C2y, proposal N3787 - Array constant expressions 1

Author: Javier A. MUgica
Date: 2026 - jan - 14

Array constant expressions

Background

If an expression is an array constant, selection of an element from it via an ICE index does not
yield a constant expression:

constexpr int p[3]= {2,3,5,7,11};
float y[p[3]1]; //p[3] is not a constant expression; y not a fixed size array

This is in contrast to selecction of a member from a structure constant:

struct A{int n,w,Q;};
constexpr struct A s={10,2,4};
float y[s.p]; //s.@ is a constant expression; y is a fixed size array

The reason is that the operation of array subscripting was defined until recently through
conversion of the array to pointer and a subsequent pointer indirection.

The paper N3360 proposed changing this situation, defining array subscripting directly as
selecting an element from the array. In line with this, it proposed allowing array subscripting
as a further derivation on named and compound literal constants. Although the proposal was
welcomed, the committee preferred to keep this array-subscripting part of the same outside from
it. The reduced version was approved as in N3517 between the Graz and Brno 2025 meetings.
The time has come, therefore, to consider this change to array subscripting.

The wording chosen

The wording proposed in N3360 was:

A compound literal with storage-class specifier constexpr is a compound literal constant, as is a
postfix expression that applies the . member access operator to a compound literal constant of
structure or union type or the [] array subscripting operator to a compound literal constant

of array type with an integer constant expression less than the length of the array as subscript,

even recursively. A compound literal constant is a constant expression with the type and value
of the unnamed object.

... is anamed constant, as is a postfix expression that applies the . member access operator to a
named constant of structure or union type or the [] array subscripting operator to a named

constant of array type with an integer constant expression less than the length of the array as

subscript, even recursively.

The first impression upon reading this is that the constraint on the subscript is missing “not
negative and”. The justification for this in that proposal was that this constraint is present else-
where for any indexing of an array of known length by an integer constant expression. This is not
apparent in the subclause on constant expressions. Further, we prefer that an expression with a
negative index not be considered a constant expression, rather than being a constant expression
that breaks a constraint.

12

13

C2y, proposal N3787 - Array constant expressions 2

For this reason we have changed that wording to where the subscript is an integer constant
expression within the bounds of the array. We believe there is no room for ambiguity here: an
index past the last elements is not within bounds, as the very expression “past the last element”
implies.

N3360 also modified the second paragraph for address constant expressions from
The array-subscript [] and member-access -> operator, the address & and indirection * unary

operators, and pointer casts can be used in the creation of an address constant, but the value
of an object shall not be accessed by use of these operators.

to

Any constant expression can be used as operand in the creation of an address constant. Addi-
tionally, a non-constant expression formed with the array-subscript [] and member-access ->
operator, the address & and indirection * unary operators, and pointer casts can be used in the
creation of an address constant, but then the value of an object shall not be accessed by use of
these operators.

The original wording allows expression like

&str.a &arr[1]

and the one here below at the left, but precludes the other two:
&ptr[str.al] &ptrlarr[1]] &ptr[E->a]

even if E always points (by the way the expression E is constructed) to the same constant object.
The second and third ones are precluded but the first one is not because of the inclusion of [1]
and ->, but the omission of ., in “The array-subscript [1 and member-access -> operator, the
address & and indirection * unary operator”. Thus, the effect of that paragraph is not to enlarge
the class of address constants, but to restrict it. The operations listed there other than []: ->, &
and = are pointer related. We can understand therefore the presence of [] alongside: it used
to be a pointer operation too. Therefore, the solution is simpler than the wording presented in
N3360: just remove the array-subscript [1 from that list.

The consequence is that the middle expression above, &ptrlarr[1]1, becomes allowed, in
agreement with arr[1] having become a constant expression.

Proposed wording

Blue text is to be added; grey text to be removed.
6.6.1 Constant expressions, general

A compound literal with storage-class specifier constexpr is a compound literal constant, as is
a postfix expression that applies the . member access operator to a compound literal constant
of structure or union type or the [] array subscripting operator to a compound literal constant
of array type where the subscript is an integer constant expression within the bounds of the
array, even recursively. A compound literal constant is a constant expression with the type
and value of the unnamed object.

An identifier that is:
— an integer constant expression,
— a predefined constant, or

— declared with storage-class specifier constexpr and has an object type,

10

C2y, proposal N3787 - Array constant expressions 3

is a named constant, as is a postfix expression that applies the . member access operator to a
named constant of structure or union type or the [] array subscripting operator to a named
constant of array type where the subscript is an integer constant expression within the bounds
of the array, even recursively. [...]

The array-subscript [] and member-access -> operator, the address & and indirection * unary

operators, and pointer casts can be used in the creation of an address constant, but the value

of an object shall not be accessed by use of these operators.'*”

Alternative

If the term “within the bounds of the array” is disliked it may be replaced (two instances) by
that is less than the array length and not negative

We have already expressed our opinion on the unambiguity of the first one.

