
Proposal for C2x

WG14 N3089

Title: _Optional: a type qualifier to indicate pointer nullability

Author, affiliation: Christopher Bazley, Arm

Date: 2023-01-26

Proposal category: New features

Target audience: General Developers, Compiler/Tooling Developers

Abstract: This paper proposes a new type qualifier for the purpose of adding pointer nullability

information to C programs. Its goal is to provide value not only for static analysis and

documentation, but also for compilers which report errors based only on existing type-compatibility

rules. The syntax and semantics are designed to be as familiar (to C programmers) and ergonomic as

possible. In contrast, existing solutions are incompatible, confusing, error-prone, and intrusive.

Prior art: MyPy, C

_Optional: a type qualifier to indicate
pointer nullability

Reply-to: Christopher Bazley (chris.bazley@arm.com)

Document No: N3089

Date: 2020-02-10

Summary of Changes
N3089

• Initial proposal

Philosophical underpinning
The single most important (and redeeming) feature of C is its simplicity. It should be (relatively)

quick to learn every aspect of the language, (relatively) easy to create a compiler for it, and the

language's semantics should follow (more-or-less) directly from its syntax.

People criticise C’s syntax, but I consider it the foundation of the language. Any experienced C

programmer has already acquired the mindset necessary to read and write code using it. Aside from

the need to minimize incompatibilities, the syntactic aberrations introduced by C++ can be ignored.

“Pythonic” is sometimes used as an adjective to praise code for its use of Python-specific language

idioms. I believe that an equivalent word “scenic” could be used to describe C language idioms,

meaning that they conform to a mode of expression characteristic of C. I’ve tried to keep that in

mind when evaluating syntax and semantics.

Inspiration from Python
For the past twenty years, I've mostly been coding in C. I had always considered C to be a strongly

typed language: it allows implicit conversions between void * pointers and other pointer types,

and between enum and integer types, but those aren't serious shortcomings so long as the

programmer is aware of them.

Recently, I switched to a team that writes code in a mixture of languages (including C++, Python, and

JavaScript). Writing code in languages that are dynamically typed but with statically checked type

annotations was a revelation to me. Our project uses MyPy [0] and Typescript [1] for static type

checking.

The main thing that I grew to appreciate was the strong distinction that MyPy makes between values

that can be None and values that cannot. Such values are annotated as Optional[int], for

example. Any attempt to pass an Optional value to a function that isn't annotated to accept

None is faulted, as is any attempt to do unguarded operations on Optional values (i.e., without

first checking for the value being None).

Problem statement
In contrast to Python, C's type system makes no distinction between pointer values that can be null,

and those that cannot. Effectively, any pointer in a C program can be null, which leads to repetitive,

longwinded, and unverifiable parameter descriptions such as "Non-null pointer to…" or "Address of

X … (must not be null)".

Such invariants are not usually documented within a function except by assertions, which clutter the

source code and are ineffective without testing. Some programmers even write tests to verify that

assertions fail when null is passed to a function, although the same stimulus would provoke

undefined behaviour in release builds. The amount of time and effort that could be saved if such

misuse were instead caught at compile time is huge.

Isn't this a solved problem?
Given that the issue of undefined behaviour caused by null pointer dereferences has been present in

C since its inception, many solutions have already been attempted.

C99 extended the syntax for function arguments to allow static within [], which requires the passed

array to be at least a specified size:

void *my_memcpy(char dest[static 1], const char src[static 1],

size_t len);

void test(void)

{

 char *dest = NULL, *src = NULL;

 my_memcpy(NULL, NULL, 10); // warning: argument 1 to

'char[static 1]' is null where non-null expected

 my_memcpy(dest, src, 10); // no compiler warning

}

This trick may generate a warning in cases where a null pointer constant is specified directly as a

function argument - but not for any other source of null such as a failed call to malloc. It's not a

general-purpose solution anyway because arrays of type void are illegal, which makes this syntax

unusable for declaring functions such as memcpy.

A GNU compiler extension [2] (also supported by Clang and the ARM compiler [3]) allows function

arguments to be marked as not supposed to be null:

void *my_memcpy(void *dest, const void *src, size_t len)

__attribute__((nonnull (1, 2)));

void test(void)

{

 char *dest = NULL, *src = NULL;

 my_memcpy(NULL, NULL, 10); // warning: argument 1 null where

non-null expected

 my_memcpy(dest, src, 10); // no compiler warning

}

I find the __attribute__ syntax intrusive and verbose. It is also error-prone because attributes

only apply to function declarations as a whole: it's easy to accidentally specify wrong argument

indices, because the arguments themselves are not annotated. Clang extended the syntax to allow

__attribute__((nonnull)) to be used within an argument list, but the GNU compiler does

not support that.

Historically, the semantics of __attribute__((nonnull)) weren't very useful: it only

detected cases where a null pointer constant was specified directly as a function argument.

However, version 10 of the GNU compiler introduced a new feature [4], -fanalyzer, which uses

the same __attribute__ information during a static analysis pass:

<source>:8:3: warning: use of NULL 'dest' where non-null expected

[CWE-476] [-Wanalyzer-null-argument]

 8 | my_memcpy(dest, src, 10); // no compiler warning

 | ^~~~~~~~~~~~~~~~~~~~~~~~

 'test': events 1-3

 |

 | 7 | char *dest = NULL, *src = NULL;

 | | ^~~~ ~~~

 | | | |

 | | | (2) 'dest' is NULL

 | | (1) 'dest' is NULL

 | 8 | my_memcpy(dest, src, 10); // no compiler warning

 | | ~~~~~~~~~~~~~~~~~~~~~~~~

 | | |

 | | (3) argument 1 ('dest') NULL where non-null expected

 |

<source>:4:7: note: argument 1 of 'my_memcpy' must be non-null

 4 | void *my_memcpy(void *dest, const void *src, size_t len)

__attribute__((nonnull (1, 2)));

 | ^~~~~~~~~

RFC: Nullability qualifiers (2015) [5] proposed not one but three new type annotations:

_Nullable, _Nonnull and _Null_unspecified. Support for these was added in version 3.7

of Clang [6], but GCC doesn't recognize them. Like GCC without -fanalyzer, Clang itself only

detects cases where a null pointer constant is specified directly as a function argument:

void *my_memcpy(void *_Nonnull dest, const void *_Nonnull src,

size_t len);

void test(void)

{

 char *dest = NULL, *src = NULL;

 my_memcpy(NULL, NULL, 10); // warning: Null passed to a callee

that requires a non-null 1st parameter

 my_memcpy(dest, src, 10); // no compiler warning

}

However, Clang-tidy [7], a standalone tool based on Clang, can issue warnings about misuse of

pointers that it is able to infer based on annotations and path-sensitive analysis:

<source>:9:3: warning: Null pointer passed to 1st parameter

expecting 'nonnull' [clang-analyzer-core.NonNullParamChecker]

 my_memcpy(dest, src, 10); // no compiler warning

 ^ ~~~~

<source>:7:9: note: 'dest' initialized to a null pointer value

 char *dest = NULL, *src = NULL;

 ^~~~

<source>:9:3: note: Null pointer passed to 1st parameter expecting

'nonnull'

 my_memcpy(dest, src, 10); // no compiler warning

 ^ ~~~~

Clang's syntax is less verbose and error-prone than __attribute__, but the requirement to

annotate all pointers as either _Nullable or _Nonnull makes code harder to read and write.

Most pointers should not be null: consider the instance pointer passed to every method of a class.

It's no longer safe to write such declarations in traditional style with economy of effort. I also think

the semantics of these annotations (discussed later) are far more complex than befits a simple

language like C, and likely to cause confusion.

I’ve seen Clang’s nullability qualifiers described as “enormous and useless noise, while providing

doubtful value” [8] and the very idea of annotating pointers called a “naive dream”. I agree with the

first statement, but not the second: other languages have shown that null safety is achievable and

useful, whilst C lags with competing partial solutions that are confusing, error-prone, and intrusive.

Clang's annotations provide no value to other compilers, which either ignore (if removed by macros)

or reject them. Not all developers to use special build machines costing thousands of pounds: I do a

lot of coding on a Raspberry Pi, using a toolchain that dates from the 1980s [9] but is still actively

maintained [10] (and recently gained support for C17). For me, having a rapid edit-compile-run cycle

is paramount.

Even tiny compilers such as cc65 [11] can check that the addresses of objects declared with const

or volatile are not passed to functions that do not accept such pointers, because the rules for

type compatibility are simple (for the benefit of machines and people). This is exactly the niche that

the C language should be occupying.

I postulate that improved null safety does not require path-sensitive analysis.

Syntactic and semantic precedents
Type qualifiers (as we understand them today) didn't exist in pre-ANSI C, which consequently had a

stronger similarity between declarations and expressions, since qualifiers can't appear in expressions

(except as part of a cast).

The second edition of 'The C Programming Language' (K&R, 1988) says only that:

Types may also be qualified, to indicate special properties of the objects being

declared.

Notably, the special properties conferred by const, volatile, restrict and _Atomic all

relate to how objects are stored or how that storage is accessed - not the range of values

representable by an object of the qualified type.

Is the property of being able to represent a null pointer value the kind of property that should be

indicated by a type-qualifier? Restrictions on the range of values representable by an object are

usually implied by its type-specifiers (although long, short, signed, and unsigned are

intriguingly also called "qualifiers" by K&R, presumably because their text predates ANSI C).

Pointers are a special type of object though. Multiple levels of indirection can be nested within a

single declaration, as in the following declaration of baz (an array of pointers to arrays of pointers

to int):

int bar;

int *foo[2] = {NULL, &bar};

int *(*baz[3])[2] = {&foo, NULL, NULL};

It's therefore necessary to specify whether or not null is permitted for every level of indirection

within a declarator (e.g. for both baz[3] and (*baz[3])[2]). The only existing element of C's

existing syntax that has such flexibility is a type-qualifier.

It's not meaningful to specify whether null is permitted as part of the declaration-specifiers (e.g.

static int) on the lefthand side of a declaration, because this property only applies to pointers.

The restrict qualifier already has this limitation.

Here's an example of how the above declaration might look with Clang's nullability qualifiers:

int bar;

int *_Nullable foo[2] = {NULL, &bar};

int *_Nullable (*_Nullable baz[3])[2] = {&foo, NULL, NULL};

Syntactically, this may look like a perfect solution; semantically, this paper will argue that it is not!

A variable of type char *const (const pointer to char) can be assigned to a variable of type

char * (pointer to char), but a variable of type const char * (pointer to const char)

cannot. After a learner internalizes the knowledge that qualifiers on a pointer target must be

compatible, whereas qualifiers on a pointer value are discarded, this rule can be applied to any

assignment or initialization:

int *const x = NULL;

int *s = x; // no warning

int *volatile y = NULL;

int *t = y; // no warning

int *restrict z = NULL;

int *r = z; // no warning

One might not expect the same laxity to apply to the _Nullable and _Nonnull qualifiers,

because they relate to the assigned value, not the storage access properties of a particular copy of it.

Despite that, Clang-tidy allows an assigned value to be _Nullable unless the type of the assigned-

to-object is qualified as _Nonnull:

extern int *_Nullable getptr(void);

int *_Nullable z = getptr();

int *q = z; // no warning

int *_Nonnull p = z; // warning: Nullable pointer is assigned to a

pointer which is expected to have non-null value

*q = 10; // warning: Nullable pointer is dereferenced

This compromise between the traditional semantics of assignment (discard top-level qualifiers) and

the semantics needed to track nullability (ensure compatible qualifiers) looks like a weak basis for

null safety; however, it is mitigated by the fact that the static analyser tracks whether a pointer value

may be null regardless of its type. In turn, that makes it impossible to tell what constraints apply to a

pointer value simply by referring to its declaration.

A related issue is that top-level qualifiers on arguments are redundant in a function declaration (as

opposed to definition) because arguments are passed by value. Callers don't care what the callee

does with its copy of a pointer argument - only what it does with the pointed-to object.

Consequently, such qualifiers are ignored when determining compatibility between declarations and

definitions of the same function. The normative part of an argument declaration is to the left of the

asterisk:

void myfunc(const char *const s);

// ^^^^^^^^^^ ^^^^^

// Normative Not normative

// vvvvvvvvvv vvvvvvvv

void myfunc(const char *restrict s)

{

}

Notably, this rule also applies to restrict-qualified arguments, despite an apparent conflict with

a principle stated in WG14's charter:

Application Programming Interfaces (APIs) should be self-documenting when

possible

The same laxity should not apply to the _Nullable and _Nonnull qualifiers, because they relate

to the passed value, not its storage access properties. Despite that, Clang ignores any differences

between rival declarations of a function, except in cases where contradictory qualifiers were used.

It is permissible to write [] instead of * in a parameter declaration, to hint that an array is passed

(by reference) to a function. One might expect this [] syntax to be incompatible with qualifying the

type of the pointer (as opposed to the type of array elements). On the contrary, Clang allows

nullability qualifiers to appear between the brackets:

void myfunc(const char s[_Nullable]); // s may be a null pointer

This syntax is not intuitive to me (usually [] indicates an index or size) but it does follow 6.7.5.3 of

the C language standard:

A declaration of a parameter as ''array of type'' shall be adjusted to ''qualified

pointer to type'', where the type qualifiers (if any) are those specified within the

[and] of the array type derivation.

Proposed syntax
An essential feature of a new type qualifier expressing 'may be null' is that this property must not be

lost when a qualified pointer is copied (including when it is passed as a function argument).

Qualifiers on a pointed-to type must be compatible in assignments, initializations, and function calls,

whereas qualifiers on a pointer type need not be. The fact that every programmer has internalized

this rule makes me reluctant to propose (or embrace) any change to it for nullability qualifiers on a

pointer type.

I'm tempted to say that both restrict and the Clang annotations _Nullable and _Nonnull

are in the wrong place. The restrict qualifier frees an optimizer to generate more efficient code,

almost like the opposite of volatile. Isn't the quality of being aliased a property of an object,

rather than any single pointer to it?

At the heart of C's syntax is the primacy of fundamental types such as int. Every declaration is a

description of how a chain of indirections leads to such a type.

Let’s reframe the 'may be null' property as a quality of the pointed-to object, rather than the

pointer:

const int *i; // *i is an int that may be stored in read-only memory

volatile int *j; // *j is an int that may be stored in shared memory

_Optional int *k; // *k is an int for which no storage may be

allocated

I chose the name _Optional to bootstrap existing knowledge of Python and make a clear

distinction between this qualifier and _Nullable. I also like the idea of Python giving something

back to C.

_Optional is the same length as _Nullable and only one character longer than volatile. C's

syntax isn't known for its brevity, anyway. (Think not of functions such as strcpy, but of

declarations such as const volatile unsigned long int.)

Modifying a const object only has undefined behaviour if the object was originally declared as

const, which is not always the case when an object is modified by dereferencing a pointer from

which a const qualifier was cast away. Likewise, accessing an _Optional object will only have

undefined behaviour if the pointer used to access the object is actually null.

Read-only objects are often stored in a separate address range so that illegal write accesses

generate a segmentation fault (on machines with an MMU). Likewise, null pointer values encode a

reserved address, which is typically neither readable nor writable by user programs. In both cases

(const and _Optional), a qualifier on the pointed-to object indicates something about its

address.

Unlike assignment to a variable with const-qualified type, no error should be reported when

compiling code which accesses a variable with _Optional-qualified type. Were that my intent, I

would have proposed a name like _None rather than _Optional. Requiring the _Optional

qualifier to be cast away before accessing a so-qualified object would be tiresome and would

sacrifice type safety for null safety. I do not think that is a good trade-off.

Despite this limitation, the new qualifier is useful:

• It allows interfaces to be self-documenting. (Function declarations must match their

definition.)

• It allows the compiler to report errors on initialization or assignment, if implicitly converting

a pointer to _Optional into a pointer to an unqualified type.

• It provides information to static analysis tools, which can warn about dereferences of a

pointer to _Optional if path-sensitive analysis does not reveal a guarding check for null in

the preceding code.

Here is some example usage:

void foo(int *);

void bar(_Optional int *i)

{

 *i = 10; // optional warning of unguarded dereference

 if (i) {

 *i = 5; // okay

 }

 int *j = i; // warning: initializing discard qualifiers

 j = i; // warning: assignment discards qualifiers

 foo(i); // warning: passing parameter discards qualifiers

}

Here's an example of complex declarations that I used earlier, updated to use the proposed qualifier:

 int bar;

 _Optional int *foo[2] = {NULL, &bar};

// ^^decl-spec^^ ^^decl^

 _Optional int *(*qux[3])[2] = {&foo, &foo, &foo};

// ^^decl-spec^^ ^^declarator^

 _Optional int *_Optional (*baz[3])[2] = {&foo, NULL, NULL};

// ^^decl^

// ^^decl-spec^^ ^^pointer^ ^^dir-decl^^

// ^^^^^^declarator^^^^^^^

Let's break it down:

• Storage is allocated for an object, bar, of type int. This will be used as the target of a

pointer to _Optional int but doesn't need to be qualified as such (any more than a

const array must be passed to strlen).

• Storage is allocated for an array, foo, of two pointers to _Optional int. _Optional

in the declaration-specifiers indicates that elements of foo may be null; an expression

resembling the declarator (e.g. *foo[0]) may have undefined behaviour.

• Storage is allocated for an array, qux, of three pointers to arrays of pointers to _Optional

int. _Optional in the declaration-specifiers indicates that elements of the pointed-to

arrays may be null; an expression resembling the declarator (e.g. *(*qux[0])[0]) may

have undefined behaviour.

• Storage is allocated for an array, baz, of three pointers to _Optional arrays of pointers to

_Optional int. _Optional in the pointer(opt) of the top-level declarator indicates

that elements of baz may be null; an expression resembling the inner declarator (e.g.

*baz[0]) may have undefined behaviour. _Optional in the declaration-specifiers has

the same meaning as for qux.

Note that an 'optional pointer' is not a pointer that may have the value null; it's a pointer that may

not exist. This is like the existing rule that a 'const pointer' is not a pointer to read-only memory; it's

a pointer that may be stored in read-only memory.

Parameter declarations using [] syntax can be written more naturally using an _Optional

qualifier than using Clang's _Nullable qualifier:

void myfunc(_Optional const char s[]); // s may be a null pointer

With the above exception, it isn't useful to declare a non-pointed-to object as _Optional

(although so-qualified types will exist during expression evaluation). Such declarations could be

disallowed, like similar abuse of restrict, to avoid confusion.

Conversions from maybe-null to not-null
I presented the idea of warnings when a pointer-to-_Optional is passed to a function with

incompatible argument types as an unalloyed good. In fact, such usage has legitimate applications.

Consider the following veneer for the strcmp function which safely handles null pointer values by

substituting the empty string:

int safe_strcmp(_Optional const char *s1, _Optional const char *s2)

{

 if (!s1) s1 = "";

 if (!s2) s2 = "";

 return strcmp(s1, s2); // warning: passing parameter discards

qualifiers

}

In the above situation, both s1 and s2 would both need to be cast before calling strcmp:

int safe_strcmp(_Optional const char *s1, _Optional const char *s2)

{

 if (!s1) s1 = "";

 if (!s2) s2 = "";

 return strcmp((const char *)s1, (const char *)s2);

}

The above solution would be detrimental to readability and type safety.

It could be argued that any mechanism to remove _Optional from the target of a pointer without

first checking its value (at runtime) fatally compromises null safety. I disagree: C provides tools to

write type-safe code, whilst allowing leniency where it is pragmatic to do so.

It might be possible to use some combination of _Generic and unqual_typeof to remove only

a specific qualifier from a type (like const_cast in C++) but such casts would still clutter the code

and therefore seem likely be rejected by programmers who prefer to rely solely on path-sensitive

analysis.

What is required is a solution that accommodates both advanced compilers and compilers which

report errors based only on simple type-compatibility rules. Compilers capable of doing so must be

able to validate conversions from maybe-null to not-null in the same way as they would validate a

real pointer dereference.

One of my colleagues suggested just such a solution:

int safe_strcmp(_Optional const char *s1, _Optional const char *s2)

{

 if (!s1) s1 = "";

 if (!s2) s2 = "";

 return strcmp(&*s1, &*s2);

}

This idiom has the benefit that it is already 'on the radar' of implementers (and some programmers)

because of an existing rule that neither operator of &* is evaluated. It's searchable, easy to type (&

and * are on adjacent keys), and not too ugly.

Do not underestimate the importance of &* being easy to type! I must have written it thousands of

times by now. The alternatives that I considered would have made updating a large existing

codebase unbearable.

The way I envisage this working is:

• All compilers implicitly remove the _Optional qualifier from the type of the pointed-to

object in the result of the expressions &*s1 and &*s2.

• A compiler that does not attempt path-sensitive analysis will not warn about the expressions

&*s1 and &*s2, since it cannot tell whether s1 and s2 are null pointers.

• A compiler that warns about dereferences of pointers to _Optional, in cases where such

pointers cannot be proven to be non-null, may warn about the expressions &*s1 and &*s2

if the guarding if statements are removed.

However, this proposal might entail a modification to the description of the address and indirection

operators in the C standard:

If the operand [of the unary & operator] is the result of a unary * operator,

neither that operator nor the & operator is evaluated and the result is as if both

were omitted, except that the constraints on the operators still apply and the

result is not an lvalue.

C++ does not currently allow indirection on an operand of type void *. This rule would either need

to be aligned with C, or else C++ programmers would need to cast away the qualifier from

_Optional void * in some circumstances, rather than using an idiom such as &*.

Modification of operator semantics
I haven't yet explained how such an expression such as &*s would remove the _Optional

qualifier from the type of a pointed-to object.

Whereas a qualifier that applies to a pointer type is naturally removed by dereferencing that pointer,

a qualifier (such as _Optional) that applies to a pointed-to object is not:

int *const x;

typeof(&*x) y; // y has type 'int *' not 'int *const'

y = 0;

int b;

int const *a = &b;

typeof(&*a) c; // c has type 'int const *'

*c = 0; // error: read-only variable is not assignable

Consequently, modified semantics are required for the unary * operator, the unary & operator, or

both.

It's tempting to think that the appropriate time to remove a maybe-null qualifier from a pointer is

the same moment at which undefined behaviour would ensue if the pointer were null. I prototyped

a change to remove the _Optional qualifier from the result of unary * but found it onerous to

add &* everywhere it was necessary to remove the _Optional qualifier from a pointer.

Moreover, many previously simple expressions became unreadable:

• &(&*s)[index] (instead of &s[index])

• &(&*s)->member (instead of &s->member)

Whilst it would have been possible to improve readability by using more intermediate variables, that

isn't the frictionless experience I look for in a programming language. (The same consideration

applies to reliance on casts in the absence of modified operator semantics.)

The proposed idiom &*s is merely the simplest expression that incorporates a semantic dereference

without accessing the pointed-to object. A whole class of similar expressions exist, all of which

typically compile to a machine-level instruction to move or add to a register value (rather than a load

from memory):

• &s[0]

• &0[s] (by definition, E1[E2] is equivalent to (*((E1)+(E2))))

• &(*s).member

• &s->member

There is only one way to get the address of an object (excepting arithmetic), whereas there are

many ways to dereference a pointer. Therefore, I propose that any _Optional qualifier be

implicitly removed from the operand of the unary & operator, rather than modifying the semantics

of the unary *, subscript [] and member-access -> operators.

The operand of & is already treated specially, being exempt from conversion from an lvalue to the

value stored in the designated object, and from implicit conversion of an array or function type into

a pointer. It therefore seems less surprising to add new semantics for & than *.

Another class of expressions that generate an address from a pointer without accessing the pointed-

to object are arithmetic expressions in which one operand is a pointer:

• 1 + s

• s - 1

• ++s

None of the above expressions affect the qualifiers of a pointed-to object in the result type: if the

type of s is a pointer-to-const then so is the type of s + 1.

Although s + n is equivalent to &s[n] in current code, it does not occur often enough to justify

modifying arithmetic operators to remove any _Optional qualifier from a pointed-to object. This

also avoids the question of changes to prefix/postfix operators such as ++ and compound

assignments such as +=. The alternative substitution of &*s + n is tolerably readable.

Function pointers
C's declaration syntax does not permit type qualifiers to be specified as part of a function

declaration:

<source>:4:6: error: expected ')' [clang-diagnostic-error]

int (const *f)(int); // pointer to const-qualified function

 ^

A syntactic way around this limitation is to use an intermediate typedef name:

typedef int func_t(int);

const func_t *f; // pointer to const-qualified function

That doesn't solve the underlying problem, though. GCC does not warn about such declarations, but

Clang does:

<source>:5:1: warning: 'const' qualifier on function type 'func_t'

(aka 'int (int)') has unspecified behavior [clang-diagnostic-

warning]

const func_t *f; // pointer to const-qualified function

^~~~~~

The C language standard currently says:

If the specification of a function type includes any type qualifiers, the behavior is

undefined.

Making this behaviour well-defined (as in C++) would make the language safer, whereas extending

the declaration syntax is beyond the scope of my proposal.

Migration of existing code
Functions which consume pointers that can legitimately be null can be changed with no effect on

compatibility. For example, void free(_Optional void *) can consume a pointer to an

_Optional-qualified type, or a pointer to an unqualified type, without casting.

'Safe' wrappers for existing functions that produce null pointers could also be written, for example

_Optional FILE *safe_fopen(const char *, const char *) would produce a

pointer that can only be passed to functions which accept pointers to _Optional-qualified types.

Requiring implementations to redefine the constant to which the NULL macro expands as

((_Optional void *)0) is unthinkable because it would invalidate all existing code. However,

it might be useful to standardize an alternative macro for use in place of NULL. I have not specified

such a macro because NULL is not a core part of the language.

Here is an example of one type of change that I made to an existing codebase:

Before

entry_t *old_entries = d->entries;

d->entries = mem_alloc(sizeof(entry_t) * new_size);

if (NULL == d->entries)

{

 d->entries = old_entries;

 return ERROR_OOM;

}

After

_Optional entry_t *new_entries = mem_alloc(sizeof(entry_t) *

new_size);

if (NULL == new_entries)

{

 return ERROR_OOM;

}

d->entries = &*new_entries;

This pattern avoids the need to qualify the array pointed to by struct member entries as

_Optional, thereby simplifying all other code which uses it. When nullability is part of the type

system, more discipline and less constructive ambiguity is required. General-purpose struct types

for which pointer nullability depends on specific usage become a liability.

Of course, programmers are free to eschew the new qualifier, just as many do not consider const

correctness to be worth their time.

Proposed language extension
• A new type qualifier, _Optional, indicates that a pointer to a so-qualified type may be

null. This does not preclude any other pointer type from being null.

• Types other than those of a pointed-to object or pointed-to incomplete type shall not be

_Optional-qualified in a declaration.

• The semantics of the unary & operator are modified so that if its operand has type "type"
then its result has type "pointer to type", with the omission of any _Optional qualifier of
the pointed-to type.

• If an operand is a pointer to an _Optional-qualified type and its value cannot be statically
proven never to be null, then implementations may generate a warning of any undefined
behaviour that would occur if the value were null.

• A specification of a function type that includes type qualifiers no longer has undefined

behaviour. Qualifiers that are not applicable are ignored (as in C++).

The _Optional qualifier is treated like existing qualifiers when determining compatibility between

types, and when determining whether a pointer may be implicitly converted to a pointer to a

differently qualified type.

Considerations for static analysis
Clang’s static analyser currently ignores many instances of undefined behaviour. For example, it

allows expressions like &self->super when self is null. This latitude is also required because

many commonly used macros such as offsetof and container_of have undefined behaviour.

The simplest definition of offsetof incorporates an explicit null pointer dereference:

#define offsetof(st, m) \

 ((size_t)&(((st *)0)->m))

Such expressions must be rejected when applied to pointers to _Optional values, otherwise it

would not be safe to remove _Optional from a pointer target by use of my proposed &* idiom (or

any equivalent). Effectively, qualifying a type as _Optional enables an enhanced level of checking

for undefined behaviour, which operates partly at a syntactic level rather than solely at the level of

simulated memory accesses.

This paper argues that unlocking improved checking for UB is a powerful and desirable side-effect of

adding a new type qualifier.

Possible objections
The need to define a typedef name before declaring a pointer to an _Optional function is an

undeniable drawback of qualifying the pointed-to type rather than the pointer type. This paper

argues that code clarity and documentation is often improved by composing complex declarations

from type aliases, and that this limitation of the declaration syntax is outweighed by the benefit of

regular semantics in actual usage.

Some may struggle to accept a novel syntax for adding nullability information to pointers, given the

existence of more prosaic solutions. This paper urges them to consider whether a solution inspired

by pointer-to-const is really such a novelty - especially in comparison to the irregular new

semantics required when the pointer type itself is qualified.

Others may agree with Stroustrup [12] that C's syntax and semantics are a "known mess" of

"perversities". This paper argues that pointer nullability should be added in a way that conforms to

long-established C language idioms rather than violating such norms (as C++ references do) in the

hope of satisfying users who will never like C anyway.

Implementations
Currently only a working prototype [13] of the required changes to Clang and Clang-tidy exists.

Integration of this prototype into mainline LLVM will require code review and consent from the

project maintainers.

The prototype has been used successfully at Arm to add pointer nullability information to parts of

the user-space Mali GPU driver. I found the new qualifier useful for finding issues caused by not

handling null values defensively even before having updated Clang-tidy. This is what I had hoped

because a new qualifier cannot be justified unless it provides value in the absence of static analysis.

Acknowledgements
I would like to recognize the following people for their ideas, help, feedback, and encouragement:

Mihail Atanassov, Nikunj Patel, Peter Smith, Matthew Clarkson, Mats Petersson, Anastasia Stulova,

Raffaele Aquilone, Jonathan Ely, Jim Chaney, Aaron Ballman, Alejandro Colomar, and Elizabeth

Bazley.

References
[0] mypy 0.991 documentation,

https://medium.com/r/?url=https%3A%2F%2Fmypy.readthedocs.io%2Fen%2Fstable%2F

[1] TypeScript: JavaScript With Syntax For Types,

https://medium.com/r/?url=https%3A%2F%2Fwww.typescriptlang.org%2F

[2] Common Function Attributes (Using the GNU Compiler Collection (GCC)),

https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-

Attributes

[3] ARM Compiler toolchain Compiler Reference Version 5.03,

https://developer.arm.com/documentation/dui0491/i/Compiler-specific-Features/--attribute----

nonnull---function-attribute

[4] Static analysis in GCC 10 | Red Hat Developer,

https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10

[5] RFC: Nullability qualifiers – Clang Frontend – LLVM Discussion Forums,

https://discourse.llvm.org/t/rfc-nullability-qualifiers/35672

[6] Nullability Attributes, https://clang.llvm.org/docs/AttributeReference.html#nullability-attributes

[7] Clang-Tidy - Extra Clang Tools 17.0.0git documentation, https://clang.llvm.org/extra/clang-tidy/

[8] D9004 Addition of clang nullability attributes, https://reviews.freebsd.org/D9004

[9] Norcroft C compiler – Wikipedia, https://en.wikipedia.org/wiki/Norcroft_C_compiler

[10] RISC OS Open: Desktop Development Environment,

https://medium.com/r/?url=https%3A%2F%2Fwww.riscosopen.org%2Fcontent%2Fsales%2Fdde

[11] cc65 - a freeware C compiler for 6502 based systems,

https://medium.com/r/?url=https%3A%2F%2Fcc65.github.io%2F

[12] Stroustrup, “The Design and Evolution of C++” (1994)

[13] [RFC] _Optional: a type qualifier to indicate pointer nullability – Clang Frontend – LLVM

Discussion Forums, https://discourse.llvm.org/t/rfc-optional-a-type-qualifier-to-indicate-pointer-

nullability/

