporate Amendment 1.30

• Incorporate all technical corrigenda and records of response.

• Current defect reports.
35

• Future directions in current standard.

• Features currently labeled obsolescent.

• Cross-language standards groups work.40

• Requirements resulting from JTC1/SC2 (character sets).

• The evolution of C++.
45

• The evolution of other languages particularly with regard to interlanguage communication issues.

• Other papers and proposals from member delegations, such as the numerical extensions Technical

RATIONALE WG14/N802 J11/98-001

5

Report being proposed by J11.

• Other comments from the public at large.

• Other prior art.5

Without a set of acceptance criteria, judging any technical proposal becomes a highly subjective, and
definitely emotional, exercise. It also wastes a lot of time and energy. Therefore, submittors are
encouraged tokeep all the guiding principles in mind when making submissions.

10
Guidelines for the submission of proposals will be provided. Each submission shall contain a cover
page containing responses to a number of questions and further summary information enabling the
essence of a submission to be distilled simply by reading that cover. The information requested will
include such things as: title, author, author affiliation, date, document number, abstract, proposal
category (e.g., editorial, correction, new feature), prior art, and target audience. Proposals that are not15
directly linked must be submitted separately, each with their own document number and cover page.

Submissions must be sponsored in the same way as defect reports; that is, either by the convener of
WG14, WG14 itself, or by a WG14 national member body. This provides a filtering process and allows
submissions to be rejected early in the process if they violate the revision principles. It also allows20
substantially incomplete or disjoint proposals to be returned for further refinement.

This Rationale focuses primarily on additions, clarifications, and changes made to the C language. It is
not a rationale for the C language as a whole: the Committee was charged with codifying an existing
language, not designing a new one. No attempt is made in this Rationale to defend the pre-existing25
syntax of the language, such as the syntax of declarations or the binding of operators. The Standard is
contrived as carefully as possible to permit a broad range of implementations, from direct interpreters
to highly optimizing compilers with separate linkers, from ROM-based embedded microcomputers to
multi-user multi-processing host systems. A certain amount of specialized terminology has therefore
been chosen to minimize the bias toward compiler implementations shown in the Base Documents.30

This Rationale discusses some language or library features which were not adopted into the Standard.
These are usually features which are popular in some C implementations, so that a user of those
implementations might question why they do not appear in the Standard.

35
1.2 Organization of the document

This Rationale is organized to parallel the Standard as closely as possible, to facilitate finding relevant
discussions. Some subsections of the Rationale comprise just the subsection title from the Standard:
this indicates that the Committee thought no special comment was necessary. Where a given40
discussion touches on several areas, attempts have been made to include cross-references within the
text. Such references, unless they specify the Standard or the Rationale, are deliberately ambiguous.
The Appendices were added as a repository for related material not included in the Standard itself, or
to bring together in a single place information about a topic which was scattered throughout the
Standard.45

Just as the Standard proper excludes all examples, footnotes, references, and appendices, this
Rationale is not part of the Standard. The C language is defined by the Standard alone. If any part of

WG14/N802 J11/98-001 RATIONALE

6

this Rationale is not in accord with that definition, the Committee would very much like to be so
informed.

RATIONALE WG14/N802 J11/98-001

7

2. NORMATIVE REFERENCES

WG14/N802 J11/98-001 RATIONALE

8

RATIONALE WG14/N802 J11/98-001

9

3. DEFINITIONS and CONVENTIONS

The definitions of object, bit, byte, and alignment reflect a strong consensus, reached after considerable
discussion, about the fundamental nature of the memory organization of a C environment:5

• All objects in C must be representable as a contiguous sequence of bytes, each of which
is at least 8 bits wide.

 • A char (or signed char or unsigned char) occupies exactly one byte.10

(Thus, for instance, on a machine with 36-bit words, a byte can be defined to consist of 9, 12, 18, or
36 bits, these numbers being all the exact divisors of 36 which are not less than 8.) These strictures
codify the widespread presumption that any object can be treated as an array of characters, the size of
which is given by the sizeof operator with that object's type as its operand.15

These definitions do not preclude "holes" in struct objects. Such holes are in fact often mandated
by alignment and packing requirements. The holes simply do not participate in representing the
(composite) value of an object.

20
The definition of object does not employ the notion of type. Thus an object has no type in and of itself.
 However, since an object may only be designated by an lvalue (see §6.2.2.1), the phrase "the type of
an object'' is taken to mean, here and in the Standard, "the type of the lvalue designating this object,''
and "the value of an object'' means "the contents of the object interpreted as a value of the type of the
lvalue designating the object.''25

The concept of multi-byte character has been added to C to support very large character sets. (See
§5.2.1.2.)

The terms unspecified behavior, undefined behavior, and implementation-defined behavior are used30
to categorize the result of writing programs whose properties the Standard does not, or cannot,
completely describe. The goal of adopting this categorization is to allow a certain variety among
implementations which permits quality of implementation to be an active force in the marketplace as
well as to allow certain popular extensions, without removing the cachet of conformance to the
Standard. Appendix K to the Standard catalogs those behaviors which fall into one of these three35
categories.

Unspecified behavior gives the implementor some latitude in translating programs. This latitude does
not extend as far as failing to translate the program.

40
Undefined behavior gives the implementor license not to catch certain program errors that are difficult
to diagnose. It also identifies areas of possible conforming language extension: the implementor may
augment the language by providing a definition of the officially undefined behavior.

Implementation-defined behavior gives an implementor the freedom to choose the appropriate45
approach, but requires that this choice be explained to the user. Behaviors designated as
implementation-defined are generally those in which a user could make meaningful coding decisions

WG14/N802 J11/98-001 RATIONALE

10

based on the implementation definition. Implementors should bear in mind this criterion when deciding
how extensive an implementation definition ought to be. As with unspecified behavior, simply failing to
translate the source containing the implementation-defined behavior is not an adequate response.

RATIONALE WG14/N802 J11/98-001

11

4. COMPLIANCE

The three-fold definition of compliance is used to broaden the population of conforming programs and
distinguish between conforming programs using a single implementation and portable conforming5
programs.

A strictly conforming program is another term for a maximally portable program. The goal is to give
the programmer a fighting chance to make powerful C programs that are also highly portable, without
demeaning perfectly useful C programs that happen not to be portable. Thus the adverb strictly.10

By defining conforming implementations in terms of the programs they accept, the Standard leaves
open the door for a broad class of extensions as part of a conforming implementation. By defining
both conforming hosted and conforming freestanding implementations, the Standard recognizes the
use of C to write such programs as operating systems and ROM-based applications, as well as more15
conventional hosted applications. Beyond this two-level scheme, no additional subsetting is defined for
C, since the Committee felt strongly that too many levels dilutes the effectiveness of a standard.

Conforming program is thus the most tolerant of all categories, since only one conforming
implementation need accept a program to rule it conforming. The primary limitation on this license is20
§5.1.1.3.

Diverse sections of the Standard comprise the "treaty'' between programmers and implementors
regarding various name spaces - if the programmer follows the rules of the Standard the
implementation will not impose any further restrictions or surprises:25

• A strictly conforming program can use only a restricted subset of the identifiers that
begin with underscore (§7.1.3). Identifiers and keywords are distinct (§6.1.1).
Otherwise, programmers can use whatever internal names they wish; a conforming
implementation is guaranteed not to use conflicting names of the form reserved to the30
programmer. (Note, however, the class of identifiers which are identified in §7.20 as
possible future library names.)

• The external functions defined in, or called within, a portable program can be named
whatever the programmer wishes, as long as these names are distinct from the external35
names defined by the Standard library (§7). External names in a maximally portable
program must be distinct within the first 16 characters mapped into one case (§6.1.2).

• A maximally portable program cannot, of course, assume any language keywords other
than those defined in the Standard.40

• Each function called within a maximally portable program must either be defined within
some source file of the program or else be a function in the Standard library.

One proposal long entertained by the Committee was to mandate that each implementation have a45
translate-time switch for turning off extensions and making a pure Standard-conforming
implementation. It was pointed out, however, that virtually every translate-time switch setting

WG14/N802 J11/98-001 RATIONALE

12

effectively creates a different "implementation,’’ however close may be the effect of translating with two
different switch settings. Whether an implementor chooses to offer a family of conforming
implementations, or to offer an assortment of non-conforming implementations along with one that
conforms, was not the business of the Committee to mandate. The Standard therefore confines itself to
describing conformance, and merely suggests areas where extensions will not compromise5
conformance.

Other proposals rejected more quickly were to provide a validation suite, and to provide the source
code for an acceptable library. Both were recognized to be major undertakings, and both were seen to
compromise the integrity of the Standard by giving concrete examples that might bear more weight10
than the Standard itself. The potential legal implications were also a concern.

Standardization of such tools as program consistency checkers and symbolic debuggers lies outside the
mandate of the Committee. However, the Committee has taken pains to allow such programs to work
with conforming programs and implementations.15

RATIONALE WG14/N802 J11/98-001

13

5. ENVIRONMENT

Because C has seen widespread use as a cross-compiled cross-compilation language, a clear distinction
must be made between translation and execution environments. The preprocessor, for instance, is5
permitted to evaluate the expression in a #if statement using the long integer arithmetic native to the
translation environment: these integers must comprise at least 32 bits, but need not match the number
of bits in the execution environment. Other translate-time arithmetic, however, such as type casting
and floating arithmetic, must more closely model the execution environment regardless of translation
environment.10

5.1 Conceptual models

The as if principle is invoked repeatedly in this Rationale. The Committee has found that describing
various aspects of the C language, library, and environment in terms of concrete models best serves15
discussion and presentation. Every attempt has been made to craft the models so that implementors
are constrained only insofar as they must bring about the same result, as if they had implemented the
presentation model; often enough the clearest model would make for the worst implementation.

5.1.1 Translation environment Test20

5.1.1.1 Program structure

The terms source file, external linkage, linked, libraries, and executable program all imply a
conventional compiler-linker combination. All of these concepts have shaped the semantics of C,25
however, and are inescapable even in an interpreted environment. Thus, while implementations are not
required to support separate compilation and linking with libraries, in some ways they must behave as
if they do.

5.1.1.2 Translation phases30

Perhaps the greatest undesirable diversity among existing C implementations can be found in
preprocessing. Admittedly a distinct and primitive language superimposed upon C, the preprocessing
commands accreted over time, with little central direction, and with even less precision in their
documentation. This evolution has resulted in a variety of local features, each with its ardent35
adherents: the Base Document offers little clear basis for choosing one over the other.

The consensus of the Committee is that preprocessing should be simple and overt, that it should
sacrifice power for clarity. For instance, the macro invocation f(a, b) should assuredly have two
actual arguments, even if b expands to c, d; and the formal definition of f must call for exactly40
two arguments. Above all, the preprocessing sub-language should be specified precisely enough to
minimize or eliminate dialect formation. To clarify the nature of preprocessing, the translation from
source text to tokens is spelled out as a number of separate phases. The separate phases need not
actually be present in the translator, but the net effect must be as if they were. The phases need not be
performed in a separate preprocessor, although the definition certainly permits this common practice. 45
Since the preprocessor need not know anything about the specific properties of the target, a

WG14/N802 J11/98-001 RATIONALE

14

machine-independent implementation is permissible.

The Committee deemed that it was outside the scope of its mandate to require the output of the
preprocessing phases be available as a separate translator output file.

5
The phases of translation are spelled out to resolve the numerous questions raised about the
precedence of different parses. Can a #define begin a comment? (No.) Is backslash/new-line
permitted within a trigraph? (No.) Must a comment be contained within one #include file? (Yes.)
And so on. The Rationale section on preprocessing (§6.8) discusses the reasons for many of the
articular decisions which shaped the specification of the phases of translation. 10

A backslash immediately before a new-line has long been used to continue string literals, as well as
preprocessing command lines. In the interest of easing machine generation of C, and of transporting
code to machines with restrictive physical line lengths, the Committee generalized this mechanism to
permit any token to be continued by interposing a backslash/ new-line sequence.15

In translation phase 4, the syntactic category preprocessing-file applies to each included file separately
from the file it is included into. Thus an included file cannot contain (for example) unbalanced #else
or #elif directives.

20
5.1.1.3 Diagnostics

By mandating some form of diagnostic message for any program containing a syntax error or
constraint violation, the Standard performs two important services. First, it gives teeth to the concept
of erroneous program, since a conforming implementation must distinguish such a program from a25
valid one. Second, it severely constrains the nature of extensions permissible to a conforming
implementation.

The Standard says nothing about the nature of the diagnostic message, which could simply be
"syntax error'', with no hint of where the error occurs. (An implementation must, of course,30
describe what translator output constitutes a diagnostic message, so that the user can recognize it as
such.) The Committee ultimately decided that any diagnostic activity beyond this level is an issue of
quality of implementation, and that market forces would encourage more useful diagnostics.
Nevertheless, the Committee felt that at least some significant class of errors must be diagnosed, and
the class specified should be recognizable by all translators.35

The Standard does not forbid extensions, but such extensions must not invalidate strictly conforming
programs. The translator must diagnose the use of such extensions, or allow them to be disabled as
discussed in (Rationale) §4. Otherwise, extensions to a conforming C implementation lie in such realms
as defining semantics for syntax to which no semantics is ascribed by the Standard, or giving meaning40
to undefined behavior.

5.1.2 Execution environments

The definition of program startup in the Standard is designed to permit initialization of static storage45
by executable code, as well as by data translated into the program image.

5.1.2.1 Freestanding environment

RATIONALE WG14/N802 J11/98-001

15

As little as possible is said about freestanding environments, since little is served by constraining them.

5.1.2.2 Hosted environment
5

The properties required of a hosted environment are spelled out in a fair amount of detail in order to
give programmers a reasonable chance of writing programs which are portable among such
environments.

The behavior of the arguments to main, and of the interaction of exit, main and atexit (see10
§7.14.4.2) has been codified to curb some unwanted variety in the representation of argv strings, and
in the meaning of values returned by main.

The specification of argc and argv as arguments to main recognizes extensive prior practice.
argv[argc] is required to be a null pointer to provide a redundant check for the end of the list, also15
on the basis of common practice.

main is the only function that may portably be declared either with zero or two arguments. (The
number of arguments must ordinarily match exactly between invocation and definition.) This special
case simply recognizes the widespread practice of leaving off the arguments to main when the20
program does not access the program argument strings. While many implementations support more
than two arguments to main, such practice is neither blessed nor forbidden by the Standard; a
program that defines main with three arguments is not strictly conforming. (See Standard Annex
K.5.1.)

25
Command line I/O redirection is not mandated by the Standard; this was deemed to be a feature of the
underlying operating system rather than the C language.

5.1.2.3 Program execution
30

Because C expressions can contain side effects, issues of sequencing are important in expression
evaluation. (See §6.3.) Most operators impose no sequencing requirements, but a few operators
impose sequence points upon their evaluation: comma, logical-AND, logical-OR, and conditional. For
example, in the expression (i = 1, a[i] = 0) the side effect (alteration to storage) specified by
i = 1 must be completed before the expression a[i] = 0 is evaluated.35

Other sequence points are imposed by statement execution and completion of evaluation of a full
expression. (See §6.6). Thus in fn(++a), the incrementation of a must be completed before fn is
called. In i = 1; a[i] = 0; the side-effect of i = 1 must be complete before a[i] = 0
is evaluated.40

The notion of agreement has to do with the relationship between the abstract machine defining the
semantics and an actual implementation. An agreement point for some object or class of objects is a
sequence point at which the value of the object(s) in the real implementation must agree with the value
prescribed by the abstract semantics.45

For example, compilers that hold variables in registers can sometimes drastically reduce execution
times. In a loop like

WG14/N802 J11/98-001 RATIONALE

16

 sum = 0;
 for (i = 0; i < N; ++i)
 sum += a[i];

5
both sum and i might be profitably kept in registers during the execution of the loop. Thus, the
actual memory objects designated by sum and i would not change state during the loop.

Such behavior is, of course, too loose for hardware-oriented applications such as device drivers and
memory-mapped I/O. The following loop looks almost identical to the previous example, but the10
specification of volatile ensures that each assignment to *ttyport takes place in the same
sequence, and with the same values, as the (hypothetical) abstract machine would have done.

 volatile short *ttyport;
 /* ... */15
 for (i = 0; i < N; ++i)
 *ttyport = a[i];

Another common optimization is to pre-compute common subexpressions. In this loop:
20

 volatile short *ttyport;
 short mask1, mask2;
 /* ... */
 for (i = 0; i < N; ++i)
 *ttyport = a[i] & mask1 & mask2;25

evaluation of the subexpression mask1 & mask2 could be performed prior to the loop in the real
implementation, assuming that neither mask1 nor mask2 appear as an operand of the address-of
(&) operator anywhere in the function. In the abstract machine, of course, this subexpression is
re-evaluated at each loop iteration, but the real implementation is not required to mimic this30
repetitiveness, because the variables mask1 and mask2 are not volatile and the same results
are obtained either way.

The previous example shows that a subexpression can be pre-computed in the real implementation. A
question sometimes asked regarding optimization is, "Is the rearrangement still conforming if the35
pre-computed expression might raise a signal (such as division by zero)?’’ Fortunately for optimizers,
the answer is "Yes,’’ because any evaluation that raises a computational signal has fallen into an
undefined behavior (§6.3), for which any action is allowable.

Behavior is described in terms of an abstract machine to underscore, once again, that the Standard40
mandates results as if certain mechanisms are used, without requiring those actual mechanisms in the
implementation. The Standard specifies agreement points at which the value of an object or class of
objects in an implementation must agree with the value ascribed by the abstract semantics.

Appendix C to the Standard lists the sequence points specified in the body of the Standard.45

The class of interactive devices is intended to include at least asynchronous terminals, or paired display
screens and keyboards. An implementation may extend the definition to include other input and output
devices, or even network inter-program connections, provided they obey the Standard's
characterization of interactivity. 50

RATIONALE WG14/N802 J11/98-001

17

5.2 Environmental considerations

5.2.1 Character sets
5

The Committee ultimately came to remarkable unanimity on the subject of character set requirements.
There was strong sentiment that C should not be tied to ASCII, despite its heritage and despite the
precedent of Ada being defined in terms of ASCII. Rather, an implementation is required to provide a
unique character code for each of the printable graphics used by C, and for each of the control codes
representable by an escape sequence. (No particular graphic representation for any character is10
prescribed - thus the common Japanese practice of using the glyph ¥ or the C character '\' is perfectly
legitimate.) Translation and execution environments may have different character sets, but each must
meet this requirement in its own way. The goal is to ensure that a conforming implementation can
translate a C translator written in C.

15
For this reason, and economy of description, source code is described as if it undergoes the same
translation as text that is input by the standard library I/O routines: each line is terminated by some
new-line character, regardless of its external representation.

5.2.1.1 Trigraph sequences20

Trigraph sequences have been introduced as alternate spellings of some characters to allow the
implementation of C in character sets which do not provide a sufficient number of non-alphabetic
graphics.

25
Implementations are required to support these alternate spellings, even if the character set in use is
ASCII, in order to allow transportation of code from systems which must use the trigraphs.

The Committee faced a serious problem in trying to define a character set for C. Not all of the
character sets in general use have the right number of characters, nor do they support the graphical30
symbols that C users expect to see. For instance, many character sets for languages other than English
resemble ASCII except that codes used for graphic characters in ASCII are instead used for extra
alphabetic characters or diacritical marks. C relies upon a richer set of graphic characters than most
other programming languages, so the representation of programs in character sets other than ASCII is
a greater problem than for most other programming languages.35

The International Standards Organization (ISO) uses three technical terms to describe character sets:
repertoire , collating sequence , and codeset. The repertoire is the set of distinct printable characters.
The term abstracts the notion of printable character from any particular representation; the glyphs R ,
R , R , R , R , R , and R all represent the same element of the repertoire, upper-case-R, which is40
distinct from lower-case-r. Having decided on the repertoire to be used (C needs a repertoire of 96
characters), one can then pick a collating sequence which corresponds to the internal representation in
a computer. The repertoire and collating sequence together form the codeset.

What is needed for C is to determine the necessary repertoire, ignore the collating sequence altogether45
(it is of no importance to the language), and then find ways of expressing the repertoire in a way that
should give no problems with currently popular codesets.

WG14/N802 J11/98-001 RATIONALE

18

C derived its repertoire from the ASCII codeset. Unfortunately the ASCII repertoire is not a subset of
all other commonly used character sets, and widespread practice in Europe is not to implement all of
ASCII either, but use some parts of its collating sequence for special national characters.

The solution is an internationally agreed-upon repertoire, in terms of which an international5
representation of C can be defined. The ISO has defined such a standard: ISO 646 describes an
invariant subset of ASCII.

The characters in the ASCII repertoire used by C and absent from the ISO 646 repertoire are:
10

 # [] { } \ | ~ ^

Given this repertoire, the Committee faced the problem of defining representations for the absent
characters. The obvious idea of defining two-character escape sequences fails because C uses all the
characters which are in the ISO 646 repertoire: no single escape character is available. The best that15
can be done is to use a trigraph - an escape digraph followed by a distinguishing character.

?? was selected as the escape digraph because it is not used anywhere else in C (except as noted
below); it suggests that something unusual is going on. The third character was chosen with an eye to
graphical similarity to the character being represented.20

The sequence ?? cannot currently occur anywhere in a legal C program except in strings, character
constants, comments, or header names. The character escape sequence ’\?' (see §6.1.3.4) was
introduced to allow two adjacent question-marks in such contexts to be represented as ?\?, a form
distinct from the escape digraph.25

The Committee makes no claims that a program written using trigraphs looks attractive. As a matter
of style, it may be wise to surround trigraphs with white space, so that they stand out better in program
text. Some users may wish to define preprocessing macros for some or all of the trigraph sequences.

30
QUIET CHANGE

Programs with character sequences such as ??! in string constants, character
constants, or header names will now produce different results.

35
5.2.1.2 Multibyte characters

The "byte = character'' orientation of C works well for text in Western alphabets, where the size of the
character set is under 256. The fit is rather uncomfortable for languages such as Japanese and Chinese,
where the repertoire of ideograms numbers in the thousands or tens of thousands. 40
Internally, such character sets can be represented as numeric codes, and it is merely necessary to
choose the appropriate integral type to hold any such character.

Externally, whether in the files manipulated by a program, or in the text of the source files themselves,
a conversion between these large codes and the various byte media is necessary.45

The support in C of large character sets is based on these principles:

RATIONALE WG14/N802 J11/98-001

19

• Multibyte encodings of large character sets are necessary in I/O operations, in source
text comments, and in source text string and character literals.

• No existing multibyte encoding is mandated in preference to any other; no widespread
existing encoding should be precluded.5

• The null character ('\0') may not be used as part of a multibyte encoding, except for
the one-byte null character itself. This allows existing functions which manipulate
strings transparently to work with multibyte sequences.

10
• Shift encodings (which interpret byte sequences in part on the basis of some state

information) must start out in a known (default) shift state under certain circumstances,
such as the start of string literals.

• The minimum number of absolutely necessary library functions is introduced. (See15
§7.14.7.)

5.2.2 Character display semantics

The Standard defines a number of internal character codes for specifying "format effecting actions on20
display devices,'' and provides printable escape sequences for each of them. These character codes are
clearly modelled after ASCII control codes, and the mnemonic letters used to specify their escape
sequences reflect this heritage. Nevertheless, they are internal codes for specifying the format of a
display in an environment-independent manner; they must be written to a text file to effect formatting
on a display device. The Standard states quite clearly that the external representation of a text file (or25
data stream) may well differ from the internal form, both in character codes and number of characters
needed to represent a single internal code.

The distinction between internal and external codes most needs emphasis with respect to new-line.
ANSI X3L2 (Codes and Character Sets) uses the term to refer to an external code used for30
information interchange whose display semantics specify a move to the next line. Both ANSI X3L2
and ISO 646 deprecate the combination of the motion to the next line with a motion to the initial
position on the line. The C Standard, on the other hand, uses new-line to designate the end-of-line
internal code represented by the escape sequence '\n'. While this ambiguity is perhaps unfortunate, use
of the term in the latter sense is nearly universal within the C community. But the knowledge that this35
internal code has numerous external representations, depending upon operating system and medium, is
equally widespread.

The alert sequence ('\a') has been added by popular demand, to replace, for instance, the ASCII BEL
code explicitly coded as '\007'.40

Proposals to add '\e' for ASCII ESC ('\033') were not adopted because other popular character sets
such as EBCDIC have no obvious equivalent. (See §6.1.3.4.)

The vertical tab sequence ('\v') was added since many existing implementations support it, and since it45
is convenient to have a designation within the language for all the defined white space characters.

The semantics of the motion control escape sequences carefully avoid the Western language

WG14/N802 J11/98-001 RATIONALE

20

assumptions that printing advances left-to-right and top-to-bottom.

To avoid the issue of whether an implementation conforms if it cannot properly effect vertical tabs (for
instance), the Standard emphasizes that the semantics merely describe intent.

5
5.2.3 Signals and interrupts

Signals are difficult to specify in a system-independent way. The Committee concluded that about the
only thing a strictly conforming program can do in a signal handler is to assign a value to a
volatile static variable which can be written uninterruptedly and promptly return. (The10
header <signal.h> specifies a type sig_atomic_t which can be so written.) It is further
guaranteed that a signal handler will not corrupt the automatic storage of an instantiation of any
executing function, even if that function is called within the signal handler. No such guarantees can be
extended to library functions, with the explicit exceptions of longjmp (§7.10.2.1) and signal
(§7.11.1.1), since the library functions may be arbitrarily interrelated and since some of them have15
profound effect on the environment.

Calls to longjmp are problematic, despite the assurances of §7.10.2.1. The signal could have
occurred during the execution of some library function which was in the process of updating external
state and/or static variables.20

A second signal for the same handler could occur before the first is processed, and the Standard makes
no guarantees as to what happens to the second signal.

5.2.4 Environmental limits25

The Committee agreed that the Standard must say something about certain capacities and limitations,
but just how to enforce these treaty points was the topic of considerable debate.

5.2.4.1 Translation limits30

The Standard requires that an implementation be able to translate and compile some program that
meets each of the stated limits. This criterion was felt to give a useful latitude to the implementor in
meeting these limits. While a deficient implementation could probably contrive a program that meets
this requirement, yet still succeed in being useless, the Committee felt that such ingenuity would35
probably require more work than making something useful. The sense of the Committee is that
implementors should not construe the translation limits as the values of hard-wired parameters, but
rather as a set of criteria by which an implementation will be judged.

Some of the limits chosen represent interesting compromises. The goal was to allow reasonably large40
portable programs to be written, without placing excessive burdens on reasonably small
implementations.

The minimum maximum limit of 257 cases in a switch statement allows coding of lexical routines
which can branch on any character (one of at least 256 values) or on the value EOF.45

5.2.4.2 Numerical limits

RATIONALE WG14/N802 J11/98-001

21

In addition to the discussion below, see §7.1.5.

5.2.4.2.1 Sizes of integer types <limits.h>

Such a large body of C code has been developed for 8-bit byte machines that the integer sizes in such5
environments must be considered normative. The prescribed limits are minima: an implementation on a
machine with 9-bit bytes can be conforming, as can an implementation that defines int to be the
same width as long. The negative limits have been chosen to accommodate ones-complement or
sign-magnitude implementations, as well as the more usual twos-complement. The limits for the
maxima and minima of unsigned types are specified as unsigned constants (e.g., 65535u) to avoid10
surprising widenings of expressions involving these extrema.

The macro CHAR_BIT makes available the number of bits in a char object. The Committee saw
little utility in adding such macros for other data types.

15
The names associated with the short int types (SHRT_MIN, etc., rather than SHORT_MIN,
etc.) reflect prior art rather than obsessive abbreviation on the Committee's part.

5.2.4.2.2 Characteristics of floating types <float.h>
20

The characterization of floating point follows, with minor changes, that of the FORTRAN
standardization committee (X3J31). The Committee chose to follow the FORTRAN model in some
part out of a concern for FORTRAN-to-C translation, and in large part out of deference to the
FORTRAN committee's greater experience with fine points of floating point usage. Note that the
floating point model adopted permits all common representations, including sign-magnitude and25
twos-complement, but precludes a logarithmic implementation.

Single precision (32-bit) floating point is considered adequate to support a conforming C
implementation. Thus the minimum maxima constraining floating types are extremely permissive.

30
The Committee has also endeavored to accommodate the IEEE 754 floating point standard by not
adopting any constraints on floating point which are contrary to this standard.

The term FLT_MANT_DIG stands for "float mantissa digits.'' The Standard now uses the more
precise term significand rather than mantissa.35

 1See X3J3 working document S8-112.

WG14/N802 J11/98-001 RATIONALE

22

RATIONALE WG14/N802 J11/98-001

23

6. LANGUAGE

While more formal methods of language definition were explored, the Committee decided early on to
employ the style of the Base Document: Backus-Naur Form for the syntax and prose for the
constraints and semantics. Anything more ambitious was considered to be likely to delay the Standard,5
and to make it less accessible to its audience.

6.1 Lexical Elements

The Standard endeavors to bring preprocessing more closely into line with the token orientation of the10
language proper. To do so requires that at least some information about white space be retained
through the early phases of translation (see §5.1.1.2). It also requires that an inverse mapping be
defined from tokens back to source characters (see §6.8.3).

6.1.1 Keywords15

Several keywords have been added: const, enum, signed, void, and volatile. New for
C9X are the keywords restrict, inline, complex and imaginary.

As much as possible, however, new features have been added by overloading existing keywords, as, for20
example, long double instead of extended. It is recognized that each added keyword will
require some existing code that used it as an identifier to be rewritten. No meaningful programs are
known to be quietly changed by adding the new keywords.

The keywords entry, fortran, and asm have not been included since they were either never25
used, or are not portable. Uses of fortran and asm as keywords are noted as common
extensions.

6.1.2 Identifiers
30

While an implementation is not obliged to remember more than the first 31 characters of an identifier
for the purpose of name matching, the programmer is effectively prohibited from intentionally creating
two different identifiers that are the same in the first 31 characters. Implementations may therefore
store the full identifier; they are not obliged to truncate to 31.

35
The decision to extend significance to 31 characters for internal names was made with little opposition,
but the decision to retain the old six-character case-insensitive restriction on significance of external
names was most painful. While strong sentiment was expressed for making C "right'' by requiring
longer names everywhere, the Committee recognized that the language must, for years to come,
coexist with other languages and with older assemblers and linkers. Rather than undermine support for40
the Standard, the severe restrictions have been retained.

The Committee has decided to label as obsolescent the practice of providing different identifier
significance for internal and external identifiers, thereby signaling its intent that some future version of
the C Standard require 31-character case-sensitive external name significance, and thereby encouraging45
new implementations to support such significance.

Three solutions to the external identifier length/case problem were explored, each with its own set of

WG14/N802 J11/98-001 RATIONALE

24

problems:

1. Label any C implementation without at least 31-character, case-sensitive significance
in external identifiers as non-standard. This is unacceptable since the whole reason
for a standard is portability, and many systems today simply do not provide such a5
name space.

2. Require a C implementation which cannot provide 31-character, case-sensitive
significance to map long identifiers into the identifier name space that it can provide.
 This option quickly becomes very complex for large, multi-source programs, since a10
program-wide database has to be maintained for all modules to avoid giving two
different identifiers the same actual external name. It also reduces the usefulness of
source code debuggers and cross reference programs, which generally work with the
short mapped names, since the source-code name used by the programmer would likely
bear little resemblance to the name actually generated.15

3. Require a C implementation which cannot provide 31-character, case-sensitive
significance to rewrite the linker, assembler, debugger, any other language
translators which use the linker, etc. This is not always practical, since the C
implementor might not be providing the linker, etc. Indeed, on some systems only the20
manufacturer’s linker can be used, either because the format of the resulting program
file is not documented, or because the ability to create program files is restricted to
secure programs.

Because of the decision to restrict significance of external identifiers to six case-insensitive characters,25
C programmers are faced with these choices when writing portable programs:

1. Make sure that external identifiers are unique within the first six characters, and use only one
case within the name. A unique six-character prefix could be used, followed by an underscore,
followed by a longer, more descriptive name:30

extern int a_xvz_real_long_name;
extern int a_rwt_real_long_name2;

2. Use the prefix method described above, and then use #define statements to provide a35
longer, more descriptive name for the unique name, such as:

#define real_long_name a_xvz_real_long_name
#define real_long_name2 a_rwt_real_long_name2

40
Note that overuse of this technique might result in exceeding the limit on the number of allowed
#define macros, or some other implementation limit.

3. Use longer and/or multi-case external names, and limit the portability of the programs to
systems that support the longer names.45

4. Declare all exported items (or pointers thereto) in a single data structure and export that
structure. The technique can reduce the number of external identifiers to one per translation
unit; member names within the structure are internal identifiers, hence can have full

RATIONALE WG14/N802 J11/98-001

25

significance. The principal drawback of this technique is that functions can only be exported by
reference, not by name; on many systems this entails a run-time overhead on each function call.

QUIET CHANGE
5

A program that depends upon internal identifiers matching only in the first (say) eight
characters may change to one with distinct objects for each variant spelling of the
identifier.

6.1.2.1 Scopes of identifiers10

The Standard has separated from the overloaded keywords for storage classes the various concepts of
scope, linkage, name space, and storage duration. (See §6.1.2.2, §6.1.2.3, §6.1.2.4.) This has
traditionally been a major area of confusion.

15
One source of dispute was whether identifiers with external linkage should have file scope even when
introduced within a block. The Base Document is vague on this point, and has been interpreted
differently by different implementations. For example, the following fragment would be valid in the file
scope scheme, while invalid in the block scope scheme:

20
typedef struct data d_struct ;

first(){
extern d_struct func(); /* ... */

}25

second(){
d_struct n = func();

}
30

While it was generally agreed that it is poor practice to take advantage of an external declaration once
it had gone out of scope, some argued that a translator had to remember the declaration for checking
anyway, so why not acknowledge this? The compromise adopted was to decree essentially that block
scope rules apply, but that a conforming implementation need not diagnose a failure to redeclare an
external identifier that had gone out of scope (undefined behavior).35

QUIET CHANGE

A program relying on file scope rules may be valid under block scope rules but behave
differently - for instance, if d_struct were defined as type float rather than40
struct data in the example above.

Although the scope of an identifier in a function prototype begins at its declaration and ends at the end
of that function's declarator, this scope is of course ignored by the preprocessor. Thus an identifier in a
prototype having the same name as that of an existing macro is treated as an invocation of that macro. 45
For example:

#define status 23
void exit(int status);

50

WG14/N802 J11/98-001 RATIONALE

26

generates an error, since the prototype after preprocessing becomes

void exit(int 23);

Perhaps more surprising is what happens if status is defined5

 #define status []

Then the resulting prototype is
10

void exit(int []);

which is syntactically correct but semantically quite different from the intent.

To protect an implementation’s header prototypes from such misinterpretation, the implementor must15
write them to avoid these surprises. Possible solutions include not using identifiers in prototypes, or
using names (such as __status or _Status) in the reserved name space.

6.1.2.2 Linkages of identifiers
20

The Standard requires that the first declaration, implicit or explicit, of an identifier specify (by the
presence or absence of the keyword static) whether the identifier has internal or external linkage.
This requirement allows for one-pass compilation in an implementation which must treat internal
linkage items differently than external linkage items. An example of such an implementation is one
which produces intermediate assembler code, and which therefore must construct names for internal25
linkage items to circumvent identifier length and/or case restrictions in the target assembler.

Existing practice in this area is inconsistent. Some implementations have avoided the renaming problem
simply by restricting internal linkage names by the same rules as for external linkage. Others have
disallowed a static declaration followed later by a defining instance, even though such constructs are30
necessary to declare mutually recursive static functions. The requirements adopted in the Standard
may call for changes in some existing programs, but allow for maximum flexibility.

The definition model to be used for objects with external linkage was a major standardization issue.
The basic problem was to decide which declarations of an object define storage for the object, and35
which merely reference an existing object. A related problem was whether multiple definitions of
storage are allowed, or only one is acceptable. Existing implementations of C exhibit at least four
different models, listed here in order of increasing restrictiveness:

Common Every object declaration with external linkage (whether or not the keyword extern40
appears in the declaration) creates a definition of storage. When all of the modules are
combined together, each definition with the same name is located at the same address in
memory. (The name is derived from common storage in FORTRAN.) This model was the
intent of the original designer of C, Dennis Ritchie.

45
Relaxed Ref/Def The appearance of the keyword extern (whether it is used outside of the scope

of a function or not) in a declaration indicates a pure reference (ref), which does not define
storage. Somewhere in all of the translation units, at least one definition (def) of the object
must exist. An external definition is indicated by an object declaration in file scope containing

RATIONALE WG14/N802 J11/98-001

27

no storage class indication. A reference without a corresponding definition is an error. Some
implementations also will not generate a reference for items which are declared with the
extern keyword, but are never used within the code. The UNIX operating system C
compiler and linker implement this model, which is recognized as a common extension to the C
language (K.5.11). UNIX C programs which take advantage of this model are standard5
conforming in their environment, but are not maximally portable.

Strict Ref/Def This is the same as the relaxed ref/def model, save that only one definition is allowed.
Again, some implementations may decide not to put out references to items that are not used.
This is the model specified in K&R and in the Base Document.10

Initialization This model requires an explicit initialization to define storage. All other declarations are
references.

Figure 6.1 demonstrates the differences between the models.15

The model adopted in the Standard is a combination of features of the strict ref/def model and the
initialization model. As in the strict ref/def model, only a single translation unit contains the definition of
a given object - many environments cannot effectively or efficiently support the "distributed definition’’
inherent in the common or relaxed ref/def approaches. However, either an initialization, or an20
appropriate declaration without storage class specifier (see §6.7), serves as the external definition. This
composite approach was chosen to accommodate as wide a range of environments and existing
implementations as possible.

6.1.2.3 Name spaces of identifiers25

Implementations have varied considerably in the number of separate name spaces maintained. The
position adopted in the Standard is to permit as many separate name spaces as can be distinguished by
context, except that all tags (struct, union, and enum) comprise a single name space.

WG14/N802 J11/98-001 RATIONALE

28

Figure 6.1: Comparison of identifier linkage models

Model File 1 File 2

common extern int i:
main() {
 i = 1;
 second();
}

extern int i;
second() {
 third(i);
}

Relaxed Ref/Def int i;
main() {
 i = 1;
 second();
}

int i;
second() {
 third(i);
}

Strict Ref/Def int i;
main() {
 i = 1;
 second();
}

extern int i;
second() {
 third(i);
}

Initializer int i = 0;
main() {
 i = 1;
 second();
}

int i;
second() {
 third(i);
}

5
6.1.2.4 Storage durations of objects

It was necessary to clarify the effect on automatic storage of jumping into a block that declares local
storage. (See §6.6.2.) While many implementations allocate the maximum depth of automatic storage
upon entry to a function, some explicitly allocate and deallocate on block entry and exit. The latter are10
required to assure that local storage is allocated regardless of the path into the block (although
initializers in automatic declarations are not executed unless the block is entered from the top).

To effect true reentrancy for functions in the presence of signals raised asynchronously (see §5.2.3), an
implementation must assure that the storage for function return values has automatic duration. This15
means that the caller must allocate automatic storage for the return value and communicate its location
to the called function. (The typical case of return registers for small types conforms to this
requirement: the calling convention of the implementation implicitly communicates the return location
to the called function.)

20
6.1.2.5 Types

Several new types have been added:

void25
void *
signed char
unsigned char
unsigned short
unsigned long30
long double

RATIONALE WG14/N802 J11/98-001

29

New types added for C9X.
float complex
double complex
long double complex5
long long

New designations for existing types have been added:

signed short for short10
signed int for int
signed long for long

void is used primarily as the typemark for a function which returns no result. It may also be used, in
any context where the value of an expression is to be discarded, to indicate explicitly that a value is15
ignored by writing the cast (void). Finally, a function prototype list that has no arguments is
written as f(void), because f() retains its old meaning that nothing is said about the arguments.

A "pointer to void,’’ void *, is a generic pointer, capable of pointing to any (data) object except for
bit-fields and objects declared with the register storage-class without truncation. A pointer to20
void must have the same representation and alignment as a pointer to character; the intent of this rule is
to allow existing programs which call library functions (such as memcpy and free) to continue to
work. A pointer to void may not be dereferenced, although such a pointer may be converted to a
normal pointer type which may be dereferenced. Pointers to other types coerce silently to and from
void * in assignments, function prototypes, comparisons, and conditional expressions, whereas other25
pointer type clashes are invalid. It is undefined what will happen if a pointer of some type is converted
to void *, and then the void * pointer is converted to a type with a stricter alignment
requirement. Three types of char are specified: signed, plain, and unsigned. A plain char
may be represented as either signed or unsigned, depending upon the implementation, as in prior
practice. The type signed char was introduced to make available a one-byte signed integer type30
on those systems which implement plain char as unsigned. For reasons of symmetry, the keyword
signed is allowed as part of the type name of other integral types. Two varieties of the integral types
are specified: signed and unsigned. If neither specifier is used, signed is assumed. In the Base
Document the only unsigned type is unsigned int.

35
The keyword unsigned is something of a misnomer, suggesting as it does in arithmetic that it is
non-negative but capable of overflow. The semantics of the C type unsigned is that of modulus, or
wrap-around, arithmetic, for which overflow has no meaning. The result of an unsigned arithmetic
operation is thus always defined, whereas the result of a signed operation may (in principle) be
undefined. In practice, on twos-complement machines, both types often give the same result for all40
operators except division, modulus, right shift, and comparisons. Hence there has been a lack of
sensitivity in the C community to the differences between signed and unsigned arithmetic (see
§6.2.1.1).

The Committee has explicitly restricted the C language to binary architectures, on the grounds that this45
stricture was implicit in any case:

• Bit-fields are specified by a number of bits, with no mention of "invalid integer''
representation. The only reasonable encoding for such bit-fields is binary.

WG14/N802 J11/98-001 RATIONALE

30

• The integer formats for printf suggest no provision for "illegal integer'' values,
implying that any result of bitwise manipulation produces an integer result which can be
printed by printf.

5
• All methods of specifying integer constants - decimal, hex, and octal - specify an

integer value. No method independent of integers is defined for specifying "bit-string
constants.'' Only a binary encoding provides a complete one-to-one mapping between
bit strings and integer values.

10
The restriction to "binary numeration systems'' rules out such curiosities as Gray code, and makes
possible arithmetic definitions of the bitwise operators on unsigned types (see §6.3.3.3, §6.3.7, §6.3.10,
§6.3.11, §6.3.12).

A new floating type long double has been added to C. The long double type must offer at15
least as much precision as the type double. Several architectures support more than two floating
types and thus can map a distinct machine type onto this additional C type. Several architectures which
only support two floating point types can also take advantage of the three C types by mapping the less
precise type onto float and double, and designating the more precise type long double.
Architectures in which this mapping might be desirable include those in which single-precision floats20
offer at least as much precision as most other machines's double-precision, or those on which
single-precision is considerably more efficient than double-precision. Thus the common C floating
types would map onto an efficient implementation type, but the more precise type would still be
available to those programmers who require its use.

25
To avoid confusion, long float as a synonym for double has been retired.

Enumerations permit the declaration of named constants in a more convenient and structured fashion
than #define's. Both enumeration constants and variables behave like integer types for the sake of
type checking, however.30

The Committee considered several alternatives for enumeration types in C:

1. leave them out;
35

2. include them as definitions of integer constants;

3. include them in the weakly typed form of the UNIX C compiler;

4. include them with strong typing, as, for example, in Pascal.40

The Committee adopted the second alternative on the grounds that this approach most clearly reflects
common practice. Doing away with enumerations altogether would invalidate a fair amount of existing
code; stronger typing than integer creates problems, for instance, with arrays indexed by enumerations.

45
6.1.2.6 Compatible type and composite type

The notions of compatible types and composite type have been introduced to discuss those situations in

RATIONALE WG14/N802 J11/98-001

31

which type declarations need not be identical. These terms are especially useful in explaining the
relationship between an incomplete type and a complete type.

Structure, union, or enumeration type declarations in two different translation units do not formally
declare the same type, even if the text of these declarations come from the same include file, since the5
translation units are themselves disjoint. The Standard thus specifies additional compatibility rules for
such types, so that if two such declarations are sufficiently similar they are compatible.

6.1.2.7 Predefined identifiers
10

6.1.2.8 Representations of types

6.1.2.8.1 General

6.1.2.8.2 Integer types15

6.1.3 Constants

In folding and converting constants, an implementation must use at least as much precision as is
provided by the target environment. However, it is not required to use exactly the same precision as20
the target, since this would require a cross compiler to simulate target arithmetic at translation time.

The Committee considered the introduction of structure constants. Although it agreed that structure
literals would occasionally be useful, its policy has been not to invent new features unless a strong need
exists. Since the language already allows for initialized const structure objects, the need for inline25
anonymous structured constants seems less than pressing.

Several implementation difficulties beset structure constants. All other forms of constants are "self
typing’’ - the type of the constant is evident from its lexical structure. Structure constants would
require either an explicit type mark, or typing by context; either approach is considered to require30
increased complexity in the design of the translator, and either approach would also require as much, if
not more, care on the part of the programmer as using an initialized structure object.

6.1.3.1 Floating constants
35

Consistent with existing practice, a floating point constant has been defined to have type double.
Since the Standard now allows expressions that contain only float operands to be performed in
float arithmetic (see §6.2.1.7) rather than double, a method of expressing explicit float
constants is desirable. The new long double type raises similar issues.

40
Thus the F and L suffixes have been added to convey type information with floating constants, much
like the L suffix for long integers. The default type of floating constants remains double, for
compatibility with prior practice. Lower case f and l are also allowed as suffixes.

Note that the run-time selection of the decimal point character by setlocale (§7.5.1) has no effect45
on the syntax of C source text: the decimal point character is always period.

6.1.3.2 Integer constants

WG14/N802 J11/98-001 RATIONALE

32

The rule that the default type of a decimal integer constant is either int, long, or unsigned
long, depending on which type is large enough to hold the value without overflow, simplifies the use
of constants.

5
The suffixes U and u have been added to specify unsigned numbers.

Unlike decimal constants, octal and hexadecimal constants too large to be ints are typed as
unsigned int (if within range of that type), since it is more likely that they represent bit patterns or
masks, which are generally best treated as unsigned, rather than "real’’ numbers.10

Little support was expressed for the old practice of permitting the digits 8 and 9 in an octal constant, so
it has been dropped.

A proposal to add binary constants was rejected due to lack of precedent and insufficient utility.15

Despite a concern that a lower-case L could be taken for the numeral one at the end of an integral (or
floating) literal, the Committee rejected proposals to remove this usage, primarily on the grounds of
sanctioning existing practice.

20
The rules given for typing integer constants were carefully worked out in accordance with the
Committee's deliberations on integral promotion rules (see §6.2.1.1).

QUIET CHANGE
25

Unsuffixed integer constants may have different types. In K&R, unsuffixed decimal
constants greater than INT_MAX, and unsuffixed octal or hexadecimal constants
greater than UINT_MAX are of type long.

6.1.3.3 Enumeration constants30

Whereas an enumeration variable may have any integer type that correctly represents all its values
when widened to int, an enumeration constant is only usable as the value of an expression. Hence
its type is simply int. (See §6.1.2.5.)

35
6.1.3.4 Character constants

The digits 8 and 9 are no longer permitted in octal escape sequences. (Cf. octal constants, §6.1.3.2.)

The alert escape sequence has been added (see §5.2.2).40

Hexadecimal escape sequences, beginning with \x, have been adopted, with precedent in several
existing implementations. (Little sentiment was garnered for providing \X as well.) The escape
sequence extends to the first non-hex-digit character, thus providing the capability of expressing any
character constant no matter how large the type char is. String concatenation can be used to specify45
a hex-digit character following a hexadecimal escape sequence:

char a[] = "\xff" "f" ;

RATIONALE WG14/N802 J11/98-001

33

char b[] = {’\xff’, ’f’, ’\0’};

These two initializations give a and b the same string value.

The Committee has chosen to reserve all lower case letters not currently used for future escape5
sequences (undefined behavior). All other characters with no current meaning are left to the
implementor for extensions (implementation-defined behavior). No portable meaning is assigned to
multi-character constants or ones containing other than the mandated source character set
(implementation-defined behavior).

10
The Committee considered proposals to add the character constant ’\e’ to represent the ASCII ESC
(’\033’) character. This proposal was based upon the use of ESC as the initial character of most
control sequences in common terminal driving disciplines, such as ANSI X3.64. However, this usage
has no obvious counterpart in other popular character codes, such as EBCDIC. A programmer merely
wishing to avoid having to type \033 to represent the ESC character in an ASCII/X3.6415
environment, may, instead of writing

printf("\033[10;10h%d\n", somevalue);

write:20
#define ESC "\033"

printf(ESC "[10;10h%d\n", somevalue);

Notwithstanding the general rule that literal constants are non-negative 2, a character constant25
containing one character is effectively preceded with a (char) cast and hence may yield a negative
value if plain char is represented the same as signed char. This simply reflects widespread past
practice and was deemed too dangerous to change.

QUIET CHANGE30

A constant of the form ’\078’ is valid, but now has different meaning. It now denotes
a character constant whose value is the (implementation-defined) combination of the
values of the two characters \07 and ’8’. In some implementations the old meaning is
the character whose code is 078 ≡ 0100 ≡ 64. 35

QUIET CHANGE

A constant of the form ’\a’ or ’\x’ now may have different meaning. The old meaning,
if any, was implementation dependent.

40
An L prefix distinguishes wide character constants. (See §5.2.1.2.)

6.1.4 String literals

String literals are specified to be unmodifiable. This specification allows implementations to share45
copies of strings with identical text, to place string literals in read-only memory, and perform certain

 2is an expression: unary minus with operand 3.

WG14/N802 J11/98-001 RATIONALE

34

optimizations. However, string literals do not have the type array of const char, in order to avoid the
problems of pointer type checking, particularly with library functions, since assigning a pointer to const
char to a plain pointer to char is not valid. Those members of the Committee who insisted that string
literals should be modifiable were content to have this practice designated a common extension (see
K.5.5).5

Existing code which modifies string literals can be made strictly conforming by replacing the string
literal with an initialized static character array. For instance,

char *p, *make_temp(char *str);10
 /* ... */
 p = make_temp("tempXXX");

/* make_temp overwrites the literal */
/* with a unique name */

15
can be changed to:

char *p, *make_temp(char *str);
/* ... */

{20
 static char template[] = "tempXXX";
 p = make_temp(template);

}

A long string can be continued across multiple lines by using the backslash-newline line continuation,25
but this practice requires that the continuation of the string start in the first position of the next line. To
permit more flexible layout, and to solve some preprocessing problems (see §6.8.3), the Committee
introduced string literal concatenation. Two string literals in a row are pasted together (with no null
character in the middle) to make one combined string literal. This addition to the C language allows a
programmer to extend a string literal beyond the end of a physical line without having to use the30
backslash-newline mechanism and thereby destroying the indentation scheme of the program. An
explicit concatenation operator was not introduced because the concatenation is a lexical construct
rather than a run-time operation.

without concatenation:35

/* say the column is this wide */
alpha = "abcdefghijklm\

nopqrstuvwxyz" ;
40

with concatenation:

/* say the column is this wide */
alpha = "abcdefghijklm"

"nopqrstuvwxyz";45

QUIET CHANGE

A string of the form "078" is valid, but now has different meaning. (See §6.1.3.)
50

QUIET CHANGE

RATIONALE WG14/N802 J11/98-001

35

A string of the form "\a" or "\x" now has different meaning. (See §6.1.3.)

QUIET CHANGE
5

It is neither required nor forbidden that identical string literals be represented by a
single copy of the string in memory; a program depending upon either scheme may
behave differently.

An L prefix distinguishes wide string literals. A prefix (as opposed to suffix) notation was adopted so10
that a translator can know at the start of the processing of a long string literal whether it is dealing with
ordinary or wide characters. (See §5.2.1.2.)

6.1.5 Operators
15

Assignment operators of the form =+, described as old fashioned even in K&R, have been dropped.

The form += is now defined to be a single token, not two, so no white space is permitted within it; no
compelling case could be made for permitting such white space.

20
QUIET CHANGE

Expressions of the form x=-3 change meaning with the loss of the old-style
assignment operators.

25
The operator # has been added in preprocessing statements: within a #define it causes the macro
argument following to be converted to a string literal.

The operator ## has also been added in preprocessing statements: within a #define it causes the
tokens on either side to be pasted to make a single new token. See §6.8.3 for further discussion of30
these preprocessing operators.

6.1.6 Punctuators

The punctuator ... (ellipsis) has been added to denote a variable number of trailing arguments in a35
function prototype. (See §6.5.5.3.)

The constraint that certain punctuators must occur in pairs (and the similar constraint on certain
operators in §6.1.5) only applies after preprocessing. Syntactic constraints are checked during
syntactic analysis, and this follows preprocessing.40

6.1.7 Header names

Header names in #include directives obey distinct tokenization rules; hence they are identified as
distinct tokens. Attempting to treat quote-enclosed header names as string literals creates a contorted45
description of preprocessing, and the problems of treating angle-bracket-enclosed header names as a
sequence of C tokens is even more severe.

WG14/N802 J11/98-001 RATIONALE

36

6.1.8 Preprocessing numbers

The notion of preprocessing numbers has been introduced to simplify the description of preprocessing.
 It provides a means of talking about the tokenization of strings that look like numbers, or initial
substrings of numbers, prior to their semantic interpretation. In the interests of keeping the description5
simple, occasional spurious forms are scanned as preprocessing numbers - 0x123E+1 is a single
token under the rules. The Committee felt that it was better to tolerate such anomalies than burden the
preprocessor with a more exact, and exacting, lexical specification. It felt that this anomaly was no
worse than the principle under which the characters a+++++b are tokenized as a ++ ++ + b (an
invalid expression), even though the tokenization a ++ + ++ b would yield a syntactically correct10
expression. In both cases, exercise of reasonable precaution in coding style avoids surprises.

6.1.9 Comments

The Committee considered proposals to allow comments to nest. The main argument for nesting15
comments is that it would allow programmers to "comment out’’ code. The Committee rejected this
proposal on the grounds that comments should be used for adding documentation to a program, and
that preferable mechanisms already exist for source code exclusion. For example,

 #if 020
/* this code is bracketed out because ... */

 code_to_be_excluded();
 #endif

Preprocessing directives such as this prevent the enclosed code from being scanned by later translation25
phases. Bracketed material can include comments and other, nested, regions of bracketed code.

Another way of accomplishing these goals is with an if statement:

if (0) {30
/* this code is bracketed out because ... */
code_to_be_excluded();

}

Many modern compilers will generate no code for this if statement.35

// comments were added for C9X due to their utility and widespread existing practice,
especially in dual C/C++ translators/compilers3.

QUIET CHANGE40

In certain unusual situations, code could have different semantics for C90 and
C9X, for example

a = b //*divisor:*/ c45
+ d;

In C90 this was equivalent to

3 The C++ programming language supports // comments.

RATIONALE WG14/N802 J11/98-001

37

a = b / c + d;

but in C9X it is equivalent to

a = b + d;5

6.2 Conversions

6.2.1 Arithmetic operands10

6.2.1.1 Characters and integers

Since the publication of K&R, a serious divergence has occurred among implementations of C in the
evolution of integral promotion rules. Implementations fall into two major camps, which may be15
characterized as unsigned preserving and value preserving. The difference between these approaches
centers on the treatment of unsigned char and unsigned short, when widened by the
integral promotions, but the decision has an impact on the typing of constants as well (see §6.1.3.2).

The unsigned preserving approach calls for promoting the two smaller unsigned types to unsigned20
int. This is a simple rule, and yields a type which is independent of execution environment.

The value preserving approach calls for promoting those types to signed int, if that type can
properly represent all the values of the original type, and otherwise for promoting those types to
unsigned int. Thus, if the execution environment represents short as something smaller than25
int, unsigned short becomes int; otherwise it becomes unsigned int.

Both schemes give the same answer in the vast majority of cases, and both give the same effective
result in even more cases in implementations with twos-complement arithmetic and quiet wraparound
on signed overflow - that is, in most current implementations. In such implementations, differences30
between the two only appear when these two conditions are both true:

1. An expression involving an unsigned char or unsigned short produces an
int-wide result in which the sign bit is set: i.e., either a unary operation on such a
type, or a binary operation in which the other operand is an int or "narrower'' type.35

2. The result of the preceding expression is used in a context in which its signedness is
significant:

• sizeof(int) < sizeof(long) and it is in a context where it must be40
widened to a long type, or

• it is the left operand of the right-shift operator (in an implementation where this
shift is defined as arithmetic), or

45
• it is either operand of /, %, <, <=, >, or >=.

In such circumstances a genuine ambiguity of interpretation arises. The result must be dubbed
questionably signed, since a case can be made for either the signed or unsigned interpretation. Exactly

WG14/N802 J11/98-001 RATIONALE

38

the same ambiguity arises whenever an unsigned int confronts a signed int across an
operator, and the signed int has a negative value. (Neither scheme does any better, or any worse,
in resolving the ambiguity of this confrontation.) Suddenly, the negative signed int becomes a very
large unsigned int, which may be surprising - or it may be exactly what is desired by a
knowledgeable programmer. Of course, all of these ambiguities can be avoided by a judicious use of5
casts.

One of the important outcomes of exploring this problem is the understanding that high-quality
compilers might do well to look for such questionable code and offer (optional) diagnostics, and that
conscientious instructors might do well to warn programmers of the problems of implicit type10
conversions.

The unsigned preserving rules greatly increase the number of situations where unsigned int
confronts signed int to yield a questionably signed result, whereas the value preserving rules
minimize such confrontations. Thus, the value preserving rules were considered to be safer for the15
novice, or unwary, programmer. After much discussion, the Committee decided in favor of value
preserving rules, despite the fact that the UNIX C compilers had evolved in the direction of unsigned
preserving.

QUIET CHANGE20

A program that depends upon unsigned preserving arithmetic conversions will behave
differently, probably without complaint. This is considered the most serious semantic
change made by the Committee to a widespread current practice.

25
The Standard clarifies that the integral promotion rules also apply to bit-fields.

6.2.1.2 Signed and unsigned integers

Precise rules are now provided for converting to and from unsigned integers. On a twos-complement30
machine, the operation is still virtual (no change of representation is required), but the rules are now
stated independent of representation.

6.2.1.3 Real floating and integer
35

There was strong agreement that floating values should truncate toward zero when converted to an
integral type, the specification adopted in the Standard. Although the Base Document permitted
negative floating values to truncate away from zero, no Committee member knew of current hardware
that functions in such a manner.4

40
6.2.1.4 Real floating types

The Standard, unlike the Base Document, does not require rounding in the double to float
conversion. Some widely used IEEE floating point processor chips control floating to integral
conversion with the same mode bits as for double-precision to single-precision conversion; since45
truncation-toward-zero is the appropriate setting for C in the former case, it would be expensive to

 4We have since been informed of one such implementation.

RATIONALE WG14/N802 J11/98-001

39

require such implementations to round to float.

6.2.1.5 Complex types

6.2.1.6 Real and complex5

6.2.1.7 Usual arithmetic conversions

The rules in the Standard for these conversions are slight modifications of those in the Base Document:
the modifications accommodate the added types and the value preserving rules (see §6.2.1.1). Explicit10
license has been added to perform calculations in a "wider'' type than absolutely necessary, since this
can sometimes produce smaller and faster code (not to mention the correct answer more often).
Calculations can also be performed in a "narrower'' type, by the as if rule, so long as the same end
result is obtained. Explicit casting can always be used to obtain exactly the intermediate types
required.15

The Committee relaxed the requirement that float operands be converted to double. An
implementation may still choose to convert.

QUIET CHANGE20

Expressions with float operands may now be computed at lower precision. The
Base Document specified that all floating point operations be done in double.

6.2.2 Other operands25

6.2.2.1 Lvalues and function designators

A difference of opinion within the C community has centered around the meaning of lvalue, one group
considering an lvalue to be any kind of object locator, another group holding that an lvalue is30
meaningful on the left side of an assigning operator. The Committee has adopted the definition of
lvalue as an object locator. The term modifiable lvalue is used for the second of the above concepts.

The role of array objects has been a classic source of confusion in C, in large part because of the
numerous contexts in which an array reference is converted to a pointer to its first element. While this35
conversion neatly handles the semantics of subscripting, the fact that a[i] is itself a modifiable lvalue
while a is not has puzzled many students of the language. A more precise description has therefore
been incorporated in the Standard, in the hopes of combatting this confusion.

6.2.2.2 void40

The description of operators and expressions is simplified by saying that void yields a value, with the
understanding that the value has no representation, hence requires no storage.

6.2.2.3 Pointers45

C has now been implemented on a wide range of architectures. While some of these architectures
feature uniform pointers which are the size of some integer type, maximally portable code may not

WG14/N802 J11/98-001 RATIONALE

40

assume any necessary correspondence between different pointer types and the integral types.

The use of void * ("pointer to void’’) as a generic object pointer type is an invention of the
Committee. Adoption of this type was stimulated by the desire to specify function prototype
arguments that either quietly convert arbitrary pointers (as in fread) or complain if the argument5
type does not exactly match (as in strcmp). Nothing is said about pointers to functions, which may
be incommensurate with object pointers and/or integers.

Since pointers and integers are now considered incommensurate, the only integer that can be safely
converted to a pointer is the constant 0. The result of converting any other integer to a pointer is10
machine dependent.

Consequences of the treatment of pointer types in the Standard include.

• A pointer to void may be converted to a pointer to an object of any type.15

• A pointer to any object of any type may be converted to a pointer to void.

• If a pointer to an object is converted to a pointer to void and back again to the original
pointer type, the result compares equal to original pointer.20

• It is invalid to convert a pointer to an object of any type to a pointer to an object of a
different type without an explicit cast.

• Even with an explicit cast, it is invalid to convert a function pointer to an object pointer25
or a pointer to void, or vice-versa.

• It is invalid to convert a pointer to a function of one type to a pointer to a function of a
different type without a cast.

30
• Pointers to functions that have different parameter-type information (including the

"old-style'' absence of parameter-type information) are different types.

Implicit in the Standard is the notion of invalid pointers. In discussing pointers, the Standard typically
refers to "a pointer to an object'' or "a pointer to a function'' or "a null pointer.'' A special case in35
address arithmetic allows for a pointer to just past the end of an array. Any other pointer is invalid.

An invalid pointer might be created in several ways. An arbitrary value can be assigned (via a cast) to a
pointer variable. (This could even create a valid pointer, depending on the value.) A pointer to an
object becomes invalid if the memory containing the object is deallocated. Pointer arithmetic can40
produce pointers outside the range of an array.

Regardless how an invalid pointer is created, any use of it yields undefined behavior. Even assignment,
comparison with a null pointer constant, or comparison with itself, might on some systems result in an
exception.45

Consider a hypothetical segmented architecture, on which pointers comprise a segment descriptor and
an offset. Suppose that segments are relatively small, so that large arrays are allocated in multiple

RATIONALE WG14/N802 J11/98-001

41

segments. While the segments are valid (allocated, mapped to real memory), the hardware, operating
system, or C implementation can make these multiple segments behave like a single object: pointer
arithmetic and relational operators use the defined mapping to impose the proper order on the elements
of the array. Once the memory is deallocated, the mapping is no longer guaranteed to exist; use of the
segment descriptor might now cause an exception, or the hardware addressing logic might return5
meaningless data.

6.3 Expressions

Several closely-related topics are involved in the precise specification of expression evaluation:10
precedence, associativity, grouping, sequence points, agreement points, order of evaluation, and
interleaving. The latter three terms are discussed in §5.1.2.3.

The rules of precedence are encoded into the syntactic rules for each operator. For example, the syntax
for additive-expression includes the rule15

additive-expression + multiplicative-expression

which implies that a+b*c parses as a+(b*c). The rules of associativity are similarly encoded into
the syntactic rules. For example, the syntax for assignment-expression includes the rule20

unary-expression assignment-operator assignment-expression

which implies that a=b=c parses as a=(b=c).
25

With rules of precedence and associativity thus embodied in the syntax rules, the Standard specifies, in
general, the grouping (association of operands with operators) in an expression.

The Base Document describes C as a language in which the operands of successive identical
commutative associative operators can be regrouped. The Committee has decided to remove this30
license from the Standard, thus bringing C into accord with most other major high-level languages.

This change was motivated primarily by the desire to make C more suitable for floating point
programming. Floating point arithmetic does not obey many of the mathematical rules that real
arithmetic does. For instance, the two expressions (a+b)+c and a+(b+c) may well yield different35
results: suppose that b is greater than 0, a equals -b, and c is positive but substantially smaller
than b. (That is, suppose c/b is less than DBL_EPSILON.) Then (a+b)+c is 0+c, or c, while
a+(b+c) equals a+b, or 0. That is to say, floating point addition (and multiplication) is not
associative.

40
The Base Document's rule imposes a high cost on translation of numerical code to C. Much numerical
code is written in FORTRAN, which does provide a no-regrouping guarantee; indeed, this is the
normal semantic interpretation in most high-level languages other than C. The Base Document's
advice, "rewrite using explicit temporaries,'' is burdensome to those with tens or hundreds of thousands
of lines of code to convert, a conversion which in most other respects could be done automatically.45

Elimination of the regrouping rule does not in fact prohibit much regrouping of integer expressions.
The bitwise logical operators can be arbitrarily regrouped, since any regrouping gives the same result

WG14/N802 J11/98-001 RATIONALE

42

as if the expression had not been regrouped. This is also true of integer addition and multiplication in
implementations with twos-complement arithmetic and silent wraparound on overflow. Indeed, in any
implementation, regroupings which do not introduce overflows behave as if no regrouping had
occurred. (Results may also differ in such an implementation if the expression as written results in
overflows: in such a case the behavior is undefined, so any regrouping couldn’t be any worse.)5

The types of lvalues that may be used to access an object have been restricted so that an optimizer is
not required to make worst-case aliasing assumptions.

In practice, aliasing arises with the use of pointers. A contrived example to illustrate the issues is10

int a;

void f(int * b) {
a = 1;15
*b = 2;
g(a);

}

It is tempting to generate the call to g as if the source expression were g(1), but b might point to20
a, so this optimization is not safe. On the other hand, consider

 int a;
void f(double * b) {

a = 1;25
*b = 2.0;
g(a);

}

Again the optimization is incorrect only if b points to a. However, this would only have come about30
if the address of a were somewhere cast to (double*). The Committee has decided that such
dubious possibilities need not be allowed for.

In principle, then, aliasing only need be allowed for when the lvalues all have the same type. In
practice, the Committee has recognized certain prevalent exceptions:35

• The lvalue types may differ in signedness. In the common range, a signed integral type
and its unsigned variant have the same representation; it was felt that an appreciable
body of existing code is not "strictly typed'' in this area.

40
• Character pointer types are often used in the bytewise manipulation of objects; a byte

stored through such a character pointer may well end up in an object of any type.

• A qualified version of the object's type, though formally a different type, provides the
same interpretation of the value of the object.45

Structure and union types also have problematic aliasing properties:

struct fi{ float f; int i;};
50

void f(struct fi * fip, int * ip)

RATIONALE WG14/N802 J11/98-001

43

{
static struct fi a = {2.0, 1};
*ip = 2;
*fip = a;
g(*ip);5

*fip = a;
*ip = 2;
g(fip->i);

}10

It is not safe to optimize the first call to g as g(2), or the second as g(1), since the call to f
could quite legitimately have been

struct fi x;15
f(&x, &x.i);

These observations explain the other exception to the same-type principle.

6.3.1 Primary expressions20

A primary expression may be void (parenthesized call to a function returning void), a function
designator (identifier or parenthesized function designator), an lvalue (identifier or parenthesized
lvalue), or simply a value expression. Constraints ensure that a void primary expression is no part of
a further expression, except that a void expression may be cast to void, may be the second or third25
operand of a conditional operator, or may be an operand of a comma operator.

6.3.1.1 The identifier __func__

A new feature for C9X30

6.3.2 Postfix operators

6.3.2.1 Array subscripting
35

The Committee found no reason to disallow the symmetry that permits a[i] to be written as i[a].

The syntax and semantics of multidimensional arrays follow logically from the definition of arrays and
the subscripting operation. The material in the Standard on multidimensional arrays introduces no new
language features, but clarifies the C treatment of this important abstract data type.40

6.3.2.2 Function calls

Pointers to functions may be used either as (*pf)() or as pf(). The latter construct, not
sanctioned in the Base Document, appears in some present versions of C, is unambiguous, invalidates45
no old code, and can be an important shorthand. The shorthand is useful for packages that present
only one external name, which designates a structure full of pointers to objects and functions: member
functions can be called as graphics.open(file) instead of (*graphics.open)(file).

The treatment of function designators can lead to some curious, but valid, syntactic forms. Given the50

WG14/N802 J11/98-001 RATIONALE

44

declarations:

int f(), (*pf)();

then all of the following expressions are valid function calls:5

(&f)(); f(); (*f)(); (**f)(); (***f)();
pf(); (*pf)(); (**pf)(); (***pf)();

The first expression on each line was discussed in the previous paragraph. The second is conventional10
usage. All subsequent expressions take advantage of the implicit conversion of a function designator to
a pointer value, in nearly all expression contexts. The Committee saw no real harm in allowing these
forms; outlawing forms like (*f)(), while still permitting *a (for int a[]), simply seemed
more trouble than it was worth.

15
The rule for implicit declaration of functions has been removed. The effect is to guarantee that a
diagnostic is produced, which will catch an additional category of programming errors. After
issuing the diagnostic, an implementation may choose to assume an implicit declaration and
continue translation in order to support existing programs that exploited this feature.

20
For compatibility with past practice, all argument promotions occur as described in the Base Document
in the absence of a prototype declaration, including the (not always desirable) promotion of float to
double. A prototype gives the implementor explicit license to pass a float as a float rather
than a double, or a char as a char rather than an int, or an argument in a special register,
etc. If the definition of a function in the presence of a prototype would cause the function to expect25
other than the default promotion types, then clearly the calls to this function must be made in the
presence of a compatible prototype.

To clarify this and other relationships between function calls and function definitions, the Standard
describes an equivalence between a function call or definition which does occur in the presence of a30
prototype and one that does not.

Thus a prototyped function with no "narrow’’ types and no variable argument list must be callable in the
absence of a prototype, since the types actually passed in a call are equivalent to the explicit function
definition prototype. This constraint is necessary to retain compatibility with past usage of library35
functions. (See §7.1.8.)

This provision constrains the latitude of an implementor because the parameter passing conventions of
prototype and non-prototype function calls must be the same for functions accepting a fixed number of
arguments. Implementations in environments where efficient function calling mechanisms are available40
must, in effect, use the efficient calling sequence either in all "fixed argument list'' calls or in none.
Since efficient calling sequences often do not allow for variable argument functions, the fixed part of a
variable argument list may be passed in a completely different fashion than in a fixed argument list with
the same number and type of arguments.

45
The existing practice of omitting trailing parameters in a call if it is known that the parameters will not
be used has consistently been discouraged. Since omission of such parameters creates an inequivalence
between the call and the declaration, the behavior in such cases is undefined, and a maximally portable
program will avoid this usage. Hence an implementation is free to implement a function calling

RATIONALE WG14/N802 J11/98-001

45

mechanism for fixed argument lists which would (perhaps fatally) fail if the wrong number or type of
arguments were to be provided.

Strictly speaking then, calls to printf are obliged to be in the scope of a prototype (as by
#include <stdio.h>), but implementations are not obliged to fail on such a lapse. (The5
behavior is undefined).

6.3.2.3 Structure and union members

Since the language now permits structure parameters, structure assignment and functions returning10
structures, the concept of a structure expression is now part of the C language. A structure value can
be produced by an assignment, by a function call, by a comma operator expression or by a conditional
operator expression:

s1 = (s2 = s3)15
sf(x)
(x, s1)
x ? s1 : s2

In these cases, the result is not an lvalue; hence it cannot be assigned to nor can its address be taken.20

Similarly, x.y is an lvalue only if x is an lvalue. Thus none of the following valid expressions are
lvalues:

sf(3).a25
(s1=s2).a
((i==6)?s1:s2).a
(x,s1).a

Even when x.y is an lvalue, it may not be modifiable:30

const struct S s1;
s1.a = 3; /* invalid */

The Standard requires that an implementation diagnose a constraint error in the case that the member35
of a structure or union designated by the identifier following a member selection operator (. or ->)
does not appear in the type of the structure or union designated by the first operand. The Base
Document is unclear on this point.

6.3.2.4 Postfix increment and decrement operators40

The Committee has not endorsed the practice in some implementations of considering post-increment
and post-decrement operator expressions to be lvalues.

6.3.2.5 Compound literals45

 A new feature for C9X. Compound literals provide a mechanism for specifying constants of aggregate
or union type. This eliminates the requirement for temporary variables when an aggregate or union
value will only be needed once.

50

WG14/N802 J11/98-001 RATIONALE

46

Compound literals integrate easily into the C grammar and do not impose any additional run-time
overhead on a user’s program. They also combine well with designated initializers (see §6.5.8) to form
an even more convenient aggregate or union constant notation. Their initial C implementation
appeared in a compiler by Ken Thompson at AT&T Bell Laboratories.

5
6.3.3 Unary operators

6.3.3.1 Prefix increment and decrement operators See §6.3.2.4.

6.3.3.2 Address and indirection operators10

Some implementations have not allowed the & operator to be applied to an array or a function. (The
construct was permitted in early versions of C, then later made optional.) The Committee has endorsed
the construct since it is unambiguous, and since data abstraction is enhanced by allowing the important
& operator to apply uniformly to any addressable entity.15

6.3.3.3 Unary arithmetic operators

Unary plus was adopted by the Committee from several implementations, for symmetry with unary
minus.20

The bitwise complement operator ~, and the other bitwise operators, have now been defined
arithmetically for unsigned operands. Such operations are well-defined because of the restriction of
integral representations to "binary numeration systems.'' (See §6.1.2.8.2.)

25
6.3.3.4 The sizeof operator

It is fundamental to the correct usage of functions such as malloc and fread that sizeof
(char) be exactly one. In practice, this means that a byte in C terms is the smallest unit of storage,
even if this unit is 36 bits wide; and all objects are comprised of an integral number of these smallest30
units. (See §1.6.)

The Standard, like the Base Document, defines the result of the sizeof operator to be a constant of
an unsigned integral type. Common implementations, and common usage, have often presumed that
the resulting type is int. Old code that depends on this behavior has never been portable to35
implementations that define the result to be a type other than int. The Committee did not feel it was
proper to change the language to protect incorrect code.

The type of sizeof, whatever it is, is published (in the library header <stddef.h>) as size_t,
since it is useful for the programmer to be able to refer to this type. This requirement implicitly restricts40
size_t to be a synonym for an existing unsigned integer type, thus quashing any notion that the
largest declarable object might be too big to span even with an unsigned long. This also restricts
the maximum number of elements that may be declared in an array, since for any array a of N
elements,

45
N == sizeof(a)/sizeof(a[0])

Thus size_t is also a convenient type for array sizes, and is so used in several library functions.

RATIONALE WG14/N802 J11/98-001

47

(See §7.13.8.1, §7.13.8.2, §7.14.3.1, etc.)

The Standard specifies that the argument to sizeof can be any value except a bit field, a void
expression, or a function designator. This generality allows for interesting environmental enquiries;
given the declarations5

int *p, *q;

these expressions determine the size of the type used for ...
10

sizeof(F(x)) /* ... F’s return value */
sizeof(p-q) /* ... pointer difference */

(The last type is of course available as ptrdiff_t in <stddef.h>.)
15

6.3.4 Cast operators

A (void) cast is explicitly permitted, more for documentation than for utility.

Nothing portable can be said about casting integers to pointers, or vice versa, since the two are now20
incommensurate.

The definition of these conversions adopted in the Standard resembles that in the Base Document, but
with several significant differences. The Base Document required that a pointer successfully converted
to an integer must be guaranteed to be convertible back to the same pointer. This integer-to-pointer25
conversion is now specified as implementation-defined. While a high-quality implementation would
preserve the same address value whenever possible, it was considered impractical to require that the
identical representation be preserved. The Committee noted that, on some current machine
implementations, identical representations are required for efficient code generation for pointer
comparisons and arithmetic operations.30

The conversion of the integer constant 0 to a pointer is defined similarly to the Base Document. The
resulting pointer must not address any object, must appear to be equal to an integer value of 0, and
may be assigned to or compared for equality with any other pointer. This definition does not
necessarily imply a representation by a bit pattern of all zeros: an implementation could, for instance,35
use some address which causes a hardware trap when dereferenced.

The type char must have the least strict alignment of any type, so char * has often been used as a
portable type for representing arbitrary object pointers. This usage creates an unfortunate confusion
between the ideas of arbitrary pointer and character or string pointer. The new type void *,40
which has the same representation as char *, is therefore preferable for arbitrary pointers.

It is possible to cast a pointer of some qualified type (§6.5.3) to an unqualified version of that type.
Since the qualifier defines some special access or aliasing property, however, any dereference of the
cast pointer results in undefined behavior.45

The Standard (§6.2.1.4) requires that a cast of one floating point type to another (e.g., double to
float) results in an actual conversion.

WG14/N802 J11/98-001 RATIONALE

48

6.3.5 Multiplicative operators

There was considerable sentiment for giving more portable semantics to division (and hence remainder)
by specifying some way of giving less machine dependent results for negative operands. Few
Committee members wanted to require this by default, lest existing fast code be gravely slowed. One5
suggestion was to make signed int a type distinct from plain int, and require better-defined
semantics for signed int division and remainder. This suggestion was opposed on the grounds
that effectively adding several types would have consequences out of proportion to the benefit to be
obtained; the Committee twice rejected this approach. Instead the Committee has adopted new library
functions div and ldiv which produce integral quotient and remainder with well-defined sign10
semantics. (See §7.14.6.2, §7.14.6.5.)

The Committee rejected extending the % operator to work on floating types; such usage would
duplicate the facility provided by fmod. (See §7.7.10.1)

15
6.3.6 Additive operators

As with the sizeof operator, implementations have taken different approaches in defining a type for
the difference between two pointers (see §6.3.3.4). It is important that this type be signed, in order to
obtain proper algebraic ordering when dealing with pointers within the same array. However, the20
magnitude of a pointer difference can be as large as the size of the largest object that can be declared.
(And since that is an unsigned type, the difference between two pointers may cause an overflow.)

The type of pointer minus pointer is defined to be int in K&R. The Standard defines the result of
this operation to be a signed integer, the size of which is implementation-defined. The type is published25
as ptrdiff_t, in the standard header <stddef.h>. Old code recompiled by a conforming
compiler may no longer work if the implementation defines the result of such an operation to be a type
other than int and if the program depended on the result to be of type int. This behavior was
considered by the Committee to be correctable. Overflow was considered not to break old code since
it was undefined by K&R. Mismatch of types between actual and formal argument declarations is30
correctable by including a properly defined function prototype in the scope of the function invocation.

An important endorsement of widespread practice is the requirement that a pointer can always be
incremented to just past the end of an array, with no fear of overflow or wraparound:

35
SOMETYPE array[SPAN];
/* ... */
for (p = &array[0]; p < &array[SPAN]; p++)

This stipulation merely requires that every object be followed by one byte whose address is40
representable. That byte can be the first byte of the next object declared for all but the last object
located in a contiguous segment of memory. (In the example, the address &array[SPAN] must
address a byte following the highest element of array.) Since the pointer expression p+1 need not
(and should not) be dereferenced, it is unnecessary to leave room for a complete object of size
sizeof(*p).45

In the case of p-1, on the other hand, an entire object would have to be allocated prior to the array of
objects that p traverses, so decrement loops that run off the bottom of an array may fail. This

RATIONALE WG14/N802 J11/98-001

49

restriction allows segmented architectures, for instance, to place objects at the start of a range of
addressable memory.

6.3.7 Bitwise shift operators
5

See §6.3.3.3 for a discussion of the arithmetic definition of these operators.

The description of shift operators in K&R suggests that shifting by a long count should force the left
operand to be widened to long before being shifted. A more intuitive practice, endorsed by the
Committee, is that the type of the shift count has no bearing on the type of the result.10

QUIET CHANGE

Shifting by a long count no longer coerces the shifted operand to long.
15

The Committee has affirmed the freedom in implementation granted by the Base Document in not
requiring the signed right shift operation to sign extend, since such a requirement might slow down fast
code and since the usefulness of sign extended shifts is marginal. (Shifting a negative
twos-complement integer arithmetically right one place is not the same as dividing by two!)

20
6.3.8 Relational operators

For an explanation of why the pointer comparison of the object pointer P with the pointer expression
P+1 is always safe, see Rationale §6.3.6.

25
6.3.9 Equality operators

The Committee considered, on more than one occasion, permitting comparison of structures for
equality. Such proposals foundered on the problem of holes in structures. A byte-wise comparison of
two structures would require that the holes assuredly be set to zero so that all holes would compare30
equal, a difficult task for automatic or dynamically allocated variables. (The possibility of union-type
elements in a structure raises insuperable problems with this approach.) Otherwise the implementation
would have to be prepared to break a structure comparison into an arbitrary number of member
comparisons; a seemingly simple expression could thus expand into a substantial stretch of code, which
is contrary to the spirit of C.35

In pointer comparisons, one of the operands may be of type void *. In particular, this allows
NULL, which can be defined as (void *)0, to be compared to any object pointer.

6.3.10 Bitwise AND operator40
See §6.3.3.3 for a discussion of the arithmetic definition of the bitwise operators.

6.3.11 Bitwise exclusive OR operator
See §6.3.3.3.

45
6.3.12 Bitwise inclusive OR operator
See §6.3.3.3.

WG14/N802 J11/98-001 RATIONALE

50

6.3.13 Logical AND operator

6.3.14 Logical OR operator

6.3.15 Conditional operator5

The syntactic restrictions on the middle operand of the conditional operator have been relaxed to
include more than just logical-OR-expression: several extant implementations have adopted this
practice.

10
The type of a conditional operator expression can be void, a structure, or a union; most other
operators do not deal with such types. The rules for balancing type between pointer and integer have,
however, been tightened, since now only the constant 0 can portably be coerced to pointer.

The Standard allows one of the second or third operands to be of type void *, if the other is a15
pointer type. Since the result of such a conditional expression is void *, an appropriate cast must
be used.

6.3.16 Assignment operators
20

Certain syntactic forms of assignment operators have been discontinued, and others tightened up (see
§6.1.5).

The storage assignment need not take place until the next sequence point. (A restriction in earlier
drafts that the storage take place before the value of the expression is used has been removed.) As a25
consequence, a straightforward syntactic test for ambiguous expressions can be stated. Some
definitions: A side effect is a storage to any data object, or a read of a volatile object. An ambiguous
expression is one whose value depends upon the order in which side effects are evaluated. A pure
function is one with no side effects; an impure function is any other. A sequenced expression is one
whose major operator defines a sequence point: comma, &&, ||, or conditional operator; an30
unsequenced expression is any other. We can then say that an unsequenced expression is ambiguous if
more than one operand invokes any impure function, or if more than one operand contains an lvalue
referencing the same object and one or more operands specify a side-effect to that object. Further, any
expression containing an ambiguous expression is ambiguous.

35
The optimization rules for factoring out assignments can also be stated. Let X(i,S) be an
expression which contains no impure functions or sequenced operators, and suppose that X contains a
storage S(i) to i. The storage expressions, and related expressions, are

 S(i): Sval(i): Snew(i):40
 ++i i+1 i+1
 i++ i i+1
 --i i-1 i-1
 i-- i i-1
 i = y y y45
 i op= y i op y i op y

Then X(i,S) can be replaced by either

RATIONALE WG14/N802 J11/98-001

51

(T = i, i = Snew(i), X(T,Sval))
or

(T = X(i,Sval), i = Snew(i), T)

provided that neither i nor y have side effects themselves.5

6.3.16.1 Simple assignment

Structure assignment has been added: its use was foreshadowed even in K&R, and many existing
implementations already support it.10

The rules for type compatibility in assignment also apply to argument compatibility between actual
argument expressions and their corresponding argument types in a function prototype.

An implementation need not correctly perform an assignment between overlapping operands. 15
Overlapping operands occur most naturally in a union, where assigning one field to another is often
desirable to effect a type conversion in place; the assignment may well work properly in all simple
cases, but it is not maximally portable. Maximally portable code should use a temporary variable as an
intermediate in such an assignment.

20
6.3.16.2 Compound assignment

The importance of requiring that the left operand lvalue be evaluated only once is not a question of
efficiency, although that is one compelling reason for using the compound assignment operators.
Rather, it is to assure that any side effects of evaluating the left operand are predictable.25

6.3.17 Comma operator

The left operand of a comma operator may be void, since only the right-hand operator is relevant to
the type of the expression.30

The example in the Standard clarifies that commas separating arguments "bind’’ tighter than the comma
operator in expressions.

6.4 Constant Expressions35

To clarify existing practice, several varieties of constant expression have been identified:

The expression following #if (§6.8.1) must expand to integer constants, character constants, the
special operator defined, and operators with no side effects. No environmental inquiries can be40
made, since all arithmetic is done as translate-time (signed or unsigned) long integers, and casts are
disallowed. The restriction to translate-time arithmetic frees an implementation from having to perform
execution-environment arithmetic in the host environment. It does not preclude an implementation
from doing so - the implementation may simply define "translate-time arithmetic'' to be that of the
target. Unsigned arithmetic is performed in these expressions (according to the default widening rules)45
when unsigned operands are involved; this rule allows for unsurprising arithmetic involving very large
constants (i.e, those whose type is unsigned long) since they cannot be represented as long or
constants explicitly marked as unsigned.

WG14/N802 J11/98-001 RATIONALE

52

Character constants, when evaluated in #if expressions, may be interpreted in the source character
set, the execution character set, or some other implementation-defined character set. This latitude
reflects the diversity of existing practice, especially in cross-compilers.

5
An integral constant expression must involve only numbers knowable at translate time, and operators
with no side effects. Casts and the sizeof operator may be used to interrogate the execution
environment.

Static initializers include integral constant expressions, along with floating constants and simple10
addressing expressions. An implementation must accept arbitrary expressions involving floating and
integral numbers and side-effect-free operators in arithmetic initializers, but it is at liberty to turn such
initializers into executable code which is invoked prior to program startup (see §5.1.2.2); this scheme
might impose some requirements on linkers or runtime library code in some implementations.

15
The translation environment must not produce a less accurate value for a floating-point initializer than
the execution environment, but it is at liberty to do better. Thus a static initializer may well be slightly
different than the same expression computed at execution time. However, while implementations are
certainly permitted to produce exactly the same result in translation and execution environments,
requiring this was deemed to be an intolerable burden on many cross-compilers.20

QUIET CHANGE

A program that uses #if expressions to determine properties of the execution
environment may now get different answers.25

6.5 Declarations

The Committee decided that empty declarations are invalid (except for a special case with tags, see30
§6.5.2.3, and the case of enumerations such as enum {zero,one};, see §6.5.2.2). While many
seemingly silly constructs are tolerated in other parts of the language in the interest of facilitating the
machine generation of C, empty declarations were considered sufficiently easy to avoid.

The practice of placing the storage class specifier other than first in a declaration has been branded as35
obsolescent (See §6.9.2.) The Committee feels it desirable to rule out such constructs as

enum { aaa, aab,
/* etc */

zzy, zzz } typedef a2z;40

in some future standard.

6.5.1 Storage-class specifiers
45

Because the address of a register variable cannot be taken, objects of storage class register
effectively exist in a space distinct from other objects. (Functions occupy yet a third address space).
This makes them candidates for optimal placement, the usual reason for declaring registers, but it also
makes them candidates for more aggressive optimization.

RATIONALE WG14/N802 J11/98-001

53

The practice of representing register variables as wider types (as when register char is quietly
changed to register int) is no longer acceptable.

6.5.2 Type specifiers5

Several new type specifiers have been added: signed, enum, and void. long float has
been retired and long double has been added, along with a plethora of integer types. The
Committee's reasons for each of these additions, and the one deletion, are given in section §6.1.2.5 of
this document.10

C9X adds a new integer data type long long, as consolidation of prior art, whose impetus has
been three hardware developments: First, disk density and capacity used to grow 2X every 3
years, but after 1989, has accelerated to 4X / 3 years, yielding low-cost, physically small disks
with large capacities. Although a fixed size for file pointers and file system structures is necessary15
for efficiency, eventually it is overtaken by disk growth and limits need to be expanded. In the
1970s, 16-bit C (for the Digital PDP-11) first represented file information with 16-bit ints, which
were rapidly obsoleted by disk progress. People switched to a 32-bit file system, first using int[2]
constructs that were not only awkward, but also not efficiently portable to 32-bit hardware.

20
To solve the problem, long was added to the language, even though this required PDP-11 C to
generate multiple operations to simulate 32-bit arithmetic. Even as 32-bit minicomputers became
available alongside 16-bit systems, people still used int for efficiency, reserving long for cases
where larger integers were truly needed, since long was noticeably less efficient on 16-bit
systems. Both short and long were added to C, making short available for 16-bits, long for25
32-bits, and int as convenient for performance. There was no desire to lock the numbers 16 or
32 into the language, as there existed C compilers for at least 24- and 36-bit CPUs, but rather to
provide names that could be usedfor 32-bits as needed.

PDP-11 C might have been re-implemented with int as 32-bits, thus avoiding the need for30
long, but of course, making people change most uses of int to short, or suffer serious
performance degradation on PDP-11s. In addition to the potential impact on source code, the
impacton existing object code and data files would have been worse, even in1976. By the 1990s,
with an immense installed base of software, and with widespread use of dynamic linked libraries,
the impact of changing the size of a common data object, in an existing environment, is so high35
that few people would tolerate it, although it might be acceptable when creating a new
environment.

Hence, many vendors have added a 64-bit integer to their 32-bit C environments, using a new
name, of which long long has been the widestused, to avoid namespace conflicts. People can40
and do argue about the particular choice of name, but it has been difficult to pick a clearly better
name early enough, and by now it is fairly common practice, and may be viewed as one of the
least bad choices.

To summarize this part: 32-bit CPUs are coming to need clean 64-bit integers, just as 16-bit45
CPUs came to need 32-bit integers, and the need for longer integers happens irrespective of other
CPUs. Thus, 32-bit C has evolved from a common ILP32 model (integer, long, pointer are 32
bits) to ILP32LL (ILP32 + 64-bit long long), and this still runs on 32-bit CPUs, with

WG14/N802 J11/98-001 RATIONALE

54

sequences to emulate 64-bit arithmetic.

In the second and third, interrelated trends, DRAM memories continue to grow at 4X every 3
years, and 64-bit microprocessors are becoming widely used, starting in 1992. By 1995,
refrigerator-sized, microprocessor-based servers were being sold with 8GB-16GB of memory,5
which required more than 32-bits for straightforward addressing. However, many 64-bit
microprocessors are actually used in video games, X-Terminals, network routers, and other
applications where pointer size is less important than performance for larger integers.

The memory trend encourages a C programming model in which pointers are enlarged to 64-bits10
(called *P64), of which the consensus choice seems to be LP64 (longs and pointers, and long
longs are 64 bits, ints are 32-bits), with long long in some sense redundant, just as long
was on the 32-bit VAX. It is fairly difficult to mix this object code with ILP32, and so it is a
new environment to which people must port code, but for which they receive noticeable benefits:
they can address large memories, and file pointers automatically are enlarged to 64-bits. There do15
exist, of course, 32-bit CPUs with more-than-32-bit addressing, although C environments become
much more straightforward on 64-bit CPUs with simple, flat addressing. In practice, people do
not move from ILP32LL to LP64 unless they have no choice, or gain some clear benefit.

If people only consider LP64 in isolation, long is 64-bit, and there seems no need for long20
long, just as the VAX 32-bit environment really did not need long. However, this view
ignores the difficulty of getting compilers, linkers, debuggers, libraries, etc., to exist for LP64. In
practice, these programs need to deal with 64-bit integers, long before an LP64 environment
exists, in order to bootstrap, and later support all these tools. Put another way, people must:

25
1. Using int[2], upgrade compilers and a minimal set of tools to compile and debug code that

uses long long.
2. Recode the compilers, and all of the tools, to actually use long long.

This ends up with a set of tools that run as ILP32LL, on existing 32-bit CPUs and new 64-bit30
CPUs, and can compile code either to ILP32LL or to LP64. This is yet another reason where
long long is important, not for the LP64 model, but for the tools that support that model.

Most 64-bit micros can and (for commercial reasons) must continue to run existing (ILP32LL)
object programs, alongside any new LP64 programs. For example, database server processes35
often desire LP64 to access large memory pools, but the implementers prefer to leave the client
code as ILP32 so that it can run on existing 32-bit CPUs as well, and where LP64 provides no
obvious value.

In mixed environments, it is of course very useful for programs to share data structures, and40
specifically, for 32-bit programs to be able to cleanly describe aligned 64-bit integers, and in fact,
for it to be easy to write structure definitions whose size and alignment are identical between
ILP32LL and LP64. This can be straightforwardly done using int and long long, just as it
was doable in the 1970s via short and long.

45
Finally, one more important case occurs, in which people want performance benefits of 64-bit
CPUs, while wishing to maintain source compatibility (but not necessarily binary compatibility)
with related 32-bit CPUs. In embedded control and consumer products, people have little interest

RATIONALE WG14/N802 J11/98-001

55

in 64-bit pointers, but they often like 64-bit integer performance for bit-manipulation, memory
copies, encryption, and other reasons. They like ILP32LL, but with long long compiled to
use 64-bit registers, rather than being simulated via 32-bit registers. While this is not binary-
compatible with existing ILP32LL binaries, it is source-compatible, but runs faster, and uses less
space than LP64, both of which are important in these markets. It is worth noting that of the5
many millions of 64-bit CPUs that exist, a very large majority are actually used in such
applications, rather than traditional computer systems.

Thus, there are 3 choices, all of which have been done already, and different customers choose
different combinations:10

ILP32LL, compiled 32-bit-only: runs on 32- and 64-bit CPUs
- Needs long long to express 64-bit integers without breaking existing source and

object code badly.
15

ILP64, runs on 64-bit CPUs
- Does not need long long in isolation, but needed its earlier ILP32LL tools to have

"long long for sensible bootstrapping and later support.

ILP32LL, compiled to 64-bit registers: runs on 64-bit CPUs20
- Wants long long to express 64-bit integers and get better performance, and still

have source code that runs on related 32-bit CPUs.

A new integer data type has become needed, that can be used to express 64-bit integers
efficiently and portably among 32- and 64-bit systems. It must be a new name, to avoid a25
disastrous set of incompatibilities with existing 32-bit environments, i.e., one cannot safely change
long to 64-bits and mix with existing object code. It is needed to deal with disk file size
increases, but also to help bootstrap to 64-bit environments, and then longer, so that many
programs can be compiled to exactly one binary that runs on both 32- and 64-bit CPUs.

30
While there is more argument about the specific syntax, nobody has seemed able to provide a
compellingly better syntax than long long, which at least avoided gratuitous namespace
pollution. Proposals like int64_t seem very awkward for 36-bit CPUs, for example.

Given the various complex interactions, long long seems a reasonable addition to C, as existing35
practice has shown the need for a larger integer, and long long syntax seems one of the least
bad choices.

A new feature for C9X. In C90, all type specifiers could be omitted from the declaration specifiers
in a declaration; in such a case int was implied. The committee decided that the inherent danger40
of such a feature outweighed its convenience, and thus this feature was removed. The effect is to
guarantee that a diagnostic is produced, which will catch an additional category of programming
errors. Implementations may also choose to assume an implicit int and continue to translate the
program, in order to support existing source code that exploited this feature.

45
6.5.2.1 Structure and union specifiers

Three types of bit fields are now defined: "plain’’ int calls for implementation-defined

WG14/N802 J11/98-001 RATIONALE

56

signedness (as in the Base Document), signed int calls for assuredly signed fields, and
unsigned int calls for unsigned fields. The old constraints on bit fields crossing word boundaries
have been relaxed, since so many properties of bit fields are implementation dependent anyway.

The layout of structures is determined only to a limited extent:5

• no hole may occur at the beginning;

• members occupy increasing storage addresses; and
10

• if necessary, a hole is placed on the end to make the structure big enough to pack
tightly into arrays and maintain proper alignment.

Since some existing implementations, in the interest of enhanced access time, leave internal holes
larger than absolutely necessary, it is not clear that a portable deterministic method can be given for15
traversing a structure field by field.

To clarify what is meant by the notion that "all the fields of union occupy the same storage,'' the
Standard specifies that a pointer to a union, when suitably cast, points to each member (or, in the case
of a bit-field member, to the storage unit containing the bit field).20

6.5.2.2 Enumeration specifiers

6.5.2.3 Tags
25

As with all block structured languages that also permit forward references, C has a problem with
structure and union tags. If one wants to declare, within a block, two mutually referencing structures,
one must write something like:

struct x { struct y *p; /*...*/ };30
struct y { struct x *q; /*...*/ };

But if struct y is already defined in a containing block, the first field of struct x will refer to
the older declaration.

35
Thus special semantics has been given to the form:

struct y;

It now hides the outer declaration of y, and "opens'' a new instance in the current block.40

QUIET CHANGE

The empty declaration struct x; is no longer innocuous.
45

6.5.3 Type qualifiers

The Committee has added to C three type qualifiers: const, volatile and restrict.

RATIONALE WG14/N802 J11/98-001

57

Individually and in combination they specify the assumptions a compiler can and must make when
accessing an object through an lvalue.

The syntax and semantics of const were adapted from C++; the concept itself has appeared in
other languages. volatile is an invention of the Committee; it follows the syntactic model of5
const.

Type qualifiers were introduced in part to provide greater control over optimization. Several
important optimization techniques are based on the principle of "cacheing’’: under certain
circumstances the compiler can remember the last value accessed (read or written) from a location,10
and use this retained value the next time that location is read. (The memory, or "cache’’, is typically a
hardware register.) If this memory is a machine register, for instance, the code can be smaller and
faster using the register rather than accessing external memory.

The basic qualifiers can be characterized by the restrictions they impose on access and cacheing:15

const No writes through this lvalue. In the absence of this qualifier, writes may occur
through this lvalue.

volatile No cacheing through this lvalue: each operation in the abstract semantics must be20
performed. (That is, no cacheing assumptions may be made, since the location is not
guaranteed to contain any previous value.) In the absence of this qualifier, the contents
of the designated location may be assumed to be unchanged (except for possible
aliasing.)

25
A translator design with no cacheing optimizations can effectively ignore the type qualifiers, except
insofar as they affect assignment compatibility.

It would have been possible, of course, to specify a nonconst keyword instead of const, or
nonvolatile instead of volatile. The senses of these concepts in the Standard were chosen30
to assure that the default, unqualified, case was the most common, and that it corresponded most
clearly to traditional practice in the use of lvalue expressions.

Four combinations of the two qualifiers is possible; each defines a useful set of lvalue properties. The
next several paragraphs describe typical uses of these qualifiers.35

The translator may assume, for an unqualified lvalue, that it may read or write the referenced object,
that the value of this object cannot be changed except by explicitly programmed actions in the current
thread of control, but that other lvalue expressions could reference the same object.

40
const is specified in such a way that an implementation is at liberty to put const objects in
read-only storage, and is encouraged to diagnose obvious attempts to modify them, but is not required
to track down all the subtle ways that such checking can be subverted. If a function parameter is
declared const, then the referenced object is not changed (through that lvalue) in the body of the
function - the parameter is read-only.45

A static volatile object is an appropriate model for a memory-mapped I/O register.
Implementors of C translators should take into account relevant hardware details on the target

WG14/N802 J11/98-001 RATIONALE

58

systems when implementing accesses to volatile objects. For instance, the hardware logic of a system
may require that a two-byte memory-mapped register not be accessed with byte operations; a
compiler for such a system would have to assure that no such instructions were generated, even if the
source code only accesses one byte of the register. Whether read-modify-write instructions can be
used on such device registers must also be considered. Whatever decisions are adopted on such issues5
must be documented, as volatile access is implementation-defined. A volatile object is an
appropriate model for a variable shared among multiple processes.

A static const volatile object appropriately models a memory-mapped input port, such as a
real-time clock. Similarly, a const volatile object models a variable which can be altered by10
another process but not by this one.

Although the type qualifiers are formally treated as defining new types they actually serve as modifiers
of declarators. Thus the declarations

15
const struct s {int a,b;} x;
struct s y;

declare x as a const object, but not y. The const property can be associated with the
aggregate type by means of a type definition:20

typedef const struct s {int a,b;} stype;
stype x;
stype y;

25
In these declarations the const property is associated with the declarator stype, so x and y are
both const objects.

The Committee considered making const and volatile storage classes, but this would have
ruled out any number of desirable constructs, such as const members of structures and variable30
pointers to const types.

A cast of a value to a qualified type has no effect; the qualification (volatile, say) can have no
effect on the access since it has occurred prior to the cast. If it is necessary to access a non-volatile
object using volatile semantics, the technique is to cast the address of the object to the appropriate35
pointer-to-qualified type, then dereference that pointer.

6.5.3.1 Formal definition of restrict

A new feature for C9X. The restrict type qualifier allows programs to be written so that (at40
least some) translators can produce significantly faster executables. Anyone for whom this is not a
concern can safely ignore this feature of the language.

The problem that the restrict qualifier addresses is that potential aliasing can inhibit
optimizations. Specifically, if a translator cannot determine that two different pointers are being used45
to reference different objects, then it cannot apply optimizations such as maintaining the values of the
objects in registers rather than in memory, or reordering loads and stores of these values. This
problem can have a significant effect on a program that, for example, performs arithmetic calculations
on large arrays of numbers. The effect can be measured by comparing a program that uses pointers

RATIONALE WG14/N802 J11/98-001

59

with a similar program that uses file scope arrays (or with a similar Fortran program). The array
version can run faster by a factor of ten or more on a system with vector processors.Where such large
performance gains are possible, implementations have of course offered their own solutions, usually in
the form of compiler directives that specify particular optimizations. Differences in the spelling,
scope, and precise meaning of these directives have made them troublesome to use in a program that5
must run on many different systems. This was the motivation for a standard solution.

The restrict qualifier was designed to express and extend two types of aliasing information
already specified in the language.

10
First, if a single pointer is directly assigned the return value from an invocation of malloc(), then
that pointer is the sole initial means of access to the allocated object (i.e., another pointer can gain
access to that object only by being assigned a value that is based on the value of the first pointer).
Declaring the pointer to be restrict-qualified expresses this information to a translator. Furthermore,
the qualifier can be used to extend a translator’s special treatment of such a pointer to more general15
situations. For example, an invocation of malloc() might be hidden from the translator in another
function, or a single invocation of malloc() might be used to allocate several objects, each
referenced through its own pointer.

Second, the library specifies two versions of an object copying function, because on many systems a20
faster copy is possible if it is known that the source and target arrays do not overlap. The
restrict qualifier can be used to express the restriction on overlap in a new prototype that is
compatible with the original version:

void *memcpy(void * restrict s1, const void * restrict s2,25
 size_t n);
void *memmove(void * s1, const void * s2, size_t n);

With the restriction visible to a translator, a straightforward implementation of memcpy in C can now
give a level of performance that previously required assembly language, or other non-standard means.30
 Thus the restrict qualifier provides a standard means with which to make, in the definition of
any function, an aliasing assertion of a type that could previously be made only for library functions.

The complexity of the specification of the restrict type qualifier reflects the fact that C has a rich
set of types and a dynamic notion of the type of an object. Recall, for example, that an object does35
not have a fixed type, but acquires a type when referenced. Similarly, in some of the library functions,
the extent of an array object referenced through a pointer parameter is dynamically determined, either
by another parameter or by the contents of the array.

The full specification is necessary to determine the precise meaning of a qualifier in any context, and40
so must be understood by compiler implementors. Fortunately, most others will need to understand
only a few simple patterns of usage, explained in the following examples.

A translator can assume that a file scope restrict-qualified pointer is the sole initial means of access to45
an object, much as if it were the declared name of an array. This is useful for a dynamically allocated
array whose size is not known until at run-time. Note in the example how a single block of storage is
effectively subdivided into two disjoint objects.

WG14/N802 J11/98-001 RATIONALE

60

float * restrict a1, * restrict a2;

void init(int n) {
 float * t = malloc(2 * n * sizeof(float));
 a1 = t; /* a1 refers to 1st half. */5
 a2 = t + n; /* a2 refers to 2nd half. */
}

A translator can assume that a restrict-qualified pointer that is a function parameter is, at the
beginning of each execution of the function, the sole means of access to an object. Note that this10
assumption expires with the end of each execution. In the following example, parameters a1 and
a2 can be assumed to refer to disjoint array objects because both are restrict-qualified. This implies
that each iteration of the loop is independent of the others, and so the loop can be aggressively
optimized.

15
void f1(int n, float * restrict a1, const float * restrict a2)

{
 int i;
 for (i = 0; i < n; i++)

a1[i] += a2[i];20
}

A translator can assume that a restrict-qualified pointer declared with block scope is, at the beginning
of each execution of the block, the sole means of access to an object. An invocation of the macro
shown in the following example is equivalent to an inline version of a call to the function f1 above.25

define f2(N,A1,A2) \
{ int n = (N); \
 float * restrict a1 = (A1); \
 float * restrict a2 = (A2); \30
 int i; \
 for (i = 0; i < n; i++) \

a1[i] += a2[i]; \
}

35
The restrict qualifier can be used in the declaration of a structure member. A translator can
assume, when an identifier is declared that provides a means of access to an object of that structure
type, that the member provides the sole initial means of access to an object of the type specified in the
member declaration. The duration of the assumption depends on the scope of the identifier, not on
the scope of the declaration of the structure. Thus a translator can assume that s1.a1 and s1.a240
below are used to refer to disjoint objects for the duration of the whole program, but that s2.a1
and s2.a2 are used to refer to disjoint objects only for the duration of each invocation of f3().

struct t {
int n;45
float * restrict a1, * restrict a2;

};

struct t s1;
50

void f3(struct t s2) { /* ... */ }

RATIONALE WG14/N802 J11/98-001

61

The meaning of the restrict qualifier for a union member or in a type definition is analogous.
Just as an object with a declared name can be aliased by an unqualified pointer, so can the object
associated with a restrict-qualified pointer. The restrict qualifier is therefore unlike the register
storage class, which precludes such aliasing.

5
This allows the restrict qualifier to be introduced more easily into existing programs, and also
allows it to be used in new programs that call functions from libraries that do not use the qualifier. In
particular, a restrict-qualified pointer can be the actual argument for a function parameter that is
unqualified. On the other hand, it is easier for a translator to find opportunities for optimization if as
many as possible of the pointers in a program are restrict-qualified.10

6.5.4 Function specifiers

6.5.5 Declarators
15

The function prototype syntax was adapted from C++. (See §6.3.2.2 and §6.5.5.3)

Some current implementations have a limit of six type modifiers (function returning, array of, pointer
to, the limit used in Ritchie's original compiler. This limit has been raised to twelve since the original
limit has proven insufficient in some cases; in particular, it did not allow for FORTRAN-to-C20
translation, since FORTRAN allows for seven subscripts. (Some users have reported using nine or
ten levels, particularly in machine-generated C code.

6.5.5.1 Pointer declarators
25

A pointer declarator may have its own type qualifiers, to specify the attributes of the pointer itself, as
opposed to those of the reference type. The construct is adapted from C++.

const int * means (variable) pointer to constant int, and int * const means constant
pointer to (variable) int, just as in C++, from which these constructs were adopted. (And mutatis30
mutandis for the other type qualifiers.) As with other aspects of C type declarators, judicious use of
typedef statements can clarify the code.

6.5.5.2 Array declarators
35

The concept of composite types (§6.1.2.6) was introduced to provide for the accretion of information
from incomplete declarations, such as array declarations with missing size, and function declarations
with missing prototype (argument declarations). Type declarators are therefore said to specify
compatible types if they agree except for the fact that one provides less information of this sort than
the other.40

The declaration of 0-length arrays is invalid, under the general principle of not providing for 0-length
objects. The only common use of this construct has been in the declaration of dynamically allocated
variable-size arrays, such as

45
struct segment {
 short int count;
 char c[N];
};

WG14/N802 J11/98-001 RATIONALE

62

struct segment * new_segment(const int length)
{
 struct segment * result;
 result = malloc(sizeof segment + (length-N));5
 result->count = length;
 return result;
}

In such usage, N would be 0 and (length-N) would be written as length. But this paradigm10
works just as well, as written, if N is 1. (Note, by the by, an alternate way of specifying the size of
result:

 result = malloc(offsetof(struct segment,c) + length);
15

This illustrates one of the uses of the offsetof macro.)

6.5.5.3 Function declarators (including prototypes)

The function prototype mechanism is one of the most useful additions to the C language. The feature,20
of course, has precedent in many of the Algol-derived languages of the past 25 years. The particular
form adopted in the Standard is based in large part upon C++.

Function prototypes provide a powerful translation-time error detection capability. In traditional C
practice without prototypes, it is extremely difficult for the translator to detect errors (wrong number25
or type of arguments) in calls to functions declared in another source file. Detection of such errors
has either occurred at runtime, or through the use of auxiliary software tools.

In function calls not in the scope of a function prototype, integral arguments have the integral
widening conversions applied and float arguments are widened to double. It is thus impossible30
in such a call to pass an unconverted char or float argument. Function prototypes give the
programmer explicit control over the function argument type conversions, so that the often
inappropriate and sometimes inefficient default widening rules for arguments can be suppressed by the
implementation.

35
Modifications of function interfaces are easier in cases where the actual arguments are still assignment
compatible with the new formal parameter type - only the function definition and its prototype need to
be rewritten in this case; no function calls need be rewritten. Allowing an optional identifier to appear
in a function prototype serves two purposes:

40
• the programmer can associate a meaningful name with each argument position for

documentation purposes, and

• a function declarator and a function prototype can use the same syntax. The consistent
syntax makes it easier for new users of C to learn the language. Automatic generation45
of function prototype declarators from function definitions is also facilitated.

Optimizers can also take advantage of function prototype information. Consider this example:

extern int compare(const char * string1,50

RATIONALE WG14/N802 J11/98-001

63

 const char * string2) ;

void func2(int x)
{

char * str1, * str2 ;5
 /* ... */
x = compare(str1, str2) ;
 /* ... */

}
10

The optimizer knows that the pointers passed to compare are not used to assign new values of any
objects that the pointers reference. Hence the optimizer can make less conservative assumptions
about the side effects of compare than would otherwise be necessary. The Standard requires that
calls to functions taking a variable number of arguments must occur in the presence of a prototype
(using the trailing ellipsis notation ,...). An implementation may thus assume that all other15
functions are called with a fixed argument list, and may therefore use possibly more efficient calling
sequences. Programs using old-style headers in which the number of arguments in the calls and the
definition differ may not work in implementations which take advantage of such optimizations. This is
not a Quiet Change, strictly speaking, since the program does not conform to the Standard. A word
of warning is in order, however, since the style is not uncommon in extant code, and since a20
conforming translator is not required to diagnose such mismatches when they occur in separate
translation units. Such trouble spots can be made manifest (assuming an implementation provides
reasonable diagnostics) by providing new-style function declarations in the translation units with the
non-matching calls. Programmers who currently rely on being able to omit trailing arguments are
advised to recode using the <stdarg.h> paradigm.25

Function prototypes may be used to define function types as well:

typedef double (*d_binop) (double A, double B);
30

struct d_funct {
 d_binop f1;
 int (*f2)(double, double);
};

35
The structure d_funct has two fields, both of which hold pointers to functions taking two double
arguments; the function types differ in their return type.

6.5.6 Type names
40

Empty parentheses within a type name are always taken as meaning function with unspecified
arguments and never as (unnecessary) parentheses around the elided identifier. This specification
avoids an ambiguity by fiat.

6.5.7 Type definitions45

A typedef may only be redeclared in an inner block with a declaration that explicitly contains a
type name. This rule avoids the ambiguity about whether to take the typedef as the type name or
the candidate for redeclaration.

50

WG14/N802 J11/98-001 RATIONALE

64

Some implementations of C have allowed type specifiers to be added to a type defined using
typedef. Thus

typedef short int small ;
unsigned small x ;5

would give x the type unsigned short int. The Committee decided that since this
interpretation may be difficult to provide in many implementations, and since it defeats much of the
utility of typedef as a data abstraction mechanism, such type modifications are invalid. This
decision is incorporated in the rules of §6.5.2.10

A proposed typeof operator was rejected on the grounds of insufficient utility.

6.5.8 Initialization
15

An implementation might conceivably have codes for floating zero and/or null pointer other than all
bits zero. In such a case, the implementation must fill out an incomplete initializer with the various
appropriate representations of zero; it may not just fill the area with zero bytes.

The Committee considered proposals for permitting automatic aggregate initializers to consist of a20
brace-enclosed series of arbitrary (execute-time) expressions, instead of just those usable for a
translate-time static initializer. However, cases like this were troubling:

int x[2] = { f(x[1]), g(x[0]) };
25

Rather than determine a set of rules which would avoid pathological cases and yet not seem too
arbitrary, the Committee elected to permit only static initializers. Consequently, an implementation
may choose to build a hidden static aggregate, using the same machinery as for other aggregate
initializers, then copy that aggregate to the automatic variable upon block entry.

30
A structure expression, such as a call to a function returning the appropriate structure type, is
permitted as an automatic structure initializer, since the usage seems unproblematic.

For programmer convenience, even though it is a minor irregularity in initializer semantics, the trailing
null character in a string literal need not initialize an array element, as in:35

char mesg[5] = "help!" ;

(Some widely used implementations provide precedent.)
40

The Base Document allows a trailing comma in an initializer at the end of an initializer-list. The
Standard has retained this syntax, since it provides flexibility in adding or deleting members from an
initializer list, and simplifies machine generation of such lists.

Various implementations have parsed aggregate initializers with partially elided braces differently.45

The Standard has reaffirmed the (top-down) parse described in the Base Document. Although the
construct is allowed, and its parse well defined, the Committee urges programmers to avoid partially
elided initializers: such initializations can be quite confusing to read.

RATIONALE WG14/N802 J11/98-001

65

QUIET CHANGE

Code which relies on a bottom-up parse of aggregate initializers with partially elided
braces will not yield the expected initialized object.5

The Committee has adopted the rule (already used successfully in some implementations) that the first
member of the union is the candidate for initialization. Other notations for union initialization were
considered, but none seemed of sufficient merit to outweigh the lack of prior art.

10
This rule has a parallel with the initialization of structures. Members of structures are initialized in the
sequence in which they are declared. The same can now be said of unions, with the significant
difference that only one union member (the first) can be initialized.
A new feature for C9X. Designated initializers provide a mechanism for initializing sparse arrays, a
practice common in numerical programming. They add useful functionality that already exists in15
Fortran so that programmers migrating to C need not suffer the loss of a program-text-saving
notational feature.

This feature also allows initialization of sparse structures, common in systems programming, and
allows initialization of unions via any member, regardless of whether or not it is the first member.20

Designated initializers integrate easily into the C grammar and do not impose any additional run-time
overhead on a user’s program. Their initial C implementation appeared in a compiler by Ken
Thompson at AT&T Bell Laboratories.

25

6.6 Statements

6.6.1 Labeled statements

Since label definition and label reference are syntactically distinctive contexts, labels are established as a30
separate name space.

6.6.2 Compound statement, or block

The Committee considered proposals for forbidding a goto into a block from outside, since such a35
restriction would make possible much easier flow optimization and would avoid the whole issue of
initializing auto storage (see §6.1.2.4). The Committee rejected such a ban out of fear of invalidating
working code (however undisciplined) and out of concern for those producing machine-generated C.

6.6.3 Expression and null statements40

The void cast is not needed in an expression statement, since any value is always discarded. Some
checking compilers prefer this reassurance, however, for functions that return objects of types other
than void.

45
6.6.4 Selection statements

6.6.4.1 The if statement

WG14/N802 J11/98-001 RATIONALE

66

See §6.6.2.

6.6.4.2 The switch statement

The controlling expression of a switch statement may now have any integral type, even5
unsigned long. Floating types were rejected for switch statements since exact equality in floating
point is not portable.

case labels are first converted to the type of the controlling expression of the switch, then checked for
equality with other labels; no two may match after conversion.10

Case ranges (of the form lo .. hi) were seriously considered, but ultimately not adopted in the
Standard on the grounds that it added no new capability, just a problematic coding convenience. The
construct seems to promise more than it could be mandated to deliver:

15
• A great deal of code (or jump table space) might be generated for an innocent-looking

case range such as 0 .. 65535.

• The range 'A'..'Z' would specify all the integers between the character code for A and
that for Z. In some common character sets this range would include non-alphabetic20
characters, and in others it might not include all the alphabetic characters (especially in
non-English character sets).

No serious consideration was given to making the switch more structured, as in Pascal, out of fear of
invalidating working code.25

QUIET CHANGE

long expressions and constants in switch statements are no longer truncated to int.
30

6.6.5 Iteration statements

6.6.5.1 The while statement

6.6.5.2 The do statement35

6.6.5.3 The for statement

6.6.6. Jump statements
40

6.6.6.1 The goto statement
See §6.6.2.

6.6.6.2 The continue statement
45

The Committee rejected proposed enhancements to continue and break which would allow
specification of an iteration statement other than the immediately enclosing one, on grounds of
insufficient prior art.

RATIONALE WG14/N802 J11/98-001

67

6.6.6.3 The break statement
See §6.6.6.2.

6.6.6.4 The return statement5

6.7 External definitions

6.7.1 Function definitions
10

A function definition may have its old form (and say nothing about arguments on calls), or it may be
introduced by a prototype (which affects argument checking and coercion on subsequent calls). (See
also §6.1.2.2.)

To avoid a nasty ambiguity, the Standard bans the use of typedef names as formal parameters. For15
instance, in translating the text

int f(size_t, a_t, b_t, c_t, d_t, e_t, f_t, g_t,
 h_t, i_t, j_t, k_t, l_t, m_t, n_t, o_t,
 p_t, q_t, r_t, s_t)20

the translator determines that the construct can only be a prototype declaration as soon as it scans the
first size_t and following comma. In the absence of this rule, it might be necessary to see the token
following the right parenthesis that closes the parameter list, which would require a sizeable
look-ahead, before deciding whether the text under scrutiny is a prototype declaration or an old-style25
function header definition.

An argument list must be explicitly present in the declarator; it cannot be inherited from a typedef
(see §6.5.5.3). That is to say, given the definition

30
typedef int p(int q, int r);

the following fragment is invalid:

p funk /* weird */35
{ return q + r ; }

Some current implementations rewrite the type of a (for instance) char parameter as if it were
declared int, since the argument is known to be passed as an int (in the absence of prototypes).
The Standard requires, however, that the received argument be converted as if by assignment upon40
function entry. Type rewriting is thus no longer permissible.

QUIET CHANGE

Functions that depend on char or short parameter types being widened to int,45
or float to double, may behave differently.

Notes for implementors: the assignment conversion for argument passing often requires no executable
code. In most twos-complement machines, a short or char is a contiguous subset of the bytes

WG14/N802 J11/98-001 RATIONALE

68

comprising the int actually passed (for even the most unusual byte orderings), so that assignment
conversion can be effected by adjusting the address of the argument (if necessary).

For an argument declared float, however, an explicit conversion must usually be performed from
the double actually passed to the float desired. Not many implementations can subset the bytes5
of a double to get a float. (Even those that apparently permit simple truncation often get the
wrong answer on certain negative numbers.)

Some current implementations permit an argument to be masked by a declaration of the same identifier
in the outermost block of a function. This usage is almost always an erroneous attempt by a novice C10
programmer to declare the argument; it is rarely the result of a deliberate attempt to render the
argument unreachable. The Committee decided, therefore, that arguments are effectively declared in
the outermost block, and hence cannot be quietly redeclared in that block.

The Committee considered it important that a function taking a variable number of arguments, such as15
printf, be expressible portably in C. Hence, the Committee devoted much time to exploring
methods of traversing variable argument lists. One proposal was to require arguments to be passed as
a "brick’’ (i.e., a contiguous area of memory), the layout of which would be sufficiently well specified
that a portable method of traversing the brick could be determined.

20
Several diverse implementations, however, can implement argument passing more efficiently if the
arguments are not required to be contiguous. Thus, the Committee decided to hide the implementation
details of determining the location of successive elements of an argument list behind a standard set of
macros (see §7.12).

25
The rule which caused undeclared parameters in an old-style function definition to be implicitly
declared int has been removed; undeclared parameters are now a constraint violation. The
effect is to guarantee that a diagnostic is produced, which will catch an additional category of
programming errors. After issuing the diagnostic, an implementation may choose to assume an
implicit int declaration and continue translation in order to support existing programs that30
exploited this feature.

6.7.2 External object definitions
See §6.1.2.2.

35

6.8 Preprocessing directives

For an overview of the philosophy behind the preprocessor, see §5.1.1.2.

Different implementations have had different notions about whether white space is permissible before40
and/or after the # signalling a preprocessor line. The Committee decided to allow any white space
before the #, and horizontal white space (spaces or tabs) between the # and the directive, since the
white space introduces no ambiguity, causes no particular processing problems, and allows maximum
flexibility in coding style. Note that similar considerations apply for comments, which are reduced to
white space early in the phases of translation (§5.1.1.2):45

 /* here a comment */ #if BLAH
#/* there a comment */ if BLAH
if /* every-

RATIONALE WG14/N802 J11/98-001

69

 where a comment */ BLAH

The lines all illustrate legitimate placement of comments.

6.8.1 Conditional inclusion5

For a discussion of evaluation of expressions following #if, see §6.4.

The operator defined has been added to make possible writing boolean combinations of defined
flags with one another and with other inclusion conditions. If the identifier defined were to be10
defined as a macro, defined(X) would mean the macro expansion in C text proper and the
operator expression in a preprocessing directive (or else that the operator would no longer be
available). To avoid this problem, such a definition is not permitted (§6.8.8).

#elif has been added to minimize the stacking of #endif directives in multi-way conditionals.15

Processing of skipped material is defined such that an implementation need only examine a logical line
for the # and then for a directive name. Thus, assuming that xxx is undefined, in this example:

ifndef xxx20
define xxx "abc"
elif xxx > 0
 /* ... */
endif

25
an implementation is not required to diagnose an error for the elif statement, even though if it were
processed, a syntactic error would be detected.

Various proposals were considered for permitting text other than comments at the end of directives,
particularly #endif and #else, presumably to label them for easier matchup with their30
corresponding #if directives. The Committee rejected all such proposals because of the difficulty of
specifying exactly what would be permitted, and how the translator would have to process it.

Various proposals were considered for permitting additional unary expressions to be used for the
purpose of testing for the system type, testing for the presence of a file before #include, and other35
extensions to the preprocessing language. These proposals were all rejected on the grounds of
insufficient prior art and/or insufficient utility.

6.8.2 Source file inclusion
40

Specification of the #include directive raises distinctive grammatical problems because the file
name is conventionally parsed quite differently than an "ordinary'' token sequence:

• The angle brackets are not operators, but delimiters.
45

• The double quotes do not delimit a string literal with all its defined escape sequences.
(In some systems, backslash is a legitimate character in a filename.) The construct just
looks like a string literal.

WG14/N802 J11/98-001 RATIONALE

70

• White space or characters not in the C repertoire may be permissible and significant
within either or both forms.

These points in the description of phases of translation are of particular relevance to the parse of the
#include directive:5

• Any character otherwise unrecognized during tokenization is an instance of an "invalid
token.'' As with valid tokens, the spelling is retained so that later phases can, if
necessary, map a token sequence (back) into a sequence of characters.

10
 • Preprocessing phases must maintain the spelling of preprocessing tokens; the filename

is based on the original spelling of the tokens, not on any interpretation of escape
sequences.

• The filename on the #include (and #line) directive, if it does not begin with "15
or <, is macro expanded prior to execution of the directive. Allowing macros in the
include directive facilitates the parameterization of include file names, an important
issue in transportability.

The file search rules used for the filename in the #include directive were left as20
implementation-defined. The Standard intends that the rules which are eventually provided by the
implementor correspond as closely as possible to the original K&R rules. The primary reason that
explicit rules were not included in the Standard is the infeasibility of describing a portable file system
structure. It was considered unacceptable to include UNIX-like directory rules due to significant
differences between this structure and other popular commercial file system structures.25

Nested include files raise an issue of interpreting the file search rules. In UNIX C an include statement
found within an include file entails a search for the named file relative to the file system directory that
holds the outer #include. Other implementations, including the earlier UNIX C described in K&R,
always search relative to the same current directory. The Committee decided, in principle, in favor of30
the K&R approach, but was unable to provide explicit search rules as explained above.

The Standard specifies a set of include file names which must map onto distinct host file names. In the
absence of such a requirement, it would be impossible to write portable programs using include files.

35
Clause §5.2.4.1 on translation limits contains the required number of nesting levels for include files.
The limits chosen were intended to reflect reasonable needs for users constrained by reasonable system
resources available to implementors.

By defining a failure to read an include file as a syntax error, the Standard requires that the failure be40
diagnosed. More than one proposal was presented for some form of conditional include, or a directive
such as #ifincludable, but none were accepted by the Committee due to lack of prior art.

6.8.3 Macro replacement
45

The specification of macro definition and replacement in the Standard was based on these principles:

• Interfere with existing code as little as possible.

RATIONALE WG14/N802 J11/98-001

71

• Keep the preprocessing model simple and uniform.

• Allow macros to be used wherever functions can be.
5

• Define macro expansion such that it produces the same token sequence whether the
macro calls appear in open text, in macro arguments, or in macro definitions.

Preprocessing is specified in such a way that it can be implemented as a separate (text-to-text) pre-pass
or as a (token-oriented) portion of the compiler itself. Thus, the preprocessing grammar is specified in10
terms of tokens.

However, the new-line character must be a token during preprocessing, because the preprocessing
grammar is line-oriented. The presence or absence of white space is also important in several contexts,
such as between the macro name and a following parenthesis in a #define directive. To avoid15
overly constraining the implementation, the Standard allows the preservation of each white space
character (which is easy for a text-to-text pre-pass) or the mapping of white space into a single "white
space'' token (which is easier for token-oriented translators).

The Committee desired to disallow "pernicious redefinitions'' such as20

(in header1.h)

#define NBUFS 10
25

(in header2.h)

#define NBUFS 12

which are clearly invitations to serious bugs in a program. There remained, however, the question of30
"benign redefinitions,'' such as

(in header1.h)

#define NULL_DEV 035

(in header2.h)

#define NULL_DEV 0
40

The Committee concluded that safe programming practice is better served by allowing benign
redefinition where the definitions are the same. This allows independent headers to specify their
understanding of the proper value for a symbol of interest to each, with diagnostics generated only if
the definitions differ.

45
The definitions are considered "the same'' if the identifier-lists, token sequences, and occurrences of
white-space (ignoring the spelling of white-space) in the two definitions are identical.

Existing implementations have differed on whether keywords can be redefined by macro definitions.

WG14/N802 J11/98-001 RATIONALE

72

The Committee has decided to allow this usage; it sees such redefinition as useful during the transition
from existing to Standard-conforming translators.

These definitions illustrate possible uses:
5

define char signed char
define sizeof (int) sizeof
define const

The first case might be useful in moving extant code from a signed-char implementation to one in10
which char is unsigned. The second case might be useful in adapting code which assumes that
sizeof results in an int value. The redefinition of const could be useful in retrofitting more
modern C code to an older implementation.

As with any other powerful language feature, keyword redefinition is subject to abuse. Users cannot15
expect any meaningful behavior to come about from source files starting with

#define int double
#include <stdio.h>

20
or similar subversions of common sense.

A new feature for C9X. Function-like macro invocations may now have empty arguments, that is, an
argument may consist of no preprocessing tokens. In C90, any argument that consisted of no
preprocessing tokens had undefined behavior, but as mentioned in C90 Annex G.5.12, it was a25
common extension.

A function-like macro invocation f() has the form of either a call with no arguments, or a call with
one empty argument. Which form it actually is, is determined by the definition of f, which indicates
the expected number of arguments.30

The sequence
 #define TENTH 0.1
 #define F f
 #define D /* expands into no preprocessing tokens */35
 #define LD L
 #define glue(a, b) a ## b
 #define xglue(a, b) glue(a, b)

 float f = xglue(TENTH,F) ;40
 double d = xglue(TENTH,D) ;
 long double ld = xglue(TENTH,LD);

results in
 float f = 0.1f ;
 double d = 0.1 ;45
 long double ld = 0.1L;

The expansion of xglue(TENTH,D) first expands into glue(0.1,) which is a macro
invocation with an empty second argument, which then expands into 0.1.

50
6.8.3.1 Argument substitution

RATIONALE WG14/N802 J11/98-001

73

6.8.3.2 The # operator

Some implementations have decided to replace identifiers found within a string literal if they match a
macro argument name. The replacement text is a "stringized’’ form of the actual argument token5
sequence. This practice appears to be contrary to the definition, in K&R, of preprocessing in terms of
token sequences. The Committee declined to elaborate the syntax of string literals to the point where
this practice could be condoned. However, since the facility provided by this mechanism seems to be
widely used, the Committee introduced a more tractable mechanism of comparable power.

10
The # operator has been introduced for stringizing. It may only be used in a #define expansion.
It causes the formal parameter name following to be replaced by a string literal formed by stringizing
the actual argument token sequence. In conjunction with string literal concatenation (see §6.1.4), use
of this operator permits the construction of strings as effectively as by identifier replacement within a
string. An example in the Standard illustrates this feature.15

One problem with defining the effect of stringizing is the treatment of white space occurring in macro
definitions. Where this could be discarded in the past, now upwards of one logical line worth (over
500 characters) may have to be retained. As a compromise between token-based and character-based
preprocessing disciplines, the Committee decided to permit white space to be retained as one bit of20
information: none or one. Arbitrary white space is replaced in the string by one space character.

The remaining problem with stringizing was to associate a "spelling'' with each token. (The problem
arises in token-based preprocessors, which might, for instance, convert a numeric literal to a canonical
or internal representation, losing information about base, leading 0's, etc.) In the interest of simplicity,25
the Committee decided that each token should expand to just those characters used to specify it in the
original source text.

QUIET CHANGE
30

A macro that relies on formal parameter substitution within a string literal will produce
different results.

6.8.3.3 The ## operator
35

Another facility relied on in much current practice but not specified in the Base Document is "token
pasting,'' or building a new token by macro argument substitution. One existing implementation is to
replace a comment within a macro expansion by zero characters, instead of the single space called for
in K&R. The Committee considered this practice unacceptable.

40
As with "stringizing,'' the facility was considered desirable, but not the extant implementation of this
facility, so the Committee invented another preprocessing operator. The ## operator within a macro
expansion causes concatenation of the tokens on either side of it into a new composite token.

The specification of this pasting operator is based on these principles:45

• Paste operations are explicit in the source.

WG14/N802 J11/98-001 RATIONALE

74

• The ## operator is associative.

A formal parameter as an operand for ## is not expanded before pasting. (The actual is substituted
for the formal, but the actual is not expanded:

5
#define a(n) aaa ## n
#define b 2

Given these definitions, the expansion of a(b) is aaab, not aaa2 or aaan.)
10

• A normal operand for ## is not expanded before pasting.

• Pasting does not cross macro replacement boundaries.

• The token resulting from a paste operation is subject to further macro expansion.15

These principles codify the essential features of prior art, and are consistent with the specification of the
stringizing operator.

6.8.3.4 Rescanning and further replacement20

A problem faced by most current preprocessors is how to use a macro name in its expansion without
suffering "recursive death.'' The Committee agreed simply to turn off the definition of a macro for the
duration of the expansion of that macro. An example of this feature is included in the Standard.

25
The rescanning rules incorporate an ambiguity. Given the definitions

#define f(a) a*g
#define g f

30
it is clear (or at least unambiguous) that the expansion of f(2)(9) is 2*f(9) - the f in the result
clearly was introduced during the expansion of the original f, so is not further expanded.

However, given the definitions
35

#define f(a) a*g
#define g(a) f(a)

the expansion rules allow the result to be either 2*f(9) or 2*9*g - it is unclear whether the
f(9) token string (resulting from the initial expansion of f and the examination of the rest of the40
source file) should be considered as nested within the expansion of f or not. The Committee
intentionally left this behavior ambiguous: it saw no useful purpose in specifying all the quirks of
preprocessing for such questionably useful constructs.

6.8.3.5 Scope of macro definitions45

Some pre-Standard implementations maintain a stack of #define instances for each identifier;
#undef simply pops the stack. The Committee agreed that more than one level of #define was
more prone to error than utility.

RATIONALE WG14/N802 J11/98-001

75

It is explicitly permitted to #undef a macro that has no current definition. This capability is
exploited in conjunction with the standard library (see §7.1.8).

6.8.4 Line control5

Aside from giving values to __LINE__ and __FILE__ (see §6.8.8), the effect of #line is
unspecified. A good implementation will presumably provide line and file information in conjunction
with most diagnostics.

10

A new proposal for C9X to allow the #line directive to appear within macro invocations was
considered. The Committe decided to not allow any preprocessor directives to be recongnized as such
inside of macros.

15
6.8.5 Error directive

The directive #error has been introduced to provide an explicit mechanism for forcing translation
to fail under certain conditions. (Formally the Standard only requires, can only require, that a
diagnostic be issued when the #error directive is effected. It is the intent of the Committee,20
however, that translation cease immediately upon encountering this directive, if this is feasible in the
implementation; further diagnostics on text beyond the directive are apt to be of little value.)
Traditionally such failure has had to be forced by inserting text so ill-formed that the translator gagged
on it.

25
6.8.6 Pragma directive

The #pragma directive has been added as the universal method for extending the space of directives.

A new feature for C9X. Some directives have been standardized for C9X. Directives whose first30
preprocessing token is STDC are reserved for standardized directives.

6.8.7 Null directive

The existing practice of using empty # lines for spacing is supported in the Standard.35

6.8.8 Predefined macro names

The rule that these macros may not be redefined or undefined reduces the complexity of the name
space that the programmer and implementor must understand; it recognizes that these macros have40
special built-in properties.

The macros __DATE__ and __TIME__ have been added to make available the time of translation.
 A particular format for the expansion of these macros has been specified to aid in parsing strings
initialized by them.45

The macros __LINE__ and __FILE__ have been added to give programmers access to the source
line number and file name.

WG14/N802 J11/98-001 RATIONALE

76

The macro __STDC__ allows for conditional translation on whether the translator claims to be
standard-conforming or not. It is defined as having value 1; future versions of the Standard could
define it as 2, 3, ..., to allow for conditional compilation on which version of the Standard a translator
conforms to. This macro should be of use in the transition toward conformance to the Standard.5

A new feature for C9X. The macros __STDC_VERSION, __STDC_IEC_559 and
STDC_IEC_559_COMPLEX were added.

6.8.9 Pragma operator10

A new feature for C9X. As an alternative syntax for a pragma directive, the pragma operator has the
advantage that it can be used in a macro replacement list. If a translator is directed to produce a
preprocessed version of the source file, then pragma unary operator expressions and pragma directives
should be treated consistently in whether they are preserved and in whether macro invocations within15
them are expended.

6.9 Future language directions

This section includes specific mention of the future direction in which the Committee intends to extend20
and/or restrict the language. The contents of this section should be considered as quite likely to
become a part of the next version of the Standard. Implementors are advised that failure to take heed
of the points mentioned herein is considered undesirable for a conforming hosted or freestanding
implementation. Users are advised that failure to take heed of the points mentioned herein is
considered undesirable for a conforming program.25

6.9.1 Character escape sequences

6.9.2 Storage-class specifiers
See §6.5.1.30

6.9.3 Function declarators

The characterization as obsolescent of the use of the "old style'' function declarations and definitions -
that is, the traditional style not using prototypes - signals the Committee's intent that the new prototype35
style should eventually replace the old style.

The case for the prototype style is presented in §6.3.2.2 and §6.5.5.3. The gist of this case is that the
new syntax addresses some of the most glaring weaknesses of the language defined in the Base
Document, that the new style is superior to the old style on every count.40

It was obviously out of the question to remove syntax used in the overwhelming majority of extant C
code, so the Standard specifies two ways of writing function declarations and function definitions.
Characterizing the old style as obsolescent is meant to discourage its use, and to serve as a strong
endorsement by the Committee of the new style. It confidently expects that approval and adoption of45
the prototype style will make it feasible for some future C Standard to remove the old style syntax.

6.9.4 Function definitions

RATIONALE WG14/N802 J11/98-001

77

See §6.9.4.

6.9.5 Pragma directives

WG14/N802 J11/98-001 RATIONALE

78

RATIONALE WG14/N802 J11/98-001

79

7. LIBRARY

7.1 Introduction
5

The Base Document for this section of the Standard was the 1984 /usr/group Standard. The
/usr/group document contains definitions of some facilities which were specific to the UNIX Operating
System and not relevant to other operating environments, such as pipes, ioctls, file access permissions
and process control facilities. Those definitions were dropped from the Standard. Some other
functions were excluded from the Standard because they were non-portable or were ill-defined.10

Other facilities not in the library Base Document but present in many UNIX implementations, such as
the curses (terminal-independent screen handling) library were considered to be more complex and less
essential than the facilities of the Base Document; these functions were not added to the Standard.

15
The prototypes for several library routines were changed in C9X and they now contain the new
keyword restrict as part of some parameter declarations. The restrict keyword allows the
prototype to express what was previously expressed by words.

The definition of certain C library routines (e.g., memcpy) contain the words:20

If copying takes place between objects that overlap, the behavior is undefined.

These words are present because copying between overlapping objects is quite rare, and this allowed
vendors to provide efficient implementations of these library routines. Now that restrict allows25
users to express these same non-overlapping semantics, it is used in prototype declarations to
demonstrate the utility of the keyword, and to act as guidance to those wishing to understand how to
use it correctly.

In the case of memcpy above, the prototype is now declared as:30

void *memcpy(void *restrict s1, const void *restrict s2,
size_t n);

and the restrict keywords tell the translator that the first two parameters, s1 and s2, are pointers35
that point to disjoint data objects. Essentially, this keyword provides the same information as the
words that indicate copying between overlapping objects is not allowed.

Besides the library functions whose specification state that copying between overlapping objects is not
allowed, several others have also had their prototype adorned with the restrict keyword. For40
example:

int printf(const char * restrict format, ...);

A critical question that one asks when deciding if a pointer parameter should be restrict-qualified or not45
is, if copying takes place between overlapping objects will the function behave as expected. In the case
of the printf function, unexpected behavior occurs if a call such as:

WG14/N802 J11/98-001 RATIONALE

80

 {
int *p = malloc(n * sizeof(int));
char *cp = (char *) p;
strcpy(cp, "%s %n %s\n");

5
printf(cp, "string1", p, "string2");

 }

The unexpected behavior occurs because:
10

1. character pointers can alias other pointers to objects
2. p and cp are aliases for the same dynamic object allocated by the call to the malloc function.
3. the %n specifier causes an integer value to overwrite the control string pointed at by pointer cp

(through p)
15

Remember that the const-qualifier in the printf prototype only guarantees that the parameter
pointing at the format string is read-only. Another alias (i.e., p) is allowed to modify the same format
string.

Since the implementation costs are high if vendors are forced to cater to this extremely rare case, the20
restrict keyword is used to explicitly forbid situations like these.

Another library routine that uses restrict is:

char *fgets(char * restrict s, int n, FILE * restrict stream);25

Again, since a character pointer can be a potential alias with other pointers, restrict is used to
make it clear to the translator that parameter s is never an alias with parameter stream when the
fgets function is called within a well-defined program.

30
Finally, the prototypes of certain library functions are adorned with restrict only if the pointer is
used to access data. For example:

wchar_t *wcstok(wchar_t *restrict s1,
const wchar_t *restrict s2,35
wchar_t ** restrict ptr););

The parameter ptr only has a restrict-qualifier on the top-level pointer type. The reason the
parameter declaration is not:

40
wchar_t * restrict * restrict ptr

is because only the top-level pointer type is used to access an object. The lower-level pointer type is
only used to track the location in the wide character string of where the search terminated. Thus there
is no possibility of copying take place between overlapping objects through the lower-level pointer.45

In general, a restrict-qualified pointer provides useful information in the prototype of a library routine if
more than one parameter with pointer type can alias each other. Sometimes the aliasing rules prevent
this from happening (e.g., pointer to integer type can not alias a pointer to a floating-point type). When
the aliasing rules allow two pointers to point at overlapping objects, then the restrict keyword can50

RATIONALE WG14/N802 J11/98-001

81

be used to indicate that this function should not be called with pointers to overlapping objects. This
guideline also applies outside of the library if a parameter can alias a file-scope pointer.

7.1.1 Definitions of terms
5

The decimal-point character is the character used in the input or output of floating point numbers, and
may be changed by setlocale. This is a library construct; the decimal point in numeric literals in
C source text is always a period.

7.1.2 Standard headers10

Whereas in prior practice only certain library functions have been associated with header files, the
Standard now mandates that all library functions have a header. Several headers have therefore been
added, and the contents of a few old ones have been changed.

15
In many implementations the names of headers are the names of files in special directories. This
implementation technique is not required, however: the Standard makes no assumptions about the form
that a file name may take on any system. Headers may thus have a special status if an implementation
so chooses. Standard headers may even be built into a translator, provided that their contents do not
become "known’’ until after they are explicitly included. One purpose of permitting these header "files’’20
to be "built in’’ to the translator is to allow an implementation of the C language as an interpreter in an
un-hosted environment, where the only "file’’ support may be a network interface.

The Committee decided to make library headers "idempotent’’ - they should be includable any number
of times, and includable in any order. This requirement, which reflects widespread existing practice,25
may necessitate some protective wrappers within the headers, to avoid, for instance, redefinitions of
typedefs. To ensure that such protective wrapping can be made to work, and to ensure proper scoping
of typedefs, headers may only be included outside of any declaration.

Note to implementors: a common way of providing this "protective wrapping’’ is:30

#ifndef __ERRNO_H
#define __ERRNO_H
/* body of <errno.h> */
/* ... */35
#endif

where __ERRNO_H is an otherwise unused macro name.

Implementors often desire to provide implementations of C in addition to that prescribed by the40
Standard. For instance, an implementation may want to provide system-specific I/O facilities in
<stdio.h>. A technique that allows the same header to be used in both the Standard-conforming
and alternate implementations is to add the extra, non-Standard, declarations
to the header as in this illustration:

45
#ifdef __EXTENSIONS__
typedef int file_no;
extern int read(file_no _N, void * _Buffer, int _Nbytes);
/*...*/
#endif50

WG14/N802 J11/98-001 RATIONALE

82

The header is usable in an implementation of the Standard in the absence of a definition of
__EXTENSIONS__, and the non-Standard implementation can provide the appropriate definitions to
enable the extra declarations.

5
7.1.3 Reserved identifiers

To give implementors maximum latitude in packing library functions into files, all external identifiers
defined by the library are reserved (in a hosted environment). This means, in effect, that no user
supplied external names may match library names, not even if the user function has the same10
specification. Thus, for instance, strtod may be defined in the same object module as printf,
with no fear that link-time conflicts will occur. Equally, strtod may call printf, or printf
may call strtod, for whatever reason, with no fear that the wrong function will be called.

Also reserved for the implementor are all external identifiers beginning with an underscore, and all15
other identifiers beginning with an underscore followed by a capital letter or an underscore. This gives
a space of names for writing the numerous behind-the-scenes non-external macros and functions a
library needs to do its job properly.

With these exceptions, the Standard assures the programmer that all other identifiers are available, with20
no fear of unexpected collisions when moving programs from one implementation to another5. Note,
in particular, that part of the name space of internal identifiers beginning with underscore is available to
the user - translator implementors have not been the only ones to find use for "hidden’’ names. C is
such a portable language in many respects that this issue of "name space pollution’’ is currently one of
the principal barriers to writing completely portable code. Therefore the Standard assures that macro25
and typedef names are reserved only if the associated header is explicitly included.

7.1.4 Errors <errno.h>

<errno.h> is a header invented to encapsulate the error handling mechanism used by many of the30
library routines in math.h and stdlib.h.6

The error reporting machinery centered about the setting of errno is generally regarded with
tolerance at best. It requires a "pathological coupling’’ between library functions and makes use of a
static writable memory cell, which interferes with the construction of shareable libraries. Nevertheless,35
the Committee preferred to standardize this existing, however deficient, machinery rather than invent
something more ambitious.

The definition of errno as an lvalue macro grants implementors the license to expand it to something
like *__errno_addr(), where the function returns a pointer to the (current) modifiable copy of40
errno.

 5 See §6.1.2.1 for a discussion of some of the precautions an implementor should take to keep this promise. Note also that any

implementation-defined member names in structures defined in <time.h> and <locals.h> must begin with an underscore, rather than following the
pattern of other names in those structures.

 6 In earlier drafts of the Standard, errno and related macros were defined in <stddef.h>. When the Committee decided that the other

definitions in this header were os such general utility that they should be required even in freestanding environments, it created <errno.h>.

RATIONALE WG14/N802 J11/98-001

83

7.1.5 Limits <float.h> and <limits.h>

Both <float.h> and <limits.h> are inventions. Included in these headers are various
parameters of the execution environment which are potentially useful at compile time, and which are
difficult or impossible to determine by other means.5

The availability of this information in headers provides a portable way of tuning a program to different
environments. Another possible method of determining some of this information is to evaluate
arithmetic expressions in the preprocessing statements. Requiring that preprocessing always yield the
same results as run-time arithmetic, however, would cause problems for portable compilers10
(themselves written in C) or for cross compilers, which would then be required to implement the
(possibly wildly different) arithmetic of the target machine on the host machine. (See §6.4.)

<float.h> makes available to programmers a set of useful quantities for numerical analysis. (See
§5.2.4.2.) This set of quantities has seen widespread use for such analysis, in C and in other languages,15
and was recommended by the numerical analysts on the Committee. The set was chosen so as not to
prejudice an implementation's selection of floating-point representation.

Most of the limits in <float.h> are specified to be general double expressions rather than
restricted constant expressions20

 • to allow use of values which cannot readily (or, in some cases, cannot possibly)
 be constructed as manifest constants, and

 • to allow for run-time selection of floating-point properties, as is possible, for25
 instance, in IEEE-854 implementations.

7.1.6 Common definitions <stddef.h>

<stddef.h> is a header invented to provide definitions of several types and macros used widely in30
conjunction with the library: ptrdiff_t (see §6.3.6), size_t (see §6.3.3.4), wchar_t (see
§6.1.3.4), and NULL. Including any header that references one of these macros will also define it, an
exception to the usual library rule that each macro or function belongs to exactly one header.

NULL can be defined as any null pointer constant. Thus existing code can retain definitions of NULL35
as 0 or 0L, but an implementation may choose to define it as (void *)0; this latter form of
definition is convenient on architectures where the pointer size(s) do(es) not equal the size of any
integer type. It has never been wise to use NULL in place of an arbitrary pointer as a function
argument, however, since pointers to different types need not be the same size. The library avoids this
problem by providing special macros for the arguments to signal, the one library function that40
might see a null function pointer.

The offsetof macro has been added to provide a portable means of determining the offset, in
bytes, of a member within its structure. This capability is useful in programs, such as are typical in
data-base implementations, which declare a large number of different data structures: it is desirable to45
provide "generic'' routines that work from descriptions of the structures, rather than from the structure

WG14/N802 J11/98-001 RATIONALE

84

declarations themselves.7

In many implementations, offsetof could be defined as one of

(size_t)&(((s_name*)0)->m_name)5

or
(size_t)(char *)&(((s_name*)0)->m_name)

or, where X is some predeclared address (or 0) and A(Z) is defined as ((char*)&Z),10

(size_t)(A((s_name*)X->m_name) - A(X))

It was not feasible, however, to mandate any single one of these forms as a construct guaranteed to be
portable.15

Other implementations may choose to expand this macro as a call to a built-in function that interrogates
the translator’s symbol table.

7.1.7 Boolean type and values <stdbool.h>20

7.1.8 Use of library functions

To make usage more uniform for both implementor and programmer, the Standard requires that every
library function (unless specifically noted otherwise) must be represented as an actual function, in case25
a program wishes to pass its address as a parameter to another function. On the other hand, every
library function is now a candidate for redefinition, in its associated header, as a macro, provided that
the macro performs a "safe’’ evaluation of its arguments, i.e., it evaluates each of the arguments exactly
once and parenthesizes them thoroughly, and provided that its top-level operator is such that the
execution of the macro is not interleaved with other expressions. Two exceptions are the macros30
getc and putc, which may evaluate their arguments in an unsafe manner. (See §7.13.7.5.)

If a program requires that a library facility be implemented as an actual function, not as a macro, then
the macro name, if any, may be erased by using the #undef preprocessing directive (see §6.8.3).

35
All library prototypes are specified in terms of the "widened'' types: an argument formerly declared as
char is now written as int. This ensures that most library functions can be called with or without a
prototype in scope (see §6.3.2.2), thus maintaining backwards compatibility with existing,
pre-Standard, code. Note, however, that since functions like printf and scanf use
variable-length argument lists, they must be called in the scope of a prototype.40

The Standard contains an example showing how certain library functions may be "built in'' in
an implementation that remains conforming.

 7Consider, for instance, a set of nodes (structures) which are to be dynamically allocated and garbage-collected, and which can contain

pointers to other such nodes. A possible implementation is to have the first field in each node point to a descriptor for that node. The descriptor
includes a table of the offsets of fields which are pointers to other nodes. A garbage-collector "mark" routine needs no further information about the
content of the node (except, of course, where to put the mark). New node types can be added to the program without requiring the mark routine to be
rewritten or even recomplied.

RATIONALE WG14/N802 J11/98-001

85

7.2 Diagnostics <assert.h>

7.2.1 Program diagnostics
5

7.2.1.1 The assert macro

Some implementations tolerate an arbitrary scalar expression as the argument to assert, but the
Committee decided to require correct operation only for int expressions. For the sake of
implementors, no hard and fast format for the output of a failing assertion is required; but the Standard10
mandates enough machinery to replicate the form shown in the footnote.

It can be difficult or impossible to make assert a true function, so it is restricted to macro form
only.

15
To minimize the number of different methods for program termination, assert is now defined in
terms of the abort function.

Note that defining the macro NDEBUG to disable assertions may change the behavior of a program
with no failing assertion if any argument expression to assert has side-effects, because the20
expression is no longer evaluated.

It is possible to turn assertions off and on in different functions within a translation unit by defining (or
undefining) NDEBUG and including <assert.h> again. The implementation of this behavior in
<assert.h> is simple: undefine any previous definition of assert before providing the new one. 25
Thus the header might look like

#undef assert
#ifdef NDEBUG
#define assert(ignore) ((void) 0)30
#else
 extern void __gripe(char *_Expr, char *_File, int _Line);
#define assert(expr) \
 ((expr)? (void)0 : __gripe(#expr, __FILE__, __LINE__))
#endif35

Note that assert must expand to a void expression, so the more obvious if statement does not
suffice as a definition of assert. Note also the avoidance of names in a header which would conflict
with the user's name space (see§6.1.2.1).

40

7.3 Character Handling <ctype.h>

Pains were taken to eliminate any ASCII dependencies from the definition of the character handling
functions. One notable result of this policy was the elimination of the function isascii, both
because of the name and because its function was hard to generalize. Nevertheless, the character45
functions are often most clearly explained in concrete terms, so ASCII is used frequently to express
examples.

Since these functions are often used primarily as macros, their domain is restricted to the small positive

WG14/N802 J11/98-001 RATIONALE

86

integers representable in an unsigned char, plus the value of EOF. EOF is traditionally -1, but
may be any negative integer, and hence distinguishable from any valid character code. These macros
may thus be efficiently implemented by using the argument as an index into a small array of attributes.

The Standard (§7.20.2) warns that names beginning with is and to, when these are followed by5
lower-case letters, are subject to future use in adding items to <ctype.h>.

7.3.1 Character testing functions

The definitions of printing character and control character have been generalized from ASCII.10

Note that none of these functions returns a nonzero value (true) for the argument value EOF.

7.3.1.1 The isalnum function
15

7.3.1.2 The isalpha function

The Standard specifies that the set of letters, in the default locale, comprises the 26 upper-case and 26
lower-case letters of the Latin (English) alphabet. This set may vary in a locale-specific fashion (that
is, under control of the setlocale function, §7.5) so long as20

• isupper(c) implies isalpha(c)

• islower(c) implies isalpha(c)
25

• isspace(c) , ispunct(c) , iscntrl(c) , or isdigit(c) implies
!isalpha(c)

7.3.1.3 The isblank function
30

isblank is a new feature for C9X

7.3.1.4 The iscntrl function

7.3.1.5 The isdigit function35

7.3.1.6 The isgraph function

7.3.1.7 The islower function
40

7.3.1.8 The isprint function

7.3.1.9 The ispunct function

7.3.1.10 The isspace function45

isspace is widely used within the library as the working definition of white space.

RATIONALE WG14/N802 J11/98-001

87

7.3.1.11 The isupper function

7.3.1.12 The isxdigit function

7.3.2 Character case mapping functions5

Earlier libraries had (almost equivalent) macros, _tolower and _toupper, for these functions.
The Standard now permits any library function to be additionally implemented as a macro; the
underlying function must still be present. _toupper and _tolower are thus unnecessary and
were dropped as part of the general standardization of library macros.10

7.3.2.1 The tolower function

7.3.2.2 The toupper function
15

7.4 Integer types <inttypes.h>

<inttypes.h> is a new feature for C9X The C Standard specifies that the language should
support four, signed and unsigned, integer data types, char, short, int and long.
However, the Standard places very little requirement on their size (number of bits) other than that20
int and short be at least 16-bits and long data type must be at least as long as int and not
smaller than 32-bits. For 16-bit systems, most implementations assign 8, 16, 16 and 32 bits to char,
short, int, and long, respectively. For 32-bit systems, the common practice is to assign 8, 16,
32 and 32 bits to these types. This difference in int size can create some problems for users who
migrate from one system to another which assigns different sizes to integral types, because Standard25
C’s integral promotion rule can produce silent changes unexpectedly. The need for defining an
extended integer type increased with the introduction of 64-bit based systems in the industry.

The purpose of <inttypes.h> header is to provide a set of integer types whose definitions are
consistent across machines and independent of operating systems and other implementation30
idiosyncrasies. It defines, via typedef, integer types of various sizes. Implementations are free to
typedef them to Standard C integer types or extensions that they support. Consistant use of this
header will greatly increase the portability of a user’s program across platforms.

7.4.1 Typedef names for integer types35

7.4.1.1 Exact-width integer types

7.4.1.2 Minimum-width integer types
40

7.4.1.3 Fastest minimum-width integer types

7.4.1.4 Integer types capable of holding object pointers

7.4.1.5 Greatest-width integer types45

7.4.2 Limits of specified-width integer types

WG14/N802 J11/98-001 RATIONALE

88

7.4.2.1 Limits of exact-width integer types

7.4.2.2 Limits of minimum-width integer types

7.4.2.3 Limits of fastest minimum-width integer types5

7.4.2.4 Limits of integer types capable of holding object pointers

7.4.2.5 Limits of greatest-width integer types
10

7.4.3 Macros for integer constants

7.4.3.1 Macros for minimum-width integer constants

7.4.3.2 Macros for greatest-width integer constants15

7.4.4 Macros for format specifiers

7.4.5 Limits of other integer types
20

7.4.6 Conversion functions for greatest-width integer types

7.4.6.1 The strtoimax function

7.4.6.2 The strtoumax function25

7.4.6.3 The wcstoimax function

7.4.6.4 The wcstoumax function
30

7.5 Localization <locale.h>

C has become an international language. Users of the language outside the United States have
been forced to deal with the various Americanisms built into the standard library routines.

35
Areas affected by international considerations include:

Alphabet. The English language uses 26 letters derived from the Latin alphabet. This set of letters
suffices for English, Swahili, and Hawaiian; all other living languages use either the Latin
alphabet plus other characters, or other, non-Latin alphabets or syllabaries.40

In English, each letter has an upper-case and lower-case form. The German "sharp S’’, �,
occurs only in lower-case. European French usually omits diacriticals on upper-case letters.
Some languages do not have the concept of two cases.

45
Collation. In both EBCDIC and ASCII the code for ’z’ is greater than the code for ’a’, and so on for

other letters in the alphabet, so a "machine sort’’ gives not unreasonable results for ordering
strings. In contrast, most European languages use a codeset resembling ASCII in which some

RATIONALE WG14/N802 J11/98-001

89

of the codes used in ASCII for punctuation characters are used for alphabetic characters. (See
§5.2.1.) The ordering of these codes is not alphabetic. In some languages letters with
diacritics sort as separate letters; in others they should be collated just as the unmarked form.
In Spanish, "ll'' sorts as a single letter following "l''; in German, "�'' sorts like "ss''.

5
Formatting of numbers and currency amounts. In the United States the period is invariably used

for the decimal point; this usage was built into the definitions of such functions as printf
and scanf. Prevalent practice in several major European countries is to use a comma; a
raised dot is employed in some locales. Similarly, in the United States a comma is used to
separate groups of three digits to the left of the decimal point; a period is common in Europe,10
and in some countries digits are not grouped by threes. In printing currency amounts, the
currency symbol (which may be more than one character) may precede, follow, or be
embedded in the digits.

Date and time. The standard function asctime returns a string which includes abbreviations for15
month and weekday names, and returns the various elements in a format which might be
considered unusual even in its country of origin.

Various common date formats include
20

1776-07-04 ISO Format
4.7.76 customary central European and British usage
7/4/76 customary U.S. usage
4.VII.76 Italian usage
76186 Julian date (YYDDD)25
04JUL76 airline usage
Thursday, July 4, 1776 full U.S. format
Donnerstag, 4. Juli 1776 full German format

Time formats are also quite diverse:30

3:30 PM customary U.S. and British format
1530 U.S. military format
15h.30 Italian usage
15.30 German usage35
15:30 common European usage

The Committee has introduced mechanisms into the C library to allow these and other issues to
be treated in the appropriate locale-specific manner.

40
The localization features of the Standard are based on these principles:

English for C source. The C language proper is based on English. Keywords are based on English
words. A program which uses "national characters'' in identifiers is not strictly conforming.
(Use of national characters in comments is strictly conforming, though what happens when45
such a program is printed in a different locale is unspecified.) The decimal point must be a
period in C source, and no thousands delimiter may be used.

WG14/N802 J11/98-001 RATIONALE

90

Runtime selectability. The locale must be selectable at runtime, from an implementation-defined set
of possibilities. Translate-time selection does not offer sufficient flexibility. Software vendors
do not want to supply different object forms of their programs in different locales. Users do
not want to use different versions of a program just because they deal with several different
locales.5

Function interface. Locale is changed by calling a function, thus allowing the implementation to
recognize the change, rather than by, say, changing a memory location that contains the
decimal point character.

10
Immediate effect. When a new locale is selected, affected functions reflect the change immediately.

(This is not meant to imply if a signal-handling function were to change the selected locale and
return to a library function, that the return value from that library function must be completely
correct with respect to the new locale.)

15
7.5.1 Locale control

7.5.1.1 The setlocale function

setlocale provides the mechanism for controlling locale-specific features of the library. The20
category argument allows parts of the library to be localized as necessary without changing the
entire locale-specific environment. Specifying the locale argument as a string gives an
implementation maximum flexibility in providing a set of locales. For instance, an implementation
could map the argument string into the name of a file containing appropriate localization parameters -
these files could then be added and modified without requiring any recompilation of a localizable25
program.

7.5.2 Numeric formatting convention inquiry

7.5.2.1 The localeconv function30

The localeconv function gives a programmer access to information about how to format numeric
quantities (monetary or otherwise). This sort of interface was considered preferable to defining
conversion functions directly: even with a specified locale, the set of distinct formats that can be
constructed from these elements is large, and the ones desired very application-dependent.35

7.6 Floating-point environment <fenv.h>

<fenv.h> is a new feature for C9X.
40

7.6.1 The FENV_ACCESS pragma

A new feature for C9X

7.6.2 Exceptions45

7.6.2.1 The feclearexcept function

RATIONALE WG14/N802 J11/98-001

91

7.6.2.2 The fegetexceptflag function

7.6.2.3 The feraiseexcept function

7.6.2.4 The fesetexceptflag function5

7.6.2.5 The fetestexcept function

7.6.3 Rounding
10

7.6.3.1 The fegetround function

7.6.3.2 The fesetround function

7.6.4 Environment15

7.6.4.1 The fegetenv function

7.6.4.2 The feholdexcept function
20

7.6.4.3 The fesetenv function

7.6.4.4 The feupdateenv function

7.7 Mathematics <math.h>25

For historical reasons, the math library is only defined for the floating type double. All the names
formed by appending f or l to a name in <math.h> are reserved to allow for the definition of
float and long double libraries.

30
The functions ecvt, fcvt, and gcvt have been dropped since their capability is available through
sprintf.

Traditionally, HUGE_VAL has been defined as a manifest constant that approximates the largest
representable double value. As an approximation to infinity it is problematic. As a function return35
value indicating overflow, it can cause trouble if first assigned to a float before testing, since a
float may not necessarily hold all values representable in a double.

After considering several alternatives, the Committee decided to generalize HUGE_VAL to a positive
double expression, so that it could be expressed as an external identifier naming a location initialized40
precisely with the proper bit pattern. It can even be a special encoding for machine infinity, on
implementations that support such codes. It need not be representable as a float, however.

Similarly, domain errors in the past were typically indicated by a zero return, which is not necessarily
distinguishable from a valid result. The Committee agreed to make the return value for domain errors45
implementation-defined, so that special machine codes can be used to advantage. This makes possible
an implementation of the math library in accordance with the IEEE P854 proposal on floating point
representation and arithmetic.

WG14/N802 J11/98-001 RATIONALE

92

7.7.1 Treatment of error conditions

Whether underflow should be considered a range error, and cause errno to be set, is specified as
implementation-defined since detection of underflow is inefficient on some systems.5

The Standard has been crafted to neither require nor preclude any popular implementation of floating
point. This principle affects the definition of domain error: an implementation may define extra domain
errors to deal with floating-point arguments such as infinity or "not-a-number’’.

10
The Committee considered the adoption of the matherr capability from UNIX System V. In this
feature of that system’s math library, any error (such as overflow or underflow) results in a call from the
library function to a user-defined exception handler named matherr. The Committee rejected this
approach for several reasons:

15
• This style is incompatible with popular floating point implementations, such as IEEE

754 (with its special return codes), or that of VAX/VMS.

• It conflicts with the error-handling style of FORTRAN, thus making it more difficult to
translate useful bodies of mathematical code from that language to C.20

• It requires the math library to be reentrant (since math routines could be called from
matherr), which may complicate some implementations.

• It introduces a new style of library interface: a user-defined library function with a 25
library-defined name. Note, by way of comparison, the signal and exit handling
mechanisms, which provide a way of "registering'' user-defined functions.

7.7.2 The FP_CONTACT pragma
30

7.7.3 Classification macros

7.7.3.1 The fpclassify macro

7.7.3.2 The signbit macro35

7.7.3.3 The isfinite macro

7.7.3.4 The isnormal macro
40

7.7.3.5 The isnan macro

7.7.3.6 The isinf macro

7.7.4 Trigonometric functions45

Implementation note: trigonometric argument reduction should be performed by a method that causes
no catastrophic discontinuities in the error of the computed result. In particular, methods based solely

RATIONALE WG14/N802 J11/98-001

93

on naive application of a calculation like

x - (2*pi) * (int)(x/(2*pi))

are ill-advised.5

7.7.4.1 The acos function

7.7.4.2 The asin function
10

7.7.4.3 The atan function

7.7.4.4 The atan2 function

The atan2 function is modeled after FORTRAN’s. It is described in terms of arctan y/x for15
simplicity; the Committee did not wish to complicate the descriptions by specifying in detail how to
determine the appropriate quadrant, since that should be obvious from normal mathematical
convention. atan2(y,x) is well-defined and finite, even when x is 0; the one ambiguity occurs
when both arguments are 0, because at that point any value in the range of the function could logically
be selected. Since valid reasons can be advanced for all the different choices that have been in this20
situation by various implements, the Standard preserves the implementor’s freedom to return an
arbitrary well-defined value such as 0, to report a domain error, or to return an IEEE NaN code.

7.7.4.5 The cos function
25

7.7.4.6 The sin function

7.7.4.7 The tan function

The tangent function has singularities at odd multiples of π/2, approaching +∞ from one side and30
-∞ from the other. Implementations commonly perform argument reduction using the best machine
representation of π; for arguments to tan sufficiently close to a singularity, such reduction may yield
a value on the wrong side of the singularity. In view of such problems, the Committee has recognized
that tan is an exception to the range error rule (§7.7.1) that an overflowing result produces
HUGE_VAL properly signed.)35

7.7.5 Hyperbolic functions

7.7.5.1 The cosh function
40

7.7.5.2 The sinh function

7.7.5.3 The tanh function

7.7.5.4 The acosh function45

7.7.5.5 The asinh function

WG14/N802 J11/98-001 RATIONALE

94

7.7.5.6 The atanh function

7.7.6 Exponential and logarithmic functions

7.7.6.1 The exp function5

7.7.6.2 The frexp function

The functions frexp, ldexp, and modf are primitives used by the remainder of the library. There
was some sentiment for dropping them for the same reasons that ecvt, fcvt, and gcvt were10
dropped, but their adherents rescued them for general use. Their use is problematic: on nonbinary
architectures ldexp may lose precision, and frexp may be inefficient.

7.7.6.3 The ldexp function
See §7.7.6.2.15

7.7.6.4 The log function

Whether log(0.) is a domain error or a range error is arguable. The choice in the Standard, range
error, is for compatibility with IEEE P854. Some such implementations would represent the result as20
-∞, in which case no error is raised.

7.7.6.5 The log10 function
See §7.7.6.4.

25
7.7.6.6 The modf function
See §7.7.6.2.

7.7.6.7 The exp2 function
30

7.7.6.8 The expm1 function

7.7.6.9 The log1p function

7.7.6.10 The log2 function35

7.7.6.11 The logb function

7.7.6.12 The scalbn function
40

7.7.6.13 The scalbln function

7.7.6.14 The ilogb function

7.7.7 Power and absolute value functions45

7.7.7.1 The fabs function

RATIONALE WG14/N802 J11/98-001

95

Adding an absolute value operator was rejected by the Committee. An implementation can provide a
built-in function for efficiency.

7.7.7.2 The pow function
5

7.7.7.3 The sqrt function

IEEE P854, unlike the Standard, requires sqrt(-0.) to return a negatively signed magnitude-zero
result. This is an issue on implementations that support a negative floating zero. The Standard
specifies that taking the square root of a negative number (in the mathematical sense: less than 0) is a10
domain error which requires the function to return an implementation-defined value. This rule permits
implementations to support either the IEEE P854 or vendor-specific floating point representations.

7.7.7.4 The cbrt function
15

7.7.7.5 The hypot function

7.7.8 Error and gamma functions

7.7.8.1 The erf function20

7.7.8.2 The erfc function

7.7.8.3 The gamma function
25

7.7.8.4 The lgamma function

7.7.9 Nearest integer functions

7.7.9.1 The ceil function30

Implementation note: The ceil function returns the smallest integral value in double format not less
than x, even though that integer might not be representable in a C integral type. ceil(x) equals
x for all x sufficiently large in magnitude. An implementation that calculates ceil(x) as

35
(double)(int) x

is ill-advised.

7.7.9.2 The floor function40

7.7.9.3 The nearbyint function

7.7.9.4 The rint function
45

7.7.9.5 The lrint function

7.7.9.6 The llrint function

WG14/N802 J11/98-001 RATIONALE

96

7.7.9.7 The round function

7.7.9.8 The lround function
5

7.7.9.9 The llround function

7.7.9.10 The trunc function

7.7.10 Remainder functions10

7.7.10.1 The fmod function

fmod is defined even if the quotient x/y is not representable - this function is properly implemented
by scaled subtraction rather than by division. The Standard defines the result in terms of the formula15
x-i*y, where i is some integer. This integer need not be representable, and need not even be explicitly
computed. Thus implementations are advised not to compute the result using a formula like

x - y * (int)(x/y)
20

Instead, the result can be computed in principle by subtracting ldexp(y,n) from x, for
appropriately chosen decreasing n, until the remainder is between 0 and x - efficiency considerations
may dictate a different actual implementation.

The result of fmod(x,0.0) is either a domain error or 0.0; the result always lies between 0.0 and25
y, so specifying the non-erroneous result as 0.0 simply recognizes the limit case.

The Committee considered and rejected a proposal to use the remainder operator % for this function;
the operators in general correspond to hardware facilities, and fmod is not supported in hardware on
most machines.30

7.7.10.2 The remainder function

7.7.10.3 The remquo function
35

7.7.11 Manipulation functions

7.7.11.1 The copysign function

7.7.11.2 The nan function40

7.7.11.3 The nextafter function

7.7.11.4 The nextafterx function
45

7.7.12 Maximum, minimum, and positive difference functions

7.7.12.1 The fdim function

RATIONALE WG14/N802 J11/98-001

97

7.7.12.2 The fmax function

7.7.12.3 The fmin function
5

7.7.13 Floating multiply-add

7.7.13.1 The fma function

7.7.14 Comparison macros10

7.7.14.1 The isgreater macro

7.7.14.2 The isgreaterequal macro
15

7.7.14.3 The isless macro

7.7.14.4 The islessequal macro

7.7.14.5 The islessgreater macro20

7.7.14.6 The isunordered macro

7.8 Complex arithmetic <complex.h>
25

7.8.1 The CX_LIMITED_RANGE pragma

7.8.2 Complex functions

7.8.2.1 Branch cuts30

7.8.2.2 The cacos function

7.8.2.3 The casin function
35

7.8.2.4 The catan function

7.8.2.5 The ccos function

7.8.2.6 The csin function40

7.8.2.7 The ctan function

7.8.2.8 The cacosh function
45

7.8.2.9 The casinh function

7.8.2.10 The catanh function

WG14/N802 J11/98-001 RATIONALE

98

7.8.2.11 The ccosh function

7.8.2.12 The csinh function
5

7.8.2.13 The ctanh function

7.8.2.14 The cexp function

7.8.2.15 The clog function10

7.8.2.16 The csqrt function

7.8.2.17 The cabs function
15

7.8.2.18 The cpow function

7.8.2.19 The carg function

7.8.2.20 The conj function20

7.8.2.21 The cimag function

7.8.2.22 The cproj function
25

7.8.2.23 The creal function

7.9 Type-generic math <tgmath.h>

7.9.1 The Type-generic macros30

7.10 Nonlocal jumps <setjmp.h>

jmp_buf must be an array type for compatibility with existing practice: programs typically omit the
address operator before a jmp_buf argument, even though a pointer to the argument is desired, not35
the value of the argument itself. Thus, a scalar or struct type is unsuitable. Note that a one-element
array of the appropriate type is a valid definition.

setjmp is constrained to be a macro only: in some implementations the information necessary to
restore context is only available while executing the function making the call to setjmp.40

7.10.1 Save calling environment

7.10.1.1 The setjmp macro
45

One proposed requirement on setjmp is that it be usable like any other function - that it be callable
in any expression context, and that the expression evaluate correctly whether the return from setjmp
is direct or via a call to longjmp. Unfortunately, any implementation of setjmp as a conventional

RATIONALE WG14/N802 J11/98-001

99

called function cannot know enough about the calling environment to save any temporary registers or
dynamic stack locations used part way through an expression evaluation. (A setjmp macro seems
to help only if it expands to inline assembly code or a call to a special built-in function.) The
temporaries may be correct on the initial call to setjmp, but are not likely to be on any return
initiated by a corresponding call to longjmp. These considerations dictated the constraint that5
setjmp be called only from within fairly simple expressions, ones not likely to need temporary
storage.

An alternative proposal considered by the Committee is to require that implementations recognize that
calling setjmp is a special case8, and hence that they take whatever precautions are necessary to10
restore the setjmp environment properly upon a longjmp call. This proposal was rejected on
grounds of consistency: implementations are currently allowed to implement library functions specially,
but no other situations require special treatment.

7.10.2 Restore calling environment15

7.10.2.1 The longjmp function

The Committee also considered requiring that a call to longjmp restore the (setjmp) calling
environment fully - that upon execution of a longjmp, all local variables in the environment of20
setjmp have the values they did at the time of the longjmp call. Register variables create
problems with this idea. Unfortunately, the best that many implementations attempt with register
variables is to save them (in jmp_buf) at the time of the initial setjmp call, then restore them to
that state on each return initiated by a longjmp call. Since compilers are certainly at liberty to
change register variables to automatic, it is not obvious that a register declaration will indeed be rolled25
back. And since compilers are at liberty to change automatic variables to register (if their addresses are
never taken), it is not obvious that an automatic declaration will not be rolled back. Hence the vague
wording. In fact, the only reliable way to ensure that a local variable retain the value it had at the time
of the call to longjmp is to define it with the volatile attribute.

30
Some implementations leave a process in a special state while a signal is being handled. An explicit
reassurance must be given to the environment when the signal handler is done. To keep this job
manageable, the Committee agreed to restrict longjmp to only one level of signal handling.

The longjmp function should not be called in an exit handler (i.e., a function registered with the35
atexit function (see§7.14.4.2)), since it might jump to some code which is no longer in scope.

7.11 Signal Handling <signal.h>

This facility has been retained from the Base Document since the Committee felt it important to40
provide some standard mechanism for dealing with exceptional program conditions. Thus a subset of
the signals defined in UNIX were retained in the Standard, along with the basic mechanisms of
declaring signal handlers and (with adaptations, see §7.11.2.1) raising signals. For a discussion of the
problems created by including signals, see §5.2.3.

45

 8This proposal was considered prior to the adoption of the stricture that setjmp be a macro. It can be considered as equivalent to proposing

that the setjmp macro expand to a call to a special built-in compiler function.

WG14/N802 J11/98-001 RATIONALE

100

The signal machinery contains many misnomers: SIGFPE, SIGILL, and SIGSEGV have their
roots in PDP-11 hardware terminology, but the names are too entrenched to change. (The occurrence
of SIGFPE, for instance, does not necessarily indicate a floating-point error.) A conforming
implementation is not required to field any hardware interrupts.

5
The Committee has reserved the space of names beginning with SIG to permit implementations to
add local names to <signal.h>. This implies that such names should not be otherwise used in a C
source file which includes <signal.h>.

7.11.1 Specify signal handling10

7.11.1.1 The signal function

When a signal occurs the normal flow of control of a program is interrupted. If a signal occurs that is
being trapped by a signal handler, that handler is invoked. When it is finished, execution continues at15
the point at which the signal occurred. This arrangement could cause problems if the signal handler
invokes a library function that was being executed at the time of the signal. Since library functions are
not guaranteed to be re-entrant, they should not be called from a signal handler that returns. (See
§5.2.3.) A specific exception to this rule has been granted for calls to signal from within the signal
handler; otherwise, the handler could not reliably reset the signal.20

The specification that some signals may be effectively set to SIG_IGN instead of SIG_DFL at
program startup allows programs under UNIX systems to inherit this effective setting from parent
processes.

25
For performance reasons, UNIX does not reset SIGILL to default handling when the handler is called
(usually to emulate missing instructions). This treatment is sanctioned by specifying that whether reset
occurs for SIGILL is implementation-defined.

7.11.2 Send signal30

7.11.2.1 The raise function

The function raise replaces the Base Document's kill function. The latter has an extra argument
which refers to the "process ID'' affected by the signal. Since the execution model of the Standard does35
not deal with multi-processing, the Committee deemed it preferable to introduce a function which
requires no (dummy) process argument. The Committee anticipates that IEEE 1003 will wish to
standardize the kill function in the POSIX specification.

7.12 Variable Arguments <stdarg.h>40

For a discussion of argument passing issues, see §6.7.1.

These macros, modeled after the UNIX <varargs.h> macros, have been added to enable the
portable implementation in C of library functions such as printf and scanf (see §7.13.6). Such45
implementation could otherwise be difficult, considering newer machines that may pass arguments in
machine registers rather than using the more traditional stack-oriented methods.

RATIONALE WG14/N802 J11/98-001

101

The definitions of these macros in the Standard differ from their forebears: they have been extended to
support argument lists that have a fixed set of arguments preceding the variable list.

va_start and va_arg must exist as macros, since va_start uses an argument that is passed
by name and va_arg uses an argument which is the name of a data type. Using #undef on these5
names leads to undefined behavior.

The va_list type is not necessarily assignable. However, a function can pass a pointer to its
initialized argument list object, as noted below. The wording has been changed to state clearly that
va_list is an object type.10

7.12.1 Variable argument list access macros

7.12.1.1 The va_start macro
15

va_start must be called within the body of the function whose argument list is to be traversed.
That function can then pass a pointer to its va_list object ap to other functions to do the actual
traversal. (It can, of course, traverse the list itself.)

The parmN argument to va_start is an aid to writing conforming ANSI C code for existing C20
implementations. Many implementations can use the second parameter within the structure of existing
C language constructs to derive the address of the first variable argument. (Declaring parmN to be of
storage class register would interfere with use of these constructs; hence the effect of such a
declaration is undefined behavior. Other restrictions on the type of parmN are imposed for the same
reason.) New implementations may choose to use hidden machinery that ignores the second argument25
to va_start, possibly even hiding a function call inside the macro.

Multiple va_list variables can be in use simultaneously in the same function; each requires its own
calls to va_start and va_end.

30
7.12.1.2 The va_arg macro

Changing an arbitrary type name into a type name which is a pointer to that type could require
sophisticated rewriting. To allow the implementation of va_arg as a macro, va_arg need only
correctly handle those type names that can be transformed into the appropriate pointer type by35
appending a *, which handles most simple cases. (Typedefs can be defined to reduce more
complicated types to a tractable form.) When using these macros it is important to remember that the
type of an argument in a variable argument list will never be an integer type smaller than int, nor will
it ever be float. (See §6.5.5.3.)

40
va_arg can only be used to access the value of an argument, not to obtain its address.

7.12.1.3 The va_copy macro

7.12.1.4 The va_end macro45

va_end must also be called from within the body of the function having the variable argument list. In
many implementations, this is a do-nothing operation; but those implementations that need it probably

WG14/N802 J11/98-001 RATIONALE

102

need it badly.

7.13 Input/Output <stdio.h>

Many implementations of the C runtime environment (most notably the UNIX operating system)5
provide, aside from the standard I/O library (fopen, fclose, fread, fwrite, fseek), a set
of unbuffered I/O services (open, close, read, write, lseek). The Committee has decided
not to standardize the latter set of functions.

A suggested semantics for these functions in the UNIX world may be found in the emerging IEEE10
P1003 standard. The standard I/O library functions use a file pointer for referring to the desired I/O
stream. The unbuffered I/O services use a file descriptor (a small integer) to refer to the desired I/O
stream.

Due to weak implementations of the standard I/O library, many implementors have assumed that the15
standard I/O library was used for small records and that the unbuffered I/O library was used for large
records. However, a good implementation of the standard I/O library can match the performance of
the unbuffered services on large records. The user also has the capability of tuning the performance of
the standard I/O library (with setvbuf) to suit the application.

20
Some subtle differences between the two sets of services can make the implementation of the
unbuffered I/O services difficult:

• The model of a file used in the unbuffered I/O services is an array of characters. Many
C environments do not support this file model.25

• Difficulties arise when handling the new-line character. Many hosts use conventions
other than an in-stream new-line character to mark the end of a line. The unbuffered
I/O services assume that no translation occurs between the program's data and the file
data when performing I/O, so either the new-line character translation would be lost30
(which breaks programs) or the implementor must be aware of the new-line translation
(which results in non-portable programs).

• On UNIX systems, file descriptors 0, 1, and 2 correspond to the standard input,
output, and error streams. This convention may be problematic for other systems in35
that (1) file descriptors 0, 1, and 2 may not be available or may be reserved for another
purpose, (2) the operating system may use a different set of services for terminal I/O
than file I/O.

In summary, the Committee chose not to standardize the unbuffered I/O services because:40

• They duplicate the facilities provided by the standard I/O services.

• The performance of the standard I/O services can be the same or better than the
unbuffered I/O services45

• The unbuffered I/O file model may not be appropriate for many C language
environments.

RATIONALE WG14/N802 J11/98-001

103

7.13.1 Introduction

The macros _IOFBF, _IOLBF, _IONBF are enumerations of the third argument to setvbuf, a
function adopted from UNIX System V.5

SEEK_CUR, SEEK_END, and SEEK_SET have been moved to <stdio.h> from a header
specified in the Base Document and not retained in the Standard.

FOPEN_MAX and TMP_MAX are added environmental limits of some interest to programs that10
manipulate multiple temporary files.

FILENAME_MAX is provided so that buffers to hold file names can be conveniently declared. If the
target system supports arbitrarily long filenames, the implementor should provide some reasonable
value (80?, 255?, 509?) rather than something unusable like USHRT_MAX.15

fpos_t wording has been changed to exclude array type objects. If fpos_t were an array, then a
function would not be able to handle fpos_t parameters in the same manner as other fpos_t
variables.

20
7.13.2 Streams

C inherited its notion of text streams from the UNIX environment in which it was born. Having each
line delimited by a single new-line character, regardless of the characteristics of the actual terminal,
supported a simple model of text as a sort of arbitrary length scroll or "galley.’’ Having a channel that is25
"transparent’’ (no file structure or reserved data encodings) eliminated the need for a distinction
between text and binary streams.

Many other environments have different properties, however. If a program written in C is to produce a
text file digestible by other programs, by text editors in particular, it must conform to the text30
formatting conventions of that environment.

The I/O facilities defined by the Standard are both more complex and more restrictive than the
ancestral I/O facilities of UNIX. This is justified on pragmatic grounds: most of the differences,
restrictions and omissions exist to permit C I/O implementations in environments which differ from the35
UNIX I/O model.

Troublesome aspects of the stream concept include:

The definition of lines. In the UNIX model, division of a file into lines is effected by new-line40
characters. Different techniques are used by other systems - lines may be separated by CR-LF
(carriage return, line feed) or by unrecorded areas on the recording medium, or each line may
be prefixed by its length. The Standard addresses this diversity by specifying that new-line be
used as a line separator at the program level, but then permitting an implementation to
transform the data read or written to conform to the conventions of the environment.45

Some environments represent text lines as blank-filled fixed-length records. Thus the Standard
specifies that it is implementation-defined whether trailing blanks are removed from a line on

WG14/N802 J11/98-001 RATIONALE

104

input. (This specification also addresses the problems of environments which represent text as
variable-length records, but do not allow a record length of 0: an empty line may be written as
a one-character record containing a blank, and the blank is stripped on input.)

Transparency. Some programs require access to external data without modification. For instance,5
transformation of CR-LF to new-line character is usually not desirable when object code is
processed. The Standard defines two stream types, text and binary, to allow a program to
define, when a file is opened, whether the preservation of its exact contents or of its line
structure is more important in an environment which cannot accurately reflect both.

10
Random access. The UNIX I/O model features random access to data in a file, indexed by character

number. On systems where a new-line character processed by the program represents an
unknown number of physically recorded characters, this simple mechanism cannot be
consistently supported for text streams. The Standard abstracts the significant properties of
random access for text streams: the ability to determine the current file position and then later15
reposition the file to the same location. ftell returns a file position indicator, which has
no necessary interpretation except that an fseek operation with that indicator value will
position the file to the same place. Thus an implementation may encode whatever file
positioning information is most appropriate for a text file, subject only to the constraint that the
encoding be representable as a long. Use of fgetpos and fsetpos removes even this20
constraint.

Buffering. UNIX allows the program to control the extent and type of buffering for various purposes.
 For example, a program can provide its own large I/O buffer to improve efficiency, or can
request unbuffered terminal I/O to process each input character as it is entered. Other systems25
do not necessarily support this generality. Some systems provide only line-at-a-time access to
terminal input; some systems support program-allocated buffers only by copying data to and
from system-allocated buffers for processing. Buffering is addressed in the Standard by
specifying UNIX-like setbuf and setvbuf functions, but permitting great latitude in
their implementation. A conforming library need neither attempt the impossible nor respond to30
a program attempt to improve efficiency by introducing additional overhead.

Thus, the Standard imposes a clear distinction between text streams, which must be mapped to suit
local custom, and binary streams, for which no mapping takes place. Local custom on UNIX (and
related) systems is of course to treat the two sorts of streams identically, and nothing in the Standard35
requires any changes to this practice.

Even the specification of binary streams requires some changes to accommodate a wide range of
systems. Because many systems do not keep track of the length of a file to the nearest byte, an
arbitrary number of characters may appear on the end of a binary stream directed to a file. The40
Standard cannot forbid this implementation, but does require that this padding consist only of null
characters. The alternative would be to restrict C to producing binary files digestible only by other C
programs; this alternative runs counter to the spirit of C.

The set of characters required to be preserved in text stream I/O are those needed for writing C45
programs; the intent is the Standard should permit a C translator to be written in a maximally portable
fashion. Control characters such as backspace are not required for this purpose, so their handling in
text streams is not mandated.

RATIONALE WG14/N802 J11/98-001

105

It was agreed that some minimum maximum line length must be mandated; 254 was chosen.

7.13.3 Files
5

The as if principle is once again invoked to define the nature of input and output in terms of just two
functions, fgetc and fputc. The actual primitives in a given system may be quite different.

Buffering, and unbuffering, is defined in a way suggesting the desired interactive behavior; but an
implementation may still be conforming even if delays (in a network or terminal controller) prevent10
output from appearing in time. It is the intent that matters here.

No constraints are imposed upon file names, except that they must be representable as strings (with no
embedded null characters).

15
7.13.4 Operations on files

7.13.4.1 The remove function

The Base Document provides the unlink system call to remove files. The UNIX-specific definition20
of this function prompted the Committee to replace it with a portable function.

7.13.4.2 The rename function

This function has been added to provide a system-independent atomic operation to change the name of25
an existing file; the Base Document only provided the link system call, which gives the file a new
name without removing the old one, and which is extremely system-dependent.

The Committee considered a proposal that rename should quietly copy a file if simple renaming
couldn’t be performed in some context, but rejected this as potentially too expensive at execution time.30

rename is meant to give access to an underlying facility of the execution environment’s operating
system. When the new name is the name of an existing file, some systems allow the renaming (and
delete the old file or make it inaccessible by that name), while others prohibit the operation. The effect
of rename is thus implementation-defined.35

7.13.4.3 The tmpfile function

The tmpfile function is intended to allow users to create binary "scratch’’ files. The as if principle
implies that the information in such a file need never actually be stored on a file-structured device.40

The temporary file is created in binary update mode, because it will presumably be first written and
then read as transparently as possible. Trailing null-character padding may cause problems for some
existing programs.

45
7.13.4.4 The tmpnam function

This function allows for more control than tmpfile: a file can be opened in binary mode or text

WG14/N802 J11/98-001 RATIONALE

106

mode, and files are not erased at completion.

There is always some time between the call to tmpnam and the use (in fopen) of the returned
name. Hence it is conceivable that in some implementations the name, which named no file at the call
to tmpnam, has been used as a filename by the time of the call to fopen. Implementations should5
devise name-generation strategies which minimize this possibility, but users should allow for this
possibility.

7.13.5 File access functions
10

7.13.5.1 The fclose function

On some operating systems it is difficult, or impossible, to create a file unless something is written to
the file. A maximally portable program which relies on a file being created must write something to the
associated stream before closing it.15

7.13.5.2 The fflush function

The fflush function ensures that output has been forced out of internal I/O buffers for a specified
stream. Occasionally, however, it is necessary to ensure that all output is forced out, and the20
programmer may not conveniently be able to specify all the currently-open streams (perhaps because
some streams are manipulated within library packages).9 To provide an implementation-independent
method of flushing all output buffers, the Standard specifies that this is the result of calling fflush
with a NULL argument.

25
7.13.5.3 The fopen function

The b type modifier has been added to deal with the text/binary dichotomy (see §7.13.2). Because of
the limited ability to seek within text files (see §7.13.9.1), an implementation is at liberty to treat the old
update + modes as if b were also specified.30

Table 4.1 tabulates the capabilities and actions associated with the various specified mode string
arguments to fopen.

 9For instance, on a system (such as UNIX) which supports process forks, it is usually necessary to flush all output buffers just prior to the

fork.

RATIONALE WG14/N802 J11/98-001

107

 Table 4.1: File and stream properties of fopen modes

r w a r+ w+ a+

file must exist before open ✔ ✔

old file contents discarded on open ✔ ✔

stream can be read ✔ ✔ ✔ ✔

stream can be written ✔ ✔ ✔ ✔ ✔

stream can be written only at end ✔ ✔

5
Other specifications for files, such as record length and block size, are not specified in the Standard,
due to their widely varying characteristics in different operating environments. Changes to file access
modes and buffer sizes may be specified using the setvbuf function. (See §7.13.5.6.) An
implementation may choose to allow additional file specifications as part of the mode string argument.
 For instance,10

file1 = fopen(file1name,"wb,reclen=80");

might be a reasonable way, on a system which provides record-oriented binary files, for an
implementation to allow a programmer to specify record length.15

A change of input/output direction on an update file is only allowed following a fsetpos, fseek,
rewind, or fflush operation, since these are precisely the functions which assure that the I/O
buffer has been flushed.

20
The Standard (§7.13.2) imposes the requirement that binary files not be truncated when they are
updated. This rule does not preclude an implementation from supporting additional file types that do
truncate when written to, even when they are opened with the same sort of fopen call. Magnetic
tape files are an example of a file type that must be handled this way. (On most tape hardware it is
impossible to write to a tape without destroying immediately following data.) Hence tape files are not25
"binary files'' within the meaning of the Standard. A conforming hosted implementation must provide
(and document) at least one file type (on disk, most likely) that behaves exactly as specified in the
Standard.

7.13.5.4 The freopen function30

7.13.5.5 The setbuf function

setbuf is subsumed by setvbuf, but has been retained for compatibility with old code.
35

7.13.5.6 The setvbuf function

setvbuf has been adopted from UNIX System V, both to control the nature of stream buffering and
to specify the size of I/O buffers. An implementation is not required to make actual use of a buffer

WG14/N802 J11/98-001 RATIONALE

108

provided for a stream, so a program must never expect the buffer’s contents to reflect I/O operations.
Further, the Standard does not require that the requested buffering be implemented; it merely mandates
a standard mechanism for requesting whatever buffering services might be provided.

Although three types of buffering are defined, an implementation may choose to make one or more of5
them equivalent. For example, a library may choose to implement line-buffering for binary files as
equivalent to unbuffered I/O or may choose to always implement full-buffering as equivalent to
line-buffering.

The general principle is to provide portable code with a means of requesting the most appropriate10
popular buffering style, but not to require an implementation to support these styles.

7.13.6 Formatted input/output functions

7.13.6.1 The fprintf function15

A new feature for C9X. The modifier m has been added to the integer conversion specifiers, indicating
that the corresponding argument has type intmax_t or uintmax_t.

Use of the L modifier with floating conversions has been added to deal with formatted output of the20
new type long double.

Note that the %X and %x formats expect a corresponding int argument; %lX or %lx must be
supplied with a long int argument.

25
The conversion specification %p has been added for pointer conversion, since the size of a pointer is
not necessarily the same as the size of an int. Because an implementation may support more than
one size of pointer, the corresponding argument is expected to be a (void *) pointer.

The %n format has been added to permit ascertaining the number of characters converted up to that30
point in the current invocation of the formatter.

Some pre-Standard implementations switch formats for %g at an exponent of -3 instead of (the
Standard’s) -4: existing code which requires the format switch at -3 will have to be changed.

35
Some existing implementations provide %D and %O as synonyms or replacements for %ld and %lo.
 The Committee considered the latter notation preferable.

The Committee has reserved lower case conversion specifiers for future standardization.
40

The use of leading zero in field widths to specify zero padding has been superseded by a precision field.
 The older mechanism has been retained.

Some implementations have provided the format %r as a means of indirectly passing a variable-length
argument list. The functions vfprintf, etc., are considered to be a more controlled method of45
effecting this indirection, so %r was not adopted in the Standard. (See §7.13.6.8.)

The printing formats for numbers is not entirely specified. The requirements of the Standard are loose

RATIONALE WG14/N802 J11/98-001

109

enough to allow implementations to handle such cases as signed zero, not-a-number, and infinity in an
appropriate fashion.

7.13.6.2 The fscanf function
5

The specification of fscanf is based in part on these principles:

• As soon as one specified conversion fails, the whole function invocation fails.

• One-character pushback is sufficient for the implementation of fscanf. Given the10
invalid field "-.x'', the characters "-.'' are not pushed back.

• If a "flawed field'' is detected, no value is stored for the corresponding argument.

• The conversions performed by fscanf are compatible with those performed by15
strtod and strtol.

Input pointer conversion with %p has been added, although it is obviously risky, for symmetry with
fprintf. The %i format has been added to permit the scanner to determine the radix of the
number in the input stream; the %n format has been added to make available the number of characters20
scanned thus far in the current invocation of the scanner.

White space is now defined by the isspace function. (See §7.3.1.10.)

An implementation must not use the ungetc function to perform the necessary one-character25
pushback. In particular, since the unmatched text is left "unread,'' the file position indicator as reported
by the ftell function must be the position of the character remaining to be read. Furthermore, if the
unread characters were themselves pushed back via ungetc calls, the pushback in fscanf must
not affect the push-back stack in ungetc. A scanf call that matches N characters from a stream
must leave the stream in the same state as if N consecutive getc calls had been issued.30

7.13.6.3 The printf function

See comments of section §7.13.6.1 above.
35

7.13.6.4 The scanf function

See comments in section §7.13.6.2 above.

7.13.6.5 The sprintf function40

See §7.13.6.1 for comments on output formatting.

In the interests of minimizing redundancy, sprintf has subsumed the older, rather uncommon,
ecvt, fcvt, and gcvt.45

7.13.6.6 The snprintf function

WG14/N802 J11/98-001 RATIONALE

110

snprintf is a new feature for C9X. The sprintf function is very useful, but can overrun the
output buffer; that has been exploited in attacks on computer and network security. C9X
addresses this problem by adding the snprintf function, modeled after the 4.4BSD version,
which performs bounds checking on the output array.

5
7.13.6.7 The sscanf function

The behavior of sscanf on encountering end of string has been clarified. See also comments in
section §7.13.6.2 above.

10
7.13.6.8 The vfprintf function

The functions vfprintf, vprintf, and vsprintf have been adopted from UNIX System V
to facilitate writing special purpose formatted output functions.

15
7.13.6.9 The vprintf function
See §7.13.6.8.

7.13.6.10 The vsprintf function
See §7.13.6.8.20

7.13.6.11 The vsnprintf function
See §7.13.6.6

7.13.6.12 The vfscanf function25

7.13.6.13 The vscanf function

7.13.6.14 The vsscanf function
30

7.13.7 Character input/output functions

7.13.7.1 The fgetc function

Because much existing code assumes that fgetc and fputc are the actual functions equivalent to35
the macros getc and putc, the Standard requires that they not be implemented as macros.

7.13.7.2 The fgets function

This function subsumes gets, which has no limit to prevent storage overwrite on arbitrary input (see40
§7.13.7.7).

7.13.7.3 The fputc function
See §7.13.7.1.

45
7.13.7.4 The fputs function

7.13.7.5 The getc function

RATIONALE WG14/N802 J11/98-001

111

getc and putc have often been implemented as unsafe macros, since it is difficult in such a macro to
touch the stream argument only once. Since this danger is common in prior art, these two functions
are explicitly permitted to evaluate stream more than once.

5
7.13.7.6 The getchar function

7.13.7.7 The gets function
See §7.13.7.2.

10
7.13.7.8 The putc function
See §7.13.7.5.

7.13.7.9 The putchar function
15

7.13.7.10 The puts function

puts(s) is not exactly equivalent to fputs(stdout,s); puts also writes a new line after the
argument string. This incompatibility reflects existing practice.

20
7.13.7.11 The ungetc function

The Base Document requires that at least one character be read before ungetc is called, in certain
implementation-specific cases. The Committee has removed this requirement, thus obliging a FILE
structure to have room to store one character of pushback regardless of the state of the buffer; it felt25
that this degree of generality makes clearer the ways in which the function may be used.

It is permissible to push back a different character than that which was read; this accords with common
existing practice. The last-in, first-out nature of ungetc has been clarified.

30
ungetc is typically used to handle algorithms, such as tokenization, which involve one-character
lookahead in text files. fseek and ftell are used for random access, typically in binary files. So
that these disparate file-handling disciplines are not unnecessarily linked, the value of a text file's file
position indicator immediately after ungetc has been specified as indeterminate.

35
Existing practice relies on two different models of the effect of ungetc. One model can be
characterized as writing the pushed-back character "on top of'' the previous character. This model
implies an implementation in which the pushed-back characters are stored within the file buffer and
bookkeeping is performed by setting the file position indicator to the previous character position.
(Care must be taken in this model to recover the overwritten character values when the pushed-back40
characters are discarded as a result of other operations on the stream.) The other model can be
characterized as pushing the character "between'' the current character and the previous character.
This implies an implementation in which the pushed-back characters are specially buffered (within the
FILE structure, say) and accounted for by a flag or count. In this model it is natural not to move the
file position indicator. The indeterminacy of the file position indicator while pushed-back characters45
exist accommodates both models.

Mandating either model (by specifying the effect of ungetc on a text file's file position indicator)

WG14/N802 J11/98-001 RATIONALE

112

creates problems with implementations that have assumed the other model. Requiring the file position
indicator not to change after ungetc would necessitate changes in programs which combine random
access and tokenization on text files, and rely on the file position indicator marking the end of a token
even after pushback. Requiring the file position indicator to back up would create severe
implementation problems in certain environments, since in some file organizations it can be impossible5
to find the previous input character position without having read the file sequentially to the point in
question.10

7.13.8 Direct input/output functions
10

7.13.8.1 The fread function

size_t is the appropriate type both for an object size and for an array bound (see §6.3.3.4), so this is
the type of size and nelem.

15
7.13.8.2 The fwrite function
See §7.13.8.1.

7.13.9 File positioning functions
20

7.13.9.1 The fgetpos function

fgetpos and fsetpos have been added to allow random access operations on files which are too
large to handle with fseek and ftell.

25
7.13.9.2 The fseek function

Whereas a binary file can be treated as an ordered sequence of bytes, counting from zero, a text file
need not map one-to-one to its internal representation (see §7.13.2). Thus, only seeks to an earlier
reported position are permitted for text files. The need to encode both record position and position30
within a record in a long value may constrain the size of text files upon which fseek-ftell can
be used to be considerably smaller than the size of binary files.

Given these restrictions, the Committee still felt that this function has enough utility, and is used in
sufficient existing code, to warrant its retention in the Standard. fgetpos and fsetpos have35
been added to deal with files which are too large to handle with fseek and ftell.

The fseek function will reset the end-of-file flag for the stream; the error flag is not changed unless
an error occurs, when it will be set.

40
7.13.9.3 The fsetpos function

7.13.9.4 The ftell function

 10Consider, for instance, a sequential file of variable-length records in which a line is represented as a count field followed by the characters

in the line. The file position indicator must encode a character position as the position of the count field plus an offset into the line; from the position of
the count field and the length of the line, the next count field can be found. Insufficient information is available for finding the previous count field, so
backing up from the first character of a line necessitates, in the general case, a sequential read from the start of the file.

RATIONALE WG14/N802 J11/98-001

113

ftell can fail for at least two reasons:

• the stream is associated with a terminal, or some other file type for which file position
indicator is meaningless; or5

• the file may be positioned at a location not representable in a long int.

Thus a method for ftell to report failure has been specified. See also §7.13.9.1.
10

7.13.9.5 The rewind function

Resetting the end-of-file and error indicators was added to the specification of rewind to
make the specification more logically consistent.

15
7.13.10 Error-handling functions

7.13.10.1 The clearerr function

7.13.10.2 The feof function20

7.13.10.3 The ferror function

7.13.10.4 The perror function
25

At various times, the Committee considered providing a form of perror that delivers up an error
string version of errno without performing any output. It ultimately decided to provide this
capability in a separate function, strerror. (See §7.15.6.1).

7.14 General Utilities <stdlib.h>30

The header <stdlib.h> was invented by the Committee to hold an assortment of functions that
were otherwise homeless.

7.14.1 String conversion functions35

7.14.1.1 The atof function

atof, atoi, and atol are subsumed by strtod and strtol, but have been retained because
they are used extensively in existing code. They are less reliable, but may be faster if the argument is40
known to be in a valid range.

7.14.1.2 The atoi function
See §7.14.1.1.

45
7.14.1.3 The atol function
See §7.14.1.1.

WG14/N802 J11/98-001 RATIONALE

114

7.14.1.4 The atoll function

7.14.1.5 The strtod function

strtod and strtol have been adopted (from UNIX System V) because they offer more control5
over the conversion process, and because they are required not to produce unexpected results on
overflow during conversion.

7.14.1.6 The strtof function
10

7.14.1.7 The strtold function

7.14.1.8 The strtol function
See §7.14.1.5.

15
7.14.1.9 The strtoll function

7.14.1.10 The strtoul function

strtoul was introduced by the Committee to provide a facility like strtol for unsigned 20
long values. Simply using strtol in such cases could result in overflow upon conversion.

7.14.1.11 The strtoull function

7.14.2 Pseudo-random sequence generation functions25

7.14.2.1 The rand function

The Committee decided that an implementation should be allowed to provide a rand function which
generates the best random sequence possible in that implementation, and therefore mandated no30
standard algorithm. It recognized the value, however, of being able to generate the same
pseudo-random sequence in different implementations, and so it has published as an example in the
Standard an algorithm that generates the same pseudo-random sequence in any conforming
implementation, given the same seed.

35
7.14.2.2 The srand function

7.14.3 Memory management functions

The treatment of null pointers and 0-length allocation requests in the definition of these functions was40
in part guided by a desire to support this paradigm:

OBJ * p; /* pointer to a variable list of OBJ’s */

/* initial allocation */45
p = (OBJ *) calloc(0, sizeof(OBJ));
/* ... */

/* reallocations until size settles */

RATIONALE WG14/N802 J11/98-001

115

while(/* list changes size to c */) {
 p = (OBJ *) realloc((void *)p, c*sizeof(OBJ));
 /* ... */
}

5
This coding style, not necessarily endorsed by the Committee, is reported to be in widespread use.

Some implementations have returned non-null values for allocation requests of 0 bytes. Although this
strategy has the theoretical advantage of distinguishing between "nothing’’ and "zero’’ (an unallocated
pointer vs. a pointer to zero-length space), it has the more compelling theoretical disadvantage of10
requiring the concept of a zero-length object. Since such objects cannot be declared, the only way they
could come into existence would be through such allocation requests.

The Committee has decided not to accept the idea of zero-length objects. The allocation functions
may therefore return a null pointer for an allocation request of zero bytes. Note that this treatment15
does not preclude the paradigm outlined above.

QUIET CHANGE

A program which relies on size-0 allocation requests returning a non-null pointer will20
behave differently.

Some implementations provide a function (often called alloca) which allocates the requested object
from automatic storage; the object is automatically freed when the calling function exits. Such a
function is not efficiently implementable in a variety of environments, so it was not adopted in the25
Standard.

7.14.3.1 The calloc function

Both nelem and elsize must be of type size_t, for reasons similar to those for fread (see30
§7.13.8.1).

If a scalar with all bits zero is not interpreted as a zero value by an implementation, then calloc may
have astonishing results in existing programs transported there.

35
7.14.3.2 The free function

The Standard makes clear that a program may only free that which has been allocated, that an
allocation may only be freed once, and that a region may not be accessed once it is freed. Some
implementations allow more dangerous license. The null pointer is specified as a valid argument to this40
function to reduce the need for special-case coding.

7.14.3.3 The malloc function

7.14.3.4 The realloc function45

A null first argument is permissible. If the first argument is not null, and the second argument is 0, then
the call frees the memory pointed to by the first argument, and a null argument may be returned; this
specification is consistent with the policy of not allowing zero-size objects.

WG14/N802 J11/98-001 RATIONALE

116

7.14.4 Communication with the environment

7.14.4.1 The abort function
5

The Committee vacillated over whether a call to abort should return if the signal SIGABRT is
caught or ignored. To minimize astonishment, the final decision was that abort never returns.

7.14.4.2 The atexit function
10

atexit provides a program with a convenient way to clean up the environment before it exits. It is
adapted from the Whitesmiths C run-time library function onexit.

A suggested alternative was to use the SIGTERM facility of the signal/raise machinery, but that would
not give the last-in first-out stacking of multiple functions so useful with atexit.15

It is the responsibility of the library to maintain the chain of registered functions so that they are
invoked in the correct sequence upon program exit.

7.14.4.3 The exit function20

The argument to exit is a status indication returned to the invoking environment. In the UNIX
operating system, a value of 0 is the successful return code from a program. As usage of C has spread
beyond UNIX, exit(0) has often been retained as an idiom indicating successful termination, even
on operating systems with different systems of return codes. This usage is thus recognized as25
standard. There has never been a portable way of indicating a non-successful termination, since the
arguments to exit are then implementation-defined. The macro EXIT_FAILURE has been added
to provide such a capability. (EXIT_SUCCESS has been added as well.)

Aside from calls explicitly coded by a programmer, exit is invoked on return from main. Thus in30
at least this case, the body of exit cannot assume the existence of any objects with automatic storage
duration (except those declared in exit).

7.14.4.4 The getenv function
35

The definition of getenv is designed to accommodate both implementations that have all in-memory
read-only environment strings and those that may have to read an environment string into a static
buffer. Hence the pointer returned by the getenv function points to a string not modifiable by the
caller. If an attempt is made to change this string, the behavior of future calls to getenv is
undefined.40

A corresponding putenv function was omitted from the Standard, since its utility outside a
multi-process environment is questionable, and since its definition is properly the domain of an
operating system standard.

45
7.14.4.5 The system function

The system function allows a program to suspend its execution temporarily in order to run another

RATIONALE WG14/N802 J11/98-001

117

program to completion.

Information may be passed to the called program in three ways: through command-line argument
strings, through the environment, and (most portably) through data files. Before calling the system
function, the calling program should close all such data files.5

Information may be returned from the called program in two ways: through the
implementation-defined return value (in many implementations, the termination status code which is the
argument to the exit function is returned by the implementation to the caller as the value returned by
the system function), and (most portably) through data files.10

If the environment is interactive, information may also be exchanged with users of interactive devices.
Some implementations offer built-in programs called "commands’’ (for example, "date’’) which may
provide useful information to an application program via the system function. The Standard does not
attempt to characterize such commands, and their use is not portable.15

On the other hand, the use of the system function is portable, provided the implementation supports
the capability. The Standard permits the application to ascertain this by calling the system function
with a null pointer argument. Whether more levels of nesting are supported can also be ascertained this
way; assuming more than one such level is obviously dangerous.20

7.14.5 Searching and sorting utilities

7.14.5.2 The bsearch function
25

7.14.5.1 The qsort function

7.14.6 Integer arithmetic functions

abs was moved from <math.h> as it was the only function in that library which did not involve30
double arithmetic. Some programs have included <math.h> solely to gain access to abs, but in
some implementations this results in unused floating-point run-time routines becoming part of the
translated program.

7.14.6.1 The abs function35

The Committee rejected proposals to add an absolute value operator to the language. An
implementation can provide a built-in function for efficiency.

7.14.6.2 The div function40

div and ldiv provide a well-specified semantics for signed integral division and remainder
operations. The semantics were adopted to be the same as in FORTRAN. Since these functions return
both the quotient and the remainder, they also serve as a convenient way of efficiently modelling
underlying hardware that computes both results as part of the same operation. Table 7.2 summarizes45
the semantics of these functions.

Table 7.2: results of div and ldiv

WG14/N802 J11/98-001 RATIONALE

118

number denom quot rem

7 3 2 1

-7 3 -2 -1

7 -3 -2 1

-7 -3 2 -1

Divide-by-zero is described as undefined behavior rather than as setting errno to EDOM. The
program can as easily check for a zero divisor before a division as for an error code afterwards, and the
adopted scheme reduces the burden on the function.5

7.14.6.3 The labs function

7.14.6.4 The llabs function
10

7.14.6.5 The ldiv function

7.14.6.6 The lldiv function

7.14.7 Multibyte character functions15

See §5.2.1.2 for an overall discussion of multibyte character representations and widecharacters.

7.14.7.1 The mblen function
20

7.14.7.2 The mbtowc function

7.14.7.3 The wctomb function

7.14.8 Multibyte string functions25

See §5.2.1.2 for an overall discussion of multibyte character representations and wide characters.

7.14.8.1 The mbstowcs function
30

7.14.8.2 The wcstombs function

7.15 String Handling <string.h>

The Committee felt that the functions in this section were all excellent candidates for replacement by35
high-performance built-in operations. Hence many simple functions have been retained, and several
added, just to leave the door open for better implementations of these common operations.

The Standard reserves function names beginning with str or mem for possible future use.
40

RATIONALE WG14/N802 J11/98-001

119

7.15.1 String function conventions

memcpy, memset, memcmp, and memchr have been adopted from several existing
implementations. The general goal was to provide equivalent capabilities for three types of byte
sequences:5

• null-terminated strings (str-),

• null-terminated strings with a maximum length (strn-), and
10

• transparent data of specified length (mem-).

7.15.2 Copying functions

A block copy routine should be "right'': it should work correctly even if the blocks being copied15
overlap. Otherwise it is more difficult to correctly code such overlapping copy operations, and
portability suffers because the optimal C-coded algorithm on one machine may be horribly slow on
another.

A block copy routine should be "fast'': it should be implementable as a few inline instructions which20
take maximum advantage of any block copy provisions of the hardware. Checking for overlapping
copies produces too much code for convenient inlining in many implementations. The programmer
knows in a great many cases that the two blocks cannot possibly overlap, so the space and time
overhead are for naught.

25
These arguments are contradictory but each is compelling. Therefore the Standard mandates two
block copy functions: memmove is required to work correctly even if the source and destination
overlap, while memcpy can presume nonoverlapping operands and be optimized accordingly.

7.15.2.1 The memcpy function30

7.15.2.2 The memmove function

7.15.2.3 The strcpy function
35

7.15.2.4 The strncpy function

strncpy was initially introduced into the C library to deal with fixed-length name fields in structures
such as directory entries. Such fields are not used in the same way as strings: the trailing null is
unnecessary for a maximum-length field, and setting trailing bytes for shorter names to null assures40
efficient field-wise comparisons. strncpy is not by origin a "bounded strcpy,'' and the
Committee has preferred to recognize existing practice rather than alter the function to better suit it to
such use.

7.15.3 Concatenation functions45

7.15.3.1 The strcat function

WG14/N802 J11/98-001 RATIONALE

120

7.15.3.2 The strncat function

Note that this function may add n+1 characters to the string.

7.15.4 Comparison functions5

7.15.4.1 The memcmp function
See §7.15.1.

7.15.4.2 The strcmp function10

7.15.4.3 The strcoll function

strcoll and strxfrm provide for locale-specific string sorting. strcoll is intended for
applications in which the number of comparisons is small; strxfrm is more appropriate when items15
are to be compared a number of times - the cost of transformation is then only paid once.

7.15.4.4 The strncmp function

7.15.4.5 The strxfrm function20
See §7.15.4.3.

7.15.5 Search functions

7.15.5.1 The memchr function25
See §7.15.1.

7.15.5.2 The strchr function

7.15.5.3 The strcspn function30

7.15.5.4 The strpbrk function

7.15.5.5 The strrchr function
35

7.15.5.6 The strspn function

7.15.5.7 The strstr function

The strstr function is an invention of the Committee. It is included as a hook for efficient40
substring algorithms, or for built-in substring instructions.

7.15.5.8 The strtok function

This function has been included to provide a convenient solution to many simple problems of lexical45
analysis, such as scanning command line arguments.

7.15.6 Miscellaneous functions

RATIONALE WG14/N802 J11/98-001

121

7.15.6.1 The memset function
See §7.15.1, and §7.14.3.1.

7.15.6.2 The strerror function5

This function is a descendant of perror (see §7.13.10.4). It is defined such that it can return a
pointer to an in-memory read-only string, or can copy a string into a static buffer on each call.

7.15.6.3 The strlen function10

This function is now specified as returning a value of type size_t. (See §6.3.3.4.)

7.16. DATE AND TIME <time.h>
15

7.16.1 Components of time

The types clock_t and time_t are arithmetic because values of these types must, in accordance
with existing practice, on occasion be compared with -1 (a "don't-know'' indication) suitably cast. No
arithmetic properties of these types are defined by the Standard, however, in order to allow20
implementations the maximum flexibility in choosing ranges, precisions, and representations most
appropriate to their intended application. The representation need not be a count of some basic unit; an
implementation might conceivably represent different components of a temporal value as subfields of
an integral type.

25
Many C environments do not support the Base Document library concepts of daylight savings or time
zones. Both notions are defined geographically and politically, and thus may require more knowledge
about the real world than an implementation can support. Hence the Standard specifies the date and
time functions such that information about DST and time zones is not required. The Base Document
function tzset, which would require dealing with time zones, has been excluded altogether. An30
implementation reports that information about DST is not available by setting the tm_isdst field in
a broken-down time to a negative value. An implementation may return a null pointer from a call to
gmtime if information about the displacement between Universal Time (née GMT) and local time is
not available.

35
7.16.2 Time manipulation functions

7.16.2.1 The clock function

The function is intended for measuring intervals of execution time, in whatever units an implementation40
desires. The conflicting goals of high resolution, long interval capacity, and low timer overhead must
be balanced carefully in the light of this intended use.

7.16.2.2 The difftime function
45

difftime is an invention of the Committee. It is provided so that an implementation can store an
indication of the date/time value in the most efficient format possible and still provide a method of
calculating the difference between two times.

WG14/N802 J11/98-001 RATIONALE

122

7.16.2.3 The mktime function

mktime was invented by the Committee to complete the set of time functions. With this function it
becomes possible to perform portable calculations involving clock times and broken-down times.5

The rules on the ranges of the fields within the *timeptr record are crafted to permit useful
arithmetic to be done. For instance, here is a paradigm for continuing some loop for an hour:

#include <time.h>10
struct tm when;
time_t now;
time_t deadline;

/* ... */15
now = time(0);
when = *localtime(&now);
when.tm_hour += 1; /* result is in the range [1,24] */
deadline = mktime(&when);

20
printf("Loop will finish: %s\n", asctime(&when));
while (difftime(deadline,time(0)) > 0) whatever();

The specification of mktime guarantees that the addition to the tm_hour field produces the
correct result even when the new value of tm_hour is 24, i.e., a value outside the range ever25
returned by a library function in a struct tm object.

One of the reasons for adding this function is to replace the capability to do such arithmetic which is
lost when a programmer cannot depend on time_t being an integral multiple of some known time
unit.30

Several readers of earlier versions of this Rationale have pointed out apparent problems in this example
if now is just before a transition into or out of daylight savings time. However, when.tm_isdst
indicates what sort of time was the basis of the calculation. Implementors, take heed. If this field is set
to -1 on input, one truly ambiguous case involves the transition out of daylight savings time. As DST35
is currently legislated in the USA, the hour 0100-0159 occurs twice, first as DST and then as standard
time. Hence an unlabeled 0130 on this date is problematic. An implementation may choose to take
this as DST or standard time, marking its decision in the tm_isdst field. It may also legitimately
take this as invalid input (and return (time_t)(-1)).

40
7.16.2.4 The mkxtime function

7.16.2.5 The time function

Since no measure is given for how precise an implementation’s best approximation to the current time45
must be, an implementation could always return the same date, instead of a more honest -1. This is, of
course, not the intent.

7.16.2.6 Normalization of broken-down times
50

RATIONALE WG14/N802 J11/98-001

123

7.16.3 Time conversion functions

7.16.3.1 The asctime function

asctime Although the name of this function suggests a conflict with the principle of removing ASCII5
dependencies from the Standard, the name has been retained due to prior art. For the same reason of
existing practice, a proposal to remove the newline character from the string format was not adopted.
Proposals to allow for the use of languages other than English in naming weekdays and months met
with objections on grounds of prior art, and on grounds that a truly international version of this
function was difficult to specify: three-letter abbreviation of weekday and month names is not10
universally conventional, for instance. The strftime function (§7.16.3.6) provides appropriate
facilities for locale-specific date and time strings.

7.16.3.2 The ctime function
15

7.16.3.3 The gmtime function

This function has been retained, despite objections that GMT - that is, Coordinated Universal Time
(UTC) - is not available in some implementations, since UTC is a useful and widespread standard
representation of time. If UTC is not available, a null pointer may be returned.20

7.16.3.4 The localtime function

7.16.3.5 The zonetime function
25

7.16.3.6 The strftime function

strftime provides a way of formatting the date and time in the appropriate locale-specific fashion,
using the %c, %x, and %X format specifiers. More generally, it allows the programmer to tailor
whatever date and time format is appropriate for a given application. The facility is based on the UNIX30
system date command. See §7.5 for further discussion of locale specification. For the field controlled
by %P, an implementation may wish to provide special symbols to mark noon and midnight.

7.16.3.7 The strfxtime function
35

7.17 Alternative spellings <iso646.h>

7.18 Wide-chatacer classification and mapping utilities <wctype.h>

7.18.1 Introduction40

7.18.2 Wide-character classification utilities

7.18.2.1 Wide-character classification functions
45

7.18.2.1.1 The iswalnum function

7.18.2.1.2 The iswalpha function

WG14/N802 J11/98-001 RATIONALE

124

7.18.2.1.3 The iswblank function

7.18.2.1.4 The iswcntrl function
5

7.18.2.1.5 The iswdigit function

7.18.2.1.6 The iswgraph function

7.18.2.1.7 The iswlower function10

7.18.2.1.8 The iswprint function

7.18.2.1.9 The iswpunct function
15

7.18.2.1.10 The iswspace function

7.18.2.1.11 The iswupper function

7.18.2.1.12 The iswxdigit function20

7.18.2.2 Extensible wide-character classification functions

7.18.2.2.1 The wctype function
25

7.18.2.2.2 The iswctype function

7.18.3 Wide-character mapping utilities

7.18.3.1 Wide-character case-mapping functions30

7.18.3.1.1 The towlower function

7.18.3.1.2 The towupper function
35

7.18.3.2 Extensible wide-character mapping functions

7.18.3.2.1 The wctrans function

7.18.3.2.2 The towctrans function40

 Extended multibyte and wide-character utilities <wchar.h>

7.19.1 Introduction
45

7.19.2 Formatted wide-character input-output functions

7.19.2.1 The fwprintf function

RATIONALE WG14/N802 J11/98-001

125

7.19.2.2 The fwscanf function

7.19.2.3 The wprintf function
5

7.19.2.4 The wscanf function

7.19.2.5 The swprintf function

7.19.2.6 The swscanf function10

7.19.2.7 The vfwprintf function

7.19.2.8 The vwprintf function
15

7.19.2.9 The vswprintf function

7.19.2.10 The vfwscanf function

7.19.2.11 The vwscanf function20

7.19.2.12 The vswscanf function

7.19.3 Wide-character input-output functions
25

7.19.3.1 The fgetwc function

7.19.3.2 The fgetws function

7.19.3.3 The fputwc function30

7.19.3.4 The fputws function

7.19.3.5 The getwc function
35

7.19.3.6 The getwchar function

7.19.3.7 The putwc function

7.19.3.8 The putwchar function40

7.19.3.9 The ungetwc function

7.19.3.10 The fwide function
45

7.19.4 General wide-string utilities

7.19.4.1 Wide-string numeric conversion functions

WG14/N802 J11/98-001 RATIONALE

126

7.19.4.1.1 The wcstod function

7.19.4.1.2 The wcstof function
5

7.19.4.1.3 The wcstold function

7.19.4.1.4 The wcstol function

7.19.4.1.5 The wcstoll function10

7.19.4.1.6 The wcstoul function

7.19.4.1.7 The wcstoull function
15

7.19.4.2 Wide-string copying functions

7.19.4.2.1 The wcscpy function

7.19.4.2.2 The wcsncpy function20

7.19.4.3 Wide-string concatenation functions

7.19.4.3.1 The wcscat function
25

7.19.4.3.2 The wcsncat function

7.19.4.4 Wide-string comparison functions

7.19.4.4.1 The wcscmp function30

7.19.4.4.2 The wcscoll function

7.19.4.4.3 The wcsncmp function
35

7.19.4.4.4 The wcsxfrm function

7.19.4.5 Wide-string search functions

7.19.4.5.1 The wcschr function40

7.19.4.5.2 The wcscspn function

7.19.4.5.3 The wcspbrk function
45

7.19.4.5.4 The wcsrchr function

7.19.4.5.5 The wcsspn function

RATIONALE WG14/N802 J11/98-001

127

7.19.4.5.6 The wcsstr function

7.19.4.5.7 The wcstok function
5

7.19.4.5.8 The wcslen function

7.19.4.6 Wide-character array functions

7.19.4.6.1 The wmemchr function10

7.19.4.6.2 The wmemcmp function

7.19.4.6.3 The wmemcpy function
15

7.19.4.6.4 The wmemmove function

7.19.4.6.5 The wmemset function

7.19.5 The wcsftime function20

7.19.6 The wcsfxtime function

7.19.7 Extended multibyte and wide-character conversion utilities
25

7.19.7.1 Single-byte wide-character conversion functions

7.19.7.1.1 The btowc function

7.19.7.1.2 The wctob function30

7.19.7.2 The mbsinit function

7.19.7.3 Restartable multibyte-wide-character conversion functions
35

7.19.7.3.1 The mbrlen function

7.19.7.3.2 The mbrtowc function

7.19.7.3.3 The wcrtomb function40

7.19.7.4 Restartable multibyte-wide-string conversion functions

7.19.7.4.1 The mbsrtowcs function
45

7.19.7.4.2 The wcsrtombs function

7.20 Future library directions

WG14/N802 J11/98-001 RATIONALE

128

7.20. Errors <errno.h>

7.20.2 Character handling <ctype.h>
5

7.20.3 Integral types <inttypes.h>

7.20.4 Localization <locale.h>

7.20.5 Signal handling <signal.h>10

7.20.6 Input/output <stdio.h>

7.20.7 General utilities <stdlib.h>
15

7.20.8 Complex arithmetic <complex.h>

7.20.9 String handling <string.h>

7.20.10 Wide-character classification and mapping utilities <wctype.h>20

7.20.11 Extended multibyte and wide-character utilities <wchar.h>

RATIONALE WG14/N802 J11/98-001

129

8. ANNEXES

Most of the material in the appendices is not new. It is simply a summary of information in the
Standard, collated for the convenience of users of the Standard.5

New (advisory) information is found in Annex J (Common warnings) and in Annex K.5 (Common
extensions). The section on common extensions is provided in part to give programmers even further
information which may be useful in avoiding features of local dialects of C.

WG14/N802 J11/98-001 RATIONALE

130

MSE RATIONALE

1

A. MSE ANNEX (new text)

This annex text was taken from the rationale furnished with the AMENDMENT ISO 9899:1990/DAM
1 document. The references to the AMENDMENT document are correct for the AMENDMENT ISO
9899:1990/DAM 1 document but are not correct for the C9X working paper.5

A.1 MSE Background

Most traditional computer systems and computer languages, including traditional C, have an
assumption (sometimes undocumented) that a ’’character’’ can be handled as an atomic quantity10
associated with a single memory storage unit a ’’byte’’ or something similar. This is not true in
general. For example, a Japanese, Chinese, or Korean character usually requires a representation of
two or three bytes; this is a multibyte character as defined by ISO/IEC 9899:1990 § 6.13. Even in the
Latin world, a multibyte coded character set may appear in the near future. This conflict is called a
byte and character problem.15

A related concern in this area is how to address having at least two different meanings for string length:
number of bytes and number of characters.

To cope with these problems, many technical experts, particularly in Japan, have developed their own20
sets of additional multibyte character functions, sometimes independently and sometimes cooperatively.
 Fortunately, the developed extensions are actually quite similar. It can be said that in the process they
have found common features for multibyte character support. Moreover, the industry currently has
many good implementations of such support.

25
The above in no way denigrates the important groundwork in multibyte and wide-character
programming provided by ISO/IEC 9899:1990:

• Both the source and execution character sets can contain multibyte characters (with possibly
different encodings), even in the "C" locale.30

• Multibyte characters are permitted in comments, string literals, character constants, and header
names.

• The language supports wide-character constants and strings.35

• The library has five basic functions that convert between multibyte and wide characters.

However, these five functions are often too restrictive and too primitive to develop portable
international programs that manage characters. Consider a simple program that wants to count the40
number of characters, not bytes, in its input.

The prototypical program,

#include <stdio.h>45
int main(void) {

int c, n = 0;
while ((c = getchar()) != EOF)

n++;

MSE RATIONALE

2

printf("Count = %d\\n", n);
return 0;
}

does not work as expected if the input contains multibyte characters; it always counts the number of5
bytes. It is certainly possible to rewrite this program using just some of the five basic conversion
functions, but the simplicity and elegance of the above are lost.

ISO/IEC 9899:1990 deliberately chose not to invent a more complete multibyte and wide-character
library, choosing instead to await their natural development as the C community acquired more10
experience with wide characters. The task of committee ISO JTC1/SC22/WG14 was to study the
various existing implementations and, with care, develop this first amendment to ISO/IEC 9899:1990.
The set of developed library functions is commonly called the MSE (Multibyte Support Extension).

Similarly, ISO/IEC 9899:1990 deliberately chose not to address in detail the problem of writing C15
source code with character sets such as the national variants of ISO 646. These variants often redefine
several of the punctuation characters used to write a number of C tokens. The (admittedly partial)
solution adopted was to add trigraphs to the language. Thus, for example, ??< can appear anywhere
in a C program that { can appear, even within a character constant or a string literal.

20
This amendment responds to an international sentiment that more readable alternatives should also be
provided, wherever possible. Thus, it adds to the language alternate spellings of several tokens. It also
adds a library header, <iso646.h>, that defines a number of macros that expand to still other
tokens which are less readable when spelled with trigraphs. Note, however, that trigraphs are still the
only alternative to writing certain characters within a character constant or a string literal.25

An important goal of any amendment to an international standard is to minimize quiet changes
changes in the definition of a programming language that transform a previously valid program into
another valid program, or into an invalid program that need not generate a diagnostic message, with
different behavior. (By contrast, changes that invalidate a previously valid program are generally30
considered palatable if they generate an obligatory diagnostic message at translation time.)
Nevertheless, this amendment knowingly introduces two classes of quiet changes:

• new tokens The tokens %: and %:%: are just sequences of preprocessing tokens in
ISO/IEC 9899:1990 but become single preprocessing tokens with specific meanings in this35
amendment. An existing program that uses either of these tokens in a macro argument can
behave differently as a result of this amendment.

• new function names Several names (with external linkage) not reserved to the
implementation in ISO/IEC 9899:1990, such as btowc, are now so reserved if any40
translation unit in the program includes either of the headers <wctype.h> or
<wchar.h>, even though none of the translation units using the name include the new
header. An existing program that uses any of these names can behave differently as a result of
this amendment.

45

A.2 Programming model based on wide characters

Using the MSE functions, a multibyte-character handling program can be written as easily and in the
same style as a traditional single-byte based program. A programming model based on MSE function

MSE RATIONALE

3

is as follows: First, a multibyte character or a multibyte string is read from an external file into a
wchar_t object or a wchar_t array object by the fgetwc function, or other input functions
based on the fgetwc function such as getwchar, getwc, or fgetws. During this read
operation, a code conversion occurs the input function converts the multibyte character to the
corresponding wide character as if by a call to the mbtowc function.5

After all necessary multibyte characters are read and converted, the wchar_t objects are processed
in memory by the MSE functions, such as iswxxx, wcstod, wcscpy, wmemcmp, and so on.
Finally, the resulting wchar_t objects are written to an external file as a sequence of multibyte
characters by the fputwc function or other output functions based on the fputwc function, such10
as putwchar, putwc, or fputws. During this write operation, a code conversion occurs the
output function converts the wide character to the corresponding multibyte character as if by a call to
the wctomb function.

In the case of the formatted input/output functions, a similar programming style can be applied, except15
that the character code conversion may also be done through extended conversion specifiers, such as
%ls and %lc. For example, the wide-character based program corresponding to that shown in § A.1
can be written as follows:

#include <stdio.h>20
#include <wchar.h>

int main(void) {
wint_t wc;
int n = 0;25

while ((wc = getwchar()) != WEOF)
n++;

wprintf(L"Count = %d\\n", n);
return 0;30

}

A.3 Parallelism versus improvement

When defining the MSE library functions, the committee could have chosen a design policy based35
either on parallelism or on improvement. "Parallelism'' means that a function interface defined in this
amendment is similar to the corresponding single-byte function in ISO/IEC 9899:1990. The number of
parameters in corresponding functions are exactly same, and the types of parameters and the types of
return values have a simple correspondence:

40
 char <==> wchar_t int <==> wint_t

An approach using this policy is relatively easy.

On other hand, "improvement'' means that a function interface in this amendment is changed from the45
corresponding single-byte functions in ISO/IEC 9899:1990 in order to resolve problems potentially
contained in the existing functions. Or, a corresponding function is not introduced in this amendment
when the functionality can be better attained through other functions. In an attempt to achieve
improvement, there were numerous collisions of viewpoints on how to get the most appropriate
interface. Moreover, much careful consideration and discussion among various experts in this area was50

MSE RATIONALE

4

necessary to decide which policy should be taken for each function. The current amendment is the
result of this process.

The following is a list of the functions that manipulate characters in parallel:
5

ISO/IEC 9899:1990 Amendment

isalnum iswalnum
isalpha iswalpha
iscntrl iswcntrl10
isdigit iswdigit
isgraph iswgraph
islower iswlower
isprint iswprint
ispunct iswpunct15
isspace iswspace
isupper iswupper
isxdigit iswxdigit
tolower towlower
toupper towupper20
fprintf fwprintf
fscanf fwscanf
printf wprintf
scanf wscanf
sprintf swprintf25
sscanf swscanf
vfprintf vwfprintf
vprintf vwprintf
vsprintf vswprintf
fgetc fgetwc30
fgets fgetws
fputc fputwc
fputs fputws
getc getwc
getchar getwchar35
putc putwc
putchar putwchar
ungetc ungetwc
strtod wcstod
strtol wcstol40
strtoul wcstoul

memcpy wmemcpy
memmove wmemmove
strcpy wcscpy45
strncpy wcsncpy
strcat wcscat
strncat wcsncat
memcmp wmemcmp
strcmp wcscmp50
strcoll wcscoll
strncmp wcsncmp
strxfrm wcsxfrm
memchr wmemchr
strchr wcschr55
strcspn wcscspn

MSE RATIONALE

5

strpbrk wcspbrk
strrchr wcsrchr
strspn wcsspn
strstr wcsstr
memset wmemset5
strlen wcslen

strftime wcsftime

Note that there may still be subtle differences, see for example A.6.210

The following functions have different interfaces between single-byte and wide-character versions:

Members of the sprintf family based on wide characters all have an extra size_t
parameter, in order to repair the security hole that the existing functions carry. Compare:15

int sprintf(char *s, const char *format, ...);
int swprintf(wchar_t *s, size_t n, const wchar_t *format, ...);
int vsprintf(char *s, const char *format, va_list arg);
int vswprintf(wchar_t *s, size_t n, const wchar_t *format,20
 va_list arg);

wcstok, the wide-character version of strtok, has an extra wchar_t ** parameter, in
order to eliminate the internal memory that the strtok function has to maintain. Compare:

25
char *strtok(char *s1, const char *s2);
wchar_t *wcstok(wchar_t *s1, const wchar_t *s2,wchar_t **ptr);

The following is a list of the functions in ISO/IEC 9899:1990 that do not have corresponding partners
in the amendment for any of several reasons, such as redundancy, dangerous behavior, or a lack of30
need in a wide-character based program. Most of these can be rather directly replaced by other
functions:

gets
atof35
puts
atoi
perror
atol
strerror40

Finally, the following is a list of the functions in this amendment that do not have corresponding
partners in ISO/IEC 9899:1990. They were introduced to achieve better control over the conversion
between multibyte characters and wide character, or to give character handling programs greater
flexibility and simplicity:45

wctype
iswctype
wctrans
towctrans50
fwide
btowc
wctob

MSE RATIONALE

6

mbsinit
mbrlen
mbrtowc
wcrtomb
mbsrtowcs5
wcsrtombs

A.4 Support for invariant ISO 646

With its rich set of operators and punctuators, the C language makes heavy demands on the ASCII10
character set. Even before the language was standardized, it presented problems to those who would
move C to EBCDIC machines. More than one vendor provided alternate spellings for some of the
tokens that used characters with no EBCDIC equivalent. With the spread of C throughout the world,
such representation problems have only grown worse.

15
ISO 646, the international standard corresponding to ASCII, permits national variants of a number of
the characters used by C. Strictly speaking, this is not a problem in representing C programs, since the
necessary characters exist in all such variants. They just print oddly. Displaying C programs for human
edification suffers, however, since the operators and punctuators can be hard to recognize in their
various altered forms.20

ISO/IEC 9899:1990 addresses the problem in a different way. It provides replacements at the level of
individual characters using three-character sequences called trigraphs. For example, ??< is entirely
equivalent to {, even within a character constant or string literal. While this approach provides a
complete solution for the known limitations of EBCDIC and ISO 646, the result is arguably not highly25
readable.

Thus, this amendment provides a set of more readable digraphs. These are two-character alternate
spellings for several of the operators and punctuators that can be hard to read with ISO 646 national
variants. Trigraphs are still required within character constants and string literals, but at least the30
commoner operators and punctuators can have more suggestive spellings using digraphs.

The added digraphs were intentionally kept to a minimum. Wherever possible, the committee instead
provided alternate spellings for operators in the form of macros defined in the new header
<iso646.h>. Alternate spellings are provided for the preprocessing operators # and ## because35
they cannot be replaced by macro names. Digraphs are also provided for the punctuators [,], {,
and } because macro names proved to be a less readable alternative. The committee recognizes that
the solution offered in this amendment is incomplete and involves a mixture of approaches, but
nevertheless believes that it can help make Standard C programs more readable.

40

A.5 Headers

A.5.1 <wchar.h>

A.5.1.1 Prototypes in <wchar.h>45

Function prototypes for the MSE library functions had to be included in some header. The Committee
considered following ideas:

MSE RATIONALE

7

1. Introduce new headers such as <wctype.h>, <wstdio.h>, and <wstring.h>,
corresponding to the existing headers specified in ISO/IEC 9899:1990, such as <ctype.h>,
<stdio.h>, and <string.h>.

2. Declare all the MSE function prototypes in <stdlib.h>, where wchar_t is already defined.5

3. Introduce a new header and declare all the MSE function prototypes in the new header.

4. Declare the MSE function prototypes in the existing headers specified in ISO/IEC 9899:1990
which are most closely related to these functions.10

The drawback to idea 1 is that the relationship between new headers and existing ones becomes
complicated. For example, there may be dependencies between the old and the new headers, so one or
more headers may have to be included prior to including <wstdio.h>, as in:

15
#include <stdlib.h>
#include <stdio.h>
#include <wstdio.h>

The drawback to idea 2 is that the program has to include many prototype declarations even if the20
program does not need declarations in <stdlib.h> other than existing ones.

And the committee strongly opposed adding any identifiers to existing headers.

The drawback to idea 3 is that it introduces an asymmetry between existing headers and the new25
header.

The drawback to idea 4 is that the committee strongly opposed adding any identifiers to existing
headers.

30
So the committee decided to introduce a new header <wchar.h> as the least objectionable way to
declare all MSE function prototypes. (Later, the committee split off the functions analogous to those in
<ctype.h> and placed their declarations in the new header <wctype.h>, as described in §
A.5.2.)

35
A.5.1.2 Types and macros in <wchar.h>

The committee was concerned that the definitions of types and macros in <wchar.h> be specified
efficiently. One goal was to require that only the header <wchar.h> need be included to use the
MSE library functions. But there were strong objections to declaring existing types such as FILE in40
the new header.

The definitions in <wchar.h> are thus limited to those types and macros that are largely
independent of the existing library. The existing header <stdio.h> must also be included along
with <wchar.h> when the program needs explicit definitions of either of the types FILE and45
fpos_t. (How these types are defined in <stdio.h> may need to be revised so that suitable
synonyms, with reserved names, can be used within <wchar.h>.)

MSE RATIONALE

8

A.5.2 <wctype.h>

The committee originally intended to place all MSE functionality in a single header, <wchar.h>, as
explained in § A.5.1.1. It found, however, that this header was excessively large, even compared to the
existing large headers <stdio.h> and <stdlib.h>. The committee also observed that the5
wide-character classification and mapping functions seemed to form a separate group. (These are
functions that typically have names of the form iswxxx or towxxx.) A translation unit could well
make use of most of the functionality of the MSE without using this separate group. Equally, a
translation unit might need the wide-character classification and mapping functions without needing the
other MSE functions.10

Hence, the committee decided to form a separate header, <wctype.h>, closely analogous to the
existing <ctype.h>. That division also reduced the size of <wchar.h> to more manageable
proportions.

15

A.6 Wide-character classification functions

Eleven iswxxx functions have been introduced to correspond to the character-testing functions
defined in ISO/IEC 9899:1990. Each wide-character testing function is specified in parallel with the
matching single-byte character handling function. However, the following changes were also20
introduced.

A.6.1 Locale dependency of iswxxx functions

The behavior of character-testing functions in ISO/IEC 9899:1990 is affected by the current locale, and25
some of the functions have implementation-defined aspects only when not in the "C" locale. For
example, in the "C" locale, islower returns true (nonzero) only for lower-case letters (as defined in
§ 5.2.1).

This existing "C" locale restriction for character testing functions in ISO/IEC 9899:1990 has been30
replaced with a supersetting constraint for wide-character testing functions. There is no special
description of "C" locale behavior for the iswxxx functions. Instead, the following rule is applied to
any locale. When a character c causes isxxx(c) to return true, the corresponding wide character
wc shall cause the corresponding function call iswxxx(wc) to return true.

35
 isxxx(c) != 0 ==> iswxxx(wc) !=0

where c == wctob(wc). Note that the converse relationship does not necessarily hold.

A.6.2 Changed space-character handling40

The space character (' ') is treated specially in isprint, isgraph, and ispunct.
Space-character handling in the corresponding wide-character functions differs from that specified in
ISO/IEC 9899:1990. The corresponding wide-character functions return true for all wide characters
for which iswspace returns true, instead of just the single space character. Therefore, the behaviors45
of the iswgraph and iswpunct functions may differ from their matching functions in ISO/IEC
9899:1990 in this regard. (See the footnote concerning iswgraph in this amendment).

MSE RATIONALE

9

A.7 Extensible classification and mapping functions

There are eleven standard character-testing functions defined in ISO/IEC 9899:1990. As the number of
supported locales increases, the requirements for additional character classifications grows, and varies
from locale to locale. To satisfy this requirement, many existing implementations, especially for5
non-English speaking countries, have been defining new isxxx functions, such as iskanji,
ishanzi, etc.

However, this approach adds to the global namespace clutter (although the names have been reserved)
and is not flexible at all in supporting additional classification requirements. Therefore, in this10
amendment, a pair of extensible wide-character classification functions, wctype and iswctype,
are introduced to satisfy the open-ended requirements for character classification. Since the name of a
character classification is passed as an argument to the wctype function, it does not add to problem
of global namespace pollution. And these generic interfaces allow a program to test if the classification
is available in the current locale, and to test for locale-specific character classifications, such as kanji15
or hiragana in Japanese.

In the same way, a pair of wide-character mapping functions, wctrans and towctrans, are
introduced to support locale-specific character mappings. One of the example of applying this
functionality is the mappings between hiragana and katakana in a Japanese character set.20

A.8 Generalized multibyte characters

ISO/IEC 9899:1990 intentionally restricted the class of acceptable encodings for multibyte characters.
One goal was to ensure that, at least in the initial shift state, the characters in the basic C character set25
have multibyte representations that are single characters with the same code as the single-byte
representation. The other was to ensure that the null byte should always be available as an
end-of-string indicator. Hence, it should never appear as the second or subsequent byte of any
multibyte code. Hence, the one-byte sequence ’a’ should always represent L’a’ (at least initially)
and ’\0’ should always represent L’\0’, to put matters most simply.30

While these may be reasonable restrictions within a C program, they hamper the ability of the MSE
functions to read arbitrary wide-oriented files. For example, a system may wish to represent files as
sequences of ISO 10646 characters. Reading or writing such a file as a wide-oriented stream should be
an easy matter. At most, the library may have to map between native and some canonical byte order in35
the file. In fact, it is easy to think of an ISO 10646 file as being some form of multibyte file except
that it violates both restrictions described above. (The code for ’a’ can look like the four-byte
sequence "\0\0\0a", for example.)

Thus, the MSE introduces the notion of a generalized multibyte encoding. It subsumes all the ways the40
committee can currently imagine that operating systems will represent files containing characters from a
large character set. (Such encodings are valid only in files they are still not permitted as internal
multibyte encodings.)

A.9 Streams and files45

A.9.1 Conversion state

MSE RATIONALE

10

It is necessary to convert between multibyte characters and wide characters within wide-character
input/output functions. The conversion state, introduced in § 4.5.3.2 of this amendment, is used to help
perform this conversion. Every wide-character input/output function makes use of (and updates) the
conversion state held in the FILE object controlling the wide-oriented stream.

5
The conversion state in the FILE object augments the file position within the corresponding multibyte
character stream with the parse state for the next multibyte character to be obtained from that stream.
For state-dependent encodings, the remembered shift state is a part of this parse state, and hence a part
of the conversion state. (Note that a multibyte encoding that has any characters requiring two or more
bytes needs a nontrivial conversion state, even if it is not a state-dependent encoding.)10

The wide-character input/output functions behave as if:

• a FILE object includes a hidden mbstate_t object;
15

• the wide-character input/output functions use this hidden object as the state argument to the
mbrtowc or wcrtomb functions that perform the conversion between multibyte characters
in the file and wide characters inside the program.

A.9.2 Implementation20

The committee assumed that only wide-character input/output functions can maintain consistency
between the conversion-state information and the stream. The byte input/output functions do nothing
with the conversion state information in the FILE object. The wide-character input/output functions
are designed on the premise that they always begin executing with the stream positioned at the25
boundary between two multibyte characters.

The committee felt that it would be intolerable to require implementors to implement these functions
without such a guarantee. Since executing a byte input/output function on a wide-oriented stream may
well leave the file position indicator at other than the boundary between two multibyte characters, the30
committee decided to prohibit such use of the byte input/output functions.

A.9.2.1 Seek operations

An fpos_t object for a stream in a state-dependent encoding includes the shift state information for35
the corresponding stream. In order to ensure the behavior of subsequent wide-character input/output
functions in a state-dependent encoding environment, a seek operation should reset the conversion
state corresponding to the file position as well as restoring the file position.

The traditional seek functions fseek and ftell may not be adequate in such an environment,40
because a long object may be too small to hold both the conversion state information and the file
position indicator. Thus, the newer fsetpos and fgetpos are preferred, since they can store as
much information as necessary in an fpos_t object.

A.9.2.2 State-dependent encodings45

With state-dependent encodings, a FILE object must include the conversion state for the stream. The
committee felt strongly that programmers should not have to handle the tedious details of keeping

MSE RATIONALE

11

track of conversion states for wide-character input/output. There is no means, however, for
programmers to access the internal shift state or conversion state in a FILE object.

A.9.2.3 Multiple encoding environments
5

A multiple encoding environment has two or more different encoding schemes for files. In such an
environment, some programmers will want to handle two or more multibyte character encodings on a
single platform, possibly within a single program. There is, for example, an environment in Japan that
has two or more encoding rules for a single character set. Most implementations for Japanese
environments should provide for such multiple encodings.10

During program execution, the wide-character input/output functions get information about the current
encodings from the LC_CTYPE category of the current locale when the conversion state is bound, as
described immediately below. When writing a program for a multiple encoding environment, the
programmer should be aware of the proper LC_CTYPE category when opening a file and establishing15
its orientation. During subsequent accesses to the file, the LC_CTYPE category need not be restored
by the program.

The encoding-rule information is effectively a part of the conversion state. Thus, the encoding-rule
information should be stored with the hidden mbstate_t object within the FILE object. (Some20
implementations may even choose to store the encoding rule as part of the value of an fpos_t
object.)

The conversion state just created when a file is opened is said to have unbound state because it has no
relations to any of the encoding rules. Just after the first wide-character input/output operation, the25
conversion state is bound to the encoding rule which corresponds to the LC_CTYPE category of the
current locale. The following is a summary of the relations between various objects, the shift state, and
the encoding rules:

30

fpos_t FILE

shift state included included

encoding rule maybe included

changing LC_CTYPE (unbound) no effect affected

changing LC_CTYPE (bound) no effect no effect

A.9.3 Byte versus wide-character input/output

Both the wide-character input/output functions and the byte input/output functions refer the same type35
of object (a FILE object). As described in § A.9.2, however, there is a constraint on mixed usage of
the two type of input/output functions. That is, if a wide-character input/output functions is executed
for a FILE object, its stream becomes wide-oriented and no byte input/output functions shall be
applied later (and conversely).

40

MSE RATIONALE

12

The reason for this constraint is to ensure consistency between the current file position and the current
conversion state in the FILE object. Executing one of the byte input/output functions for a
wide-oriented stream breaks this consistency, because the byte input/output functions may (or should)
ignore the conversion state information in the FILE object.

5
The diagram A1 shows the state transitions of a stream in response to various input/output functions.

Diagram A1
10

20

30

A.9.4 Text versus binary input/output40

In some implementations, such as UNIX, there are streams which look the same whether read or
written as text or binary. (For example, arbitrary file-positioning operations are supported even in text
mode.) In such an implementation, the committee specifies the following usage of the wide-character45
input/output functions. A file opened as a binary stream should obey the usage constraints placed upon
text streams when accessed as a wide-oriented stream. (For example, the restrictions on
file-positioning operations should be obeyed.)

So an implementation of the wide-character input/output functions can rely on the premise that50
programmers use the wide-character input/output functions with a binary stream under the same
constraints as for a text stream. An implementation may also provide wide-character input/output
functions that behave correctly on an unconstrained binary stream. However, the behavior of the
wide-character input/output functions on such an unconstrained binary stream cannot be ensured by all
implementations.55

A.10 Formatted input/output functions

A.10.1 Enhancing existing formatted input/output functions
60

The simplest extension for wide-character input/output is to use existing formatted input/output
functions with existing (byte-oriented) streams. In this case, data consisting of characters only (such as
strings) are treated as sequences of wide characters and other data (such as numerical values) are
treated as sequences of single-byte characters. Though this is not a complete model for wide-character
processing, it is a common extension among some existing implementations in Japan. So the committee65
decided to include a similar extension.

MSE RATIONALE

13

The original intent was to add the new conversion specifiers %S and %C to the existing formatted
input and output functions, to handle a wide-character string and a wide character respectively. After
long discussions about the actual implementation and future library directions (in § 7.20.6 of ISO/IEC
9899:1990), these specifiers were withdrawn. They were replaced with the qualified conversion5
specifiers %ls and %lc (with the addition of %l[...] in the formatted input functions). Note
that even though the new qualifier is introduced as an extension for wide-character processing, the field
width and the precision still specify the number of bytes (in the multibyte representation in the stream).

To implement these new conversion specifiers efficiently, a new set of functions is required. These10
parse or generate multibyte sequences "restartably.'' Thus, the functions described in § 4.6.5.1, §
4.6.5.2, § 4.6.5.3, and § 4.6.5.4 of this amendment were introduced.

Because these new conversions are pure extensions to ISO/IEC 9899:1990, they have several essential
restrictions on their expected, therefore, that they will be most useful in implementations that are not15
state-dependent. The restrictions are:

• fscanf function In a state-dependent encoding, one or more shift sequences may be
included in the format, to be matched as part of an ordinary multibyte character literal text
directive. And shift sequences may also be included in an input string. Because the fscanf20
function treats these shift sequences in exactly the same way as for single-byte characters, an
unexpected match may occur or an expected match might not occur. See the examples in §
4.6.2.3.2 of this amendment.

• fprintf function In a state-dependent encoding, redundant shift sequences may be25
written.

A.10.2 Formatted wide-character input/output functions

In the early MSE, formatted wide-character input/output functions were not introduced because an30
extension to existing formatted input/output functions seemed to be sufficient. After considering the
complete model for wide-character handling, the need for formatted wide-character input/output
functions was recognized.

Formatted wide-character input/output functions have much the same conversion specifiers and35
qualifiers as existing formatted input/output functions, even including the qualified conversion
specifiers %lc, %ls, and %l[...]. But because the format string consists of wide characters and
the field width and precision specify the number of wide characters, some of the restrictions on existing
functions are removed in the new functions. This means that wide characters are read and written
under tighter control of the format string.40

A.11 Adding the fwide function

While the committee believes that the MSE provides reasonably complete functionality for
manipulating wide-oriented files, it noticed that no reliable mechanism existed for testing or setting the45
orientation of a stream. (The program can try certain operations to see if they fail, but that is risky and
still not a complete strategy.) Hence, the committee introduced the function fwide as a means of
forcing a newly opened stream into the desired orientation without attempting any input/output on the

MSE RATIONALE

14

stream. The function also serves as a passive means of testing the orientation of a stream, either before
or after the orientation has been fixed. And it serves as a way to bind an encoding rule to a
wide-oriented stream under more controlled circumstances. (See § A.9.2.3.)

A.12 Single-byte wide-character conversion functions5

Two single-byte wide-character conversion functions, btowc and wctob, have been introduced in
this amendment. These functions simplify mappings between a single-byte character and its
corresponding wide character (if any).

10
ISO/IEC 9899:1990 specifies the rule L’x’ == ’x’ for a member x of the basic character set.
The committee discussed whether to relax or tighten this rule. In this amendment, this rule is preserved
without any changes. Applying the rule to all single-byte characters, however, imposes an unnecessary
constraint on implementation with regard to wide-character encodings. It prohibits an implementation
from having a common wide-character encoding for multiple multibyte encodings.15

On the other hand, relaxing or removing the rule was considered to be inappropriate in terms of
practical implementations. The new function wctob can be used to test safely and quickly whether a
wide character corresponds to some single-byte character. For example, when the format string on a
scanf function call is parsed and searched for a white space character, the wctob function can be20
used in conjunction with the isspace function. (See the specification of the iswxxx functions in §
4.5.2.1 of this amendment.)

Similarly, there are frequent occasions in wide-character processing code, especially in the
wide-character handling library functions, where it is necessary to test quickly and efficiently whether a25
single-byte character is the first and only character of a valid multibyte character. This is the reason for
introducing the btowc function. Note that, for some encodings, btowc can be reduced to a simple
in-line expression.

30

A.13 Extended conversion utilities

Although ISO/IEC 9899:1990 allows multibyte characters to have state-dependent encoding (§
5.2.1.2), the original functions are not always sufficient to efficiently support state-dependent
encodings, due to the following limitations of the multibyte character conversion functions (§ 7.14.7):35

1. Since the functions maintain shift state information internally, they cannot handle multiple strings at
the same time.

2. The formatted output functions may write redundant shift sequences, and the formatted input40
functions cannot reliably parse input with arbitrary or redundant shift sequences. The
multibyte-string conversion functions (§ 7.14.8) have an inconvenient shortcoming, regardless of
state dependency of the encoding. When an encoding error occurs, these functions return 1961
without any information on the location where the conversion stopped.

45
For all these reasons, the committee felt it necessary to augment the set of conversion functions in this
amendment.

MSE RATIONALE

15

A.13.1 Conversion state

To handle multiple strings with a state-dependent encoding, the committee introduced the concept of
conversion state. The conversion state determines the behavior of a conversion between multibyte and
wide-character encodings. For conversion from multibyte to wide character, the conversion state stores5
information such as the position within the current multibyte character (as a sequence of characters or a
wide-character accumulator). And for conversions in either direction, the conversion state stores the
current shift state (if any) and possibly the encoding rule.

The non-array object type mbstate_t is defined to encode the conversion state. A zero-valued10
mbstate_t object is assumed to describe the initial conversion state. (It is not necessarily the only
way to encode the initial conversion state, however.) Before any operations are performed on it, such a
zero-valued object is unbound. Once a multibyte or wide-character conversion function executes with
the mbstate_t object as an argument, however, the object becomes bound and holds the above
information.15

The conversion functions maintain the conversion state in an mbstate_t object according to the
encoding specified in the LC_CTYPE category of the current locale. Once the conversion starts, the
functions will work as if the encoding scheme were not changed provided all three of the following
conditions obtain:20

• the function is applied to the same string as when the mbstate_t object was first bound;

• the LC_CTYPE category setting is the same as when the mbstate_t object was first
bound;25

• the conversion direction (multibyte to wide character, or wide character to multibyte) is the
same as when the mbstate_t object was first bound.

A.13.2 Conversion utilities30

Once the mbstate_t object was introduced, the committee discussed the need for additional
functions to manipulate such objects.

A.13.2.1 Initializing conversion states35

Though a method to initialize the object is needed, the committee decided that it would be better not to
define too many functions in this amendment. Thus the committee decided to specify only one way to
make an mbstate_t object represent the initial conversion state by initializing it with zero. No
initializing function is supplied.40

A.13.2.2 Comparing conversion states

The committee reached the conclusion that it may be impossible to define the equality between two
conversion states. If two mbstate_t objects have the same values for all attributes, they might be45
the same. However, they might also have different values and still represent the same conversion state.
 No comparison function is supplied.

MSE RATIONALE

16

A.13.2.3 Testing for initial shift state

The function mbsinit was added to test whether an mbstate_t object describes the initial
conversion state or not, because this state does not always correspond to a certain set of component
values (and the components cannot be portably compared anyway). The function is necessary because5
many functions in the amendment treat the initial shift state as a special condition.

A.13.2.4 Restartable multibyte functions

Regarding problems 2 and 3 described at the beginning of § A.13, the committee introduced a method10
to distinguish between an invalid sequence of bytes and a valid prefix to a still incomplete multibyte
character. When encountering such an incomplete multibyte sequence, the mbrlen and mbrtowc
functions return 1962 instead of 1961, and the character accumulator in the mbstate_t object
stores the partial character information. Thus, the user can resume the pending conversion later, and
can even convert a sequence one byte at a time.15

The new multibyte/wide-string conversion utilities are thus made restartable by using the character
accumulator and shift-state information stored in an mbstate_t object argument. As part of this
enhancement, the functions also have a parameter of type pointer to pointer to the source to the
position where the conversion stopped.20

A.14 Column width

The number of characters to be read or written can be specified in existing formatted input/output
functions. On a traditional display device that displays characters with fixed pitch, the number of25
characters is directly proportional to the width occupied by these characters. So the display format can
be specified through the field width and/or the precision.

In formatted wide-character input/output functions, the field width and the precision specify the
number of wide characters to be read or written. The number of wide characters is not always directly30
proportional to the width of their display. For example, with Japanese traditional display devices, a
single-byte character such as an ASCII character has half the width of a Kanji character, even though
each of them is treated as one wide character. To control the display format for wide characters, a set
of formatted wide-character input/output functions were proposed whose metric was the column width
instead of the character count.35

This proposal was supported only by Japan. Critics observed that the proposal was based on such
traditional display devices with a fixed width of characters, while many modern display devices support
a broad assortment of proportional pitch type faces. Hence, it was questioned whether the extra
input/output functions in this proposal were really needed or were sufficiently general. Also considered40
were another set of functions that return the column width for any kind of display devices for a given
wide character or wide-character string; but these seemed to be beyond the scope of C language. Thus
all proposals regarding column width were withdrew.

If an implementor needs this kind of functionality, there are a few ways to extend wide-character45
output functions and still remain conforming to this amendment. For example, the field width prefixed
with a # can specify the column width as shown below:

MSE RATIONALE

17

%#N - set the counting mode to "printing positions’’ and reset the %n counter;

%N - set the counting mode back to "wide characters’’ and reset the %n counter.

MSE RATIONALE

18

Index

I

Index

#else, 69
#endif, 69
#error, 75
#if, 13, 52, 69
#include, 69
#pragma, 75
#undef, 84, 101
// comments, 36
/usr/group, 79
?? escape diagraph, 18
__DATE__, 75
__FILE__, 75
__func__, 43
__LINE__, 75
__STDC__, 76
__STDC_IEC_559, 76
__STDC_VERSION, 76
__TIME__, 75
<complex.h>, 97
<ctype.h>, 85
<errno.h>, 82
<fenv.h>, 90
<float.h>, 83
<inttypes.h>, 87
<iso646.h>, 123, 2
<locale.h>, 88
<math.h>, 91, 117
<setjmp.h>, 98
<signal.h>, 99
<stdarg.h>, 100
<stddef.h>, 46, 48, 83
<stdio.h>, 102, 103
<stdlib.h>, 113
<string.h>, 118
<tgmath.h>, 98
<time.h>, 121
<varargs.h>, 100
<wchar.h>, 124
<wctype.h>, 123, 2
1984 /usr/group Standard, 79
abort, 85, 116
abs, 117
abstract machine, 15, 16
Ada, 17
agreement point, 15, 41
aliasing, 42
alignment, 9
alloca, 115
ambiguous expression, 50
ANSI X3.64, 33
ANSI X3L2, 19
argc, 15
argument promotion, 44
argv, 15
as if, 13, 67
ASCII, 17, 18, 19, 33, 85, 88, 123

asctime, 123
asm, 23
assert, 85
associativity, 41
AT&T Bell Laboratories, 65
atan2, 93
atexit, 15, 99, 116
atof, 113
atoi, 113
atol, 113
Backus-Naur Form, 23
benign redefinition, 71
binary numeration systems, 30, 46
binary streams, 104
bit, 9
bit fields, 55
bit-fields, 56
break, 66
brtowc, 16
btowc, 14
byte, 9, 46
C++, 61, 62
calloc, 115
case ranges, 66
ceil, 95
clock, 121
clock_t, 121
codeset, 17, 88
collating sequence, 17
comments, 36
common extensions, 23, 27, 34
common storage, 26
compatible types, 30, 61
complex, 23
compliance, 11
composite types, 30, 61
Compound literals, 45
concatenation, 34
conforming freestanding, 11
conforming hosted, 11
conforming program, 2
const, 23
constant expressions, 51
constraint error, 45
continue, 66
control character, 86
conversions, 37
cross compiler, 31
cross-compilation, 13, 52, 83
curses, 79
data abstraction, 46
DEC PDP-11, 2
decimal-point character, 81
declarations, 52
defined, 51
Designated initializers, 65

Index

IIII

diagnostic message, 14
diagnostics, 2, 14, 38, 71, 75
diagraph, 18
difftime, 121
Digraphs, 6
div, 48, 117
domain error, 92
DRAM, 54
EBCDIC, 19, 33, 88
entry, 23
enum, 23, 53
enumerations, 32, 52
EOF, 86
errno, 82, 92
erroneous program, 14
executable program, 13
exit, 15, 116, 117
EXIT_FAILURE, 116
EXIT_SUCCESS, 116
expressions, 41
Extended integer, 87
external identifiers, 23
external linkage, 13
fclose, 102
fflush, 106, 107
frexp, 94
fgetc, 105, 110
fgetpos, 112
fgets, 110
FILE, 111
file pointer, 102
file position indicator, 104, 113
FILENAME_MAX, 103
float.h, 21
fmod, 48, 96
fopen, 102, 106
fopen modes, 107
FOPEN_MAX, 103
fortran, 23
FORTRAN, 21, 26, 61, 117
FORTRAN-to-C translation, 21, 41, 92
fpos_t, 103
fputc, 105
fread, 102, 112
free, 115
fscanf, 109
fseek, 102, 104, 107, 112
fsetpos, 107
ftell, 104
full expression, 15
function definition, 67
function prototypes, 62
future directions, 76
fwide, 13
fwrite, 102
getc, 111
getenv, 116
GMT, 123
gmtime, 121, 123
goto, 65
Gray code, 30
grouping, 41

header names, 35
Hiragana, 9
hosted environment, 15
HUGE_VAL, 91
IEEE 1003, 100
IEEE 754 floating point standard, 21, 92
IEEE P1003, 102
IEEE P854, 83, 91, 95
imaginary, 23
implementation-defined behavior, 9, 33, 55, 91, 92, 95, 100,

103, 105
implicit int, 55
infinity, 109
inline, 23
int64_t, 55
integral constant expression, 52
integral promotions, 37
integral widening conversions, 62
interactive devices, 16
interleaving, 41
internationalization, 123
invalid pointers, 40
isascii, 85
isblank, 86
ISO, 17
ISO 646, 18, 2
ISO 9899:1990/DAM 1, 1
isspace, 86, 109
iswctype, 9
jmp_buf, 98
Kanji, 9
Katakana, 9
Ken Thompson, 65
kill, 100
labels, 65
ldexp, 94
ldiv, 48, 117
lexical elements, 23
libraries, 13
limits.h, 21
linkage, 25, 26
locale, 86
localeconv, 90
locale-specific, 120
localtime, 123
log function, 94
long double, 30, 31, 53, 108
long long, 53
longjmp, 20, 98, 99
lvalue, 9, 39, 45, 51
lvalues, 42, 45
machine generation of C, 14, 52, 61, 64, 65
main, 15
manifest constant, 91
mantissa, 21
matherr, 92
mbrlen, 16
mbrtomb, 10
mbrtowc, 10
mbstate_t, 11, 15
memchr, 119
memcmp, 119

Index

III

memcpy, 119
memmove, 119
memset, 119, 121
mktime, 122
mkxtime, 122
modf, 94
modifiable lvalue, 39
multibyte character, 9
multibyte characters, 18, 118
Multibyte Support Extension, 2
Multiple encoding environment, 11
multi-processing, 100
name space, 25
new-line, 19
not-a-number, 109
NULL, 49, 83
null pointer constant, 83
numerations, 30
object, 9
obsolescent, 23, 52, 76
Obsolescent, 52
offsetof, 62, 83
ones-complement, 21
onexit, 116
optimization, 52
order of evaluation, 41
Overlapping objects, 79
Pascal, 30, 66
perror, 113, 121
phases of translation, 13, 14
pointer subtraction, 48
POSIX, 100
pragma operator, 76
precedence, 41
preprocessing, 13, 14, 23, 34, 35, 36, 83, 84
preprocessing directives, 68
primary expression, 43
printf, 30, 84
printing character, 86
program startup, 14, 52
prototype, 67
prototypes, 76
ptrdiff_t, 48, 83
pure function, 50
putc, 84, 111
putenv, 116
puts, 111
quality of implementation, 14
quiet change, 23
Quiet Change, 2
rand, 114
range error, 93
register, 52
remove, 105
rename, 105
repertoire, 17
restrict, 23, 58, 79
rewind, 107, 113
Ritchie, Dennis M., 26
safe evaluation, 84
same type, 31
scanf, 84

scope, 25
sequence points, 15, 41
sequenced expression, 50
sequencing, 15
setbuf, 104, 107
setjmp, 98
setlocale, 86, 90
setvbuf, 102, 103, 104, 107
side effect, 50
sig_atomic_t, 20
SIGABRT, 116
SIGILL, 100
signal, 16, 28, 83, 99, 116
signal function, 20
signal.h, 20
signed, 23, 53
significand, 21
sign-magnitude, 21
SIGTERM, 116
size_t, 46, 83, 112, 115, 121
sizeof, 9, 46, 47, 48, 52
sizeof operator, 46
snprintf, 110
source file, 13
spirit of C, 49
sprintf, 91
sscanf, 110
standardized pragmas, 75
statements, 65
static initializers, 52
STDC_IEC_559_COMPLEX, 76
storage duration, 25
strcoll, 120
streams, 103
strerror, 121
strftime, 123
strfxtime, 123
strictly conforming program, 2, 11, 15
stringizing, 73
strlen, 121
strncat, 120
strncpy, 119
strstr, 120
strtod, 114
strtok, 120
strtol, 114
strtoul, 114
structures, 56
strxfrm, 120
system, 116
tags, 52
text streams, 104
time, 122
time_t, 121
tm_isdst, 121
TMP_MAX, 103
tmpfile, 105
tmpnam, 105
token pasting, 35, 73
trigraph sequences, 17
Trigraphs, 2
twos-complement, 29

Index

IVIV

type modifier, 61
type qualifiers, 56
typedef, 63, 67
typedef, 61
undefined behavior, 9, 14, 16, 25, 29, 33, 45, 47, 101, 116,

118
ungetc, 111
UNIX, 2, 38, 70, 79, 92, 99, 100, 102, 103, 105, 110
unlink, 105
unsequenced expression, 50
unsigned preserving, 37
unspecified behavior, 9, 75
va_arg, 101
va_end, 101
va_list, 101
va_start, 101
value preserving, 37
VAX/VMS, 92
vfprintf, 108, 110
void, 23, 53
void *, 29, 40, 47, 49, 50, 108
volatile, 23
vprintf, 110
vsnprintf, 110
vsprintf, 110
wchar_t, 83
wctob, 14
wctype, 9
white space, 23
wide character, 33
wide string, 35
widened types, 84
zonetime, 123

