

Integer Comparison Macros

WG14 N3776
Author, affiliation: ​ Robert C. Seacord,​

​ ​ ​ Author, Effective C ​
​ ​ ​ rcseacord@gmail.com

​ ​ ​ ​ Aaron Ballman​
​ ​ ​ Intel​
​ ​ ​ aaron@aaronballman.com ​ ​

Date:​ ​ ​ ​ 2026-1-5

Proposal category: ​ Feature

Target audience: ​ Implementers, users

Abstract: ​ C implementation of C++ Utility functions

Prior art: ​ C++, https://github.com/rcseacord/cmp_int

mailto:rcseacord@gmail.com
mailto:aaron@aaronballman.com
https://github.com/rcseacord/cmp_int

Integer Comparison Macros
Reply-to: Robert C. Seacord (rcseacord@gmail.com)

Document No: N3776

Reference Document: N3467, P0586R2

Date: 2026-1-5

Change Log
2026-1-5:

●​ Initial version 1.0.0

Table of Contents
WG14 N 3776​ 1

Change Log​ 2
Table of Contents​ 2

1 Problem Description​ 3
2 Proposal​ 3

2.1 Supported Types​ 4
3 Proposed Text​ 5
4 Polling Questions​ 6
5 Acknowledgements​ 6

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0586r2.html

1 Problem Description

Signed / unsigned comparison is a major source of defects and software vulnerabilities in C and C++
programming.

For example, the following expression:

 -1 > 0u

evaluates to 1 which can be surprising to inexperienced programmers.

The following example is similar to the previous one, but uses objects with defined, but different integer types:
signed int x = -1;

unsigned int y = 1;

printf("beware the output of x < y is actually %d\n", x < y);

This paper proposes functions that provide integral comparisons that produce the mathematical result even
when the operands have different types. For example, stdc_less(-1, 0U) is true, whereas -1 < 0U is
false (due to arithmetic conversions).​

This proposal is based on Integer Comparison Macros first released on Nov 9, 2021.

2 Proposal
C implementation of C++ Utility functions cmp_equal, cmp_not_equal, cmp_less, cmp_greater,
cmp_less_equal, and cmp_greater_equal.

Initially, we are proposing that the following functions operate only on signed or unsigned integer type. The use of
other types should be treated as a constraint violation and diagnosed.
bool stdc_equal(A a, B b);

bool stdc_not_equal(A a, B b);

bool stdc_less(A a, B b);

bool stdc_greater(A a, B b);

bool stdc_less_equal(A a, B b);

bool stdc_greater_equal(A a, B b);

These type generic macros compare the values of two integers a and b. Unlike comparison operators, negative
signed integers always compare "less than" (and "not equal to") unsigned integers: the comparison is safe
against lossy integer conversion.
-1 > 0u; // true

std::stdc_greater(-1, 0u); // false

It is a compile-time error if either A or B is not a signed or unsigned integer type.

stdc_greater_equal(1.0, -1.0) ? puts("true") : puts("false"); // type double, doesn't
compile

https://github.com/rcseacord/cmp_int

C++ introduced integral comparisons that produce the mathematical result even when the operands have
different types in P0586R2 to help address this problem.

The C++ functions on which this proposal is based compare standard integer types and extended integer types
but they do not compare bool, character types, or enumerated types. This paper proposes that these functions
support signed and unsigned integer types which include standard integer types, extended integer types, and
bit-precise unsigned integer types. Bit-precise types are not currently supported in C++.

This paper is related to N3762 Add type-safe minimum and maximum type-generic macros v3 by Gustedt and
should be viewed as being in the same family of functions.

2.1 Supported Types
There is considerable debate about which types should be supported by the “integer”
comparison macros.​

The Integer Comparison Macros on which this proposal is based is restricted to signed and
unsigned integer types.​
​
This excludes enumeration types, plain char, and the bool type.

Ordered comparison over bool makes sense. equal and not equal make sense, but the
comparisons seem problematic. Rather than support the type in some but not all operations, I
think it's better to follow C++ and disallow it until there's sufficient justification to support it.

// type _Bool, doesn't compile

stdc_greater((_Bool)0, (_Bool)1) ? puts("true") : puts("false");

Supporting only explicitly signed or unsigned char makes for a better feature. char is
always going to be one of the two, so I can see the appeal to wanting to support the type, but
it’s still problematic. stdc_less(ch, value) returning true on one platform and false
on another may meet some developers expectations, but I think in general, char is a weird
beast and it's better to not support it, at least initially.

stdc_greater((char)-1, (char)1) ? puts("true") : puts("false"); // type char, doesn't
compile

Enumeration types in C are considered compatible with one of the integer types, but they are
distinct types in themselves and not inherently signed or unsigned at the type level. C++
disallows enumeration types because enums provide extra semantic information to an integer
type and there's no way (in general) to know whether two enumeration types are comparable in
any way. e.g., enum Category { Fruit, Meat, Vegetable } is not comparable with
enum Color { Red, Green, Blue } even if the integer values are comparable.

https://wg21.link/p0586r2
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3762.htm
https://github.com/rcseacord/cmp_int

Using an enumeration type might initially be a constraint violation. Users who really want to do
this can cast to an integer type. If this is happening a lot in practice, we can relax the restriction
later. But if we allow the comparison initially, we're stuck supporting it forever.​

Looking at existing practice is not particularly useful, as existing type-generic functions vary
widely.

Because this proposal is related to N3762 it should support the same types. N3762 currently
differs from this proposal in that it proposes that the type-safe minimum and maximum
type-generic macros operate on both the bool and char types.

Other type-generic macros such as those in subclause 7.20.2 Checked Integer Operation
Type-generic Macros that supports checked integer arithmetic on integer types other than
"plain" char, bool, bit-precise integer types, or an enumerated types. This differs from this
proposal in the lack of support for bit-precise integer types.

3 Proposed Text
Add the following subclauses to 7.25 in the C2Y working draft n3467:

7.25.7.4 Signed and unsigned integer comparison type-generic macros

Synopsis

1 #include <stdlib.h>
 bool stdc_equal(A a, B b) [[unsequenced]];
 bool stdc_not_equal(A a, B b) [[unsequenced]];
 bool stdc_less(A a, B b) [[unsequenced]];
 bool stdc_greater(A a, B b) [[unsequenced]];
 bool stdc_less_equal(A a, B b) [[unsequenced]];
 bool stdc_greater_equal(A a, B b) [[unsequenced]];

Description

2 These type-generic macros determine whether the mathematical value of a is equal, not
equal, strictly less, strictly greater, less than or equal, or greater than or equal to b. These
operations are applicable to pairs of values independent of their type or representation.

3 Both A and B shall be a signed or unsigned integer type. If both arguments are integer
constant expressions, the macro invocation is also an integer constant expression.

Returns

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3762.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3762.htm

4 The integer comparison type-generic macros return true if the corresponding mathematical
relationship between the values holds, false if it does not.

4 Polling Questions
1.​ Should these type generic macros also apply to char, bool, and enum types?
2.​ Should these type generic macros also apply to floating types?
3.​ Should these be ICE if the arguments are ICE?
4.​ Should these macros be applicable within `#if` evaluation?
5.​ Should we add macros to return function pointers?

5 Acknowledgements
We would like to recognize the following people for their help with this work: Jens Gusted and Anton
Gerasimov.

​ ​ ​ ​

	Integer Comparison Macros
	WG14 N3776
	
	Integer Comparison Macros
	Change Log
	Table of Contents

	
	1 Problem Description
	2 Proposal
	2.1 Supported Types

	3 Proposed Text
	4 Polling Questions
	5 Acknowledgements

