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Change Log 
2020-06-01: 

• Incorporated heterogeneous capability (to add differently-type integers), which more closely 
resembles GCC/Clang behavior. Still a core + supplemental proposal but their contents have 
been reorganized. 

• Checked integer arithmetic now apply to shorts and signed & unsigned characters (but not plain 
char). 

• Proposed functions, types, and macros now live in <stdlib.h> (because GCC/Clang current 
solutions live there) 

• Eliminated compile-time constant expressions from normative text. 
• New section that promotes use of checked/ckd_ over other terminology choices 
• New section that addresses compatibility with N2501 (extended integer types) 
• Updated proof-of-concept implementation, added discussion about extending it, including 

N2501 compatibility. 
• Removed most type-specific functions, leaving just the macros. (They could rely on type-

specific functions, but that is a quality-of-implementation issue.) There are now a handful of 
type-specific functions for the most common types, which reflects GCC’s implementation. 
 

2019-12-06:  
• s/checked_/ckd_/g; in proposed API 
• Added ‘Extensions’ section which lets us delegate extensions to subsequent proposals 
• API now uses naming conventions for integer types derived from atomics (C17, s7.17.6) 
• Added integer types for fixed-size integers (e.g. uint32_t, etc.) to API 
• Added normative text 
• Clarified overflow & wrapping to match usage in C17 
• New document number 

 

The Problem 
Because integers have fixed ranges, arithmetic operations on them can cause unexpected wrapping or 
overflow.  Unsigned integers display modular behavior. While this behavior is well-defined, it is often 
unexpected. Signed integers also frequently display modular behavior, but signed integer overflow is 
actually undefined behavior.  Many real-world vulnerabilities and exploits arise from signed integer 
overflow or unsigned integer wrapping (CVE-2009-1385 and CVE-2014-4377 among many others). 
 
After studying the current state-of-the-art in integer safety in C and other languages, we decided that 
this proposal should be low-level; it should provide access to operations that detect overflow. We 
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therefore leave room for subsequent proposals to build on our proposal, perhaps at providing cleaner 
syntax or more extensive functionality. 

Convention 

The C17 standard does not define overflow or wrap-around / wrapping.  But these terms are used 
enough that their specific definitions can be inferred. We strive to follow the C17 conventions when 
using these terms. 

In C17, ‘overflow’ is a condition where the result of an operation cannot be represented in the 
associated type of the operation result. Both signed and unsigned integer operations may overflow.  
Silent wrap-around is a behavior that can occur as a result of overflow.  

Confusingly, 3.4.3 p3 states: 

 EXAMPLE An example of undefined behavior is the behavior on integer overflow. 

This has been addressed by clarity request N2517. 

However, 6.2.5 p9 clarifies unsigned integer behavior: 

A computation involving unsigned operands can never overflow, because a result that cannot be 
represented by the resulting unsigned integer type is reduced modulo the number that is one 
greater than the largest value that can be represented by the resulting type. 

Conventionally, signed integer overflow is considered undefined in C but unsigned integer overflow is 
defined to silently wrap. 

Related Work 

There have been several attempts to provide safe integer operations: 

GCC Built-Ins 
GCC provides a handful of non-standard intrinsic functions for performing safe arithmetic. They are 
documented at https://gcc.gnu.org/onlinedocs/gcc/Integer-Overflow-Builtins.html 

These functions return a boolean value indicating whether overflow occurred in the computation. They 
also store the solution in a pointer passed to the function. For example, this function: 

bool __builtin_sadd_overflow (int a, int b, int *res) 

operates on signed ints.  There are similar functions for longs and long longs, as well as for unsigned 
types. There is also a __builtin_add_overflow() macro that takes three parameters and delegates them 
to the appropriate function based on their type. These types need not be identical. If they differ, then 
the result is true if the result cannot be expressed in the result’s type, which could be due to overflow, a 
truncation error or a misinterpretation of sign. That is, the types may be heterogeneous. 
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There are also analogous functions for doing safe subtraction and multiplication. However, GCC 
provides no support for division, modulo, or left or right shift operations. 

Because these functions store the result in a pointed-to value, they are not suitable for compile-time 
arithmetic, and embedding them into expressions (such as multiplying the sum of two numbers with the 
subtraction of two more) is cumbersome. 

Clang provides the same functions and macros described above as GCC. They are documented at:  
https://clang.llvm.org/docs/LanguageExtensions.html#checked-arithmetic-builtins 

MS Visual C has similar C functions in their intsafe.h header file: 
https://docs.microsoft.com/en-us/windows/win32/api/intsafe/ 

Supplemental GCC Built-Ins 

For compile-time operations, GCC provides several additional functions, which are not available in 
Clang or MS Visual C: 

bool __builtin_add_overflow_p (type1 a, type2 b, type3 c) 

This macro operates like the __builtin_add_overflow() , but it does not actually compute the solution 
or store it. It merely returns whether the solution would overflow. It uses the final parameter as the type 
that the solution should occupy to determine overflow. As such, it overcomes the compile-time 
limitations of __builtin_add_overflow(). 

The SafeInt Library 
This is a platform-independent library written by David LeBlanc for providing integer safety: 
https://archive.codeplex.com/?p=SafeInt 

The SafeInt library is implemented in C++using C++ templates. This shortens the code, as these 
templates can apply to multiple integer types.  C++’s operator overloading also allows the safe 
operations to use the same operators as unsafe operations. That is, a+b is a safe operation if a and b are 
safe integers. 

SafeInt has been bundled with MS Visual Studio: 
https://docs.microsoft.com/en-us/cpp/safeint/safeint-library?view=vs-2019 

Boost Safe Numerics Library 
This is a library for handling safe integers, based on SafeInt: 

https://github.com/boostorg/safe_numerics 

Having evolved from SafeInt, it shares many of the pros and cons of SafeInt. 

Before being integrated into Boost, Robert Ramey proposed adding this library to C++’s standard 
library: 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0228r0.pdf 



Page 4 
 

 

Java Math Exact Methods 
In 2014, Java 8 was released. One of its new features was the set of exact calculation methods in the 
Math class. They either return a mathematically correct value or throw an ArithmeticException if 
overflow occurs. 

These methods provide overflow checking for addition, subtraction, and multiplication, as well as 
increment and decrement. There are no “exact” methods for division, remainder, or shift operations. 
There are methods to operate on Java int types and Java long types.  

Java’s +, -, * operators remain unchanged...they will still silently wrap if the mathematical solution 
cannot be represented by the expression type. (Java operations mandate two’s-complement semantics.) 

More information is available at: 

https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html 

Approach 
Our approach depends on a number of factors: 
 

Terminology 
Any types, functions, and macros that we propose should use a term to distinguish operations that 
detect overflow from operations that do not. The following candidates are plausible terms: 
 
Term Source Context 
Checked Clang Informally called “checked 

arithmetic builtins” 
Overflow GCC / Clang All builtins end with 

“_overflow”   
Safe LeBlanc / Ramey Proposed “safe<>” template for 

integer types       
Exact Java 8 Operation methods end in 

“Exact” 
 
Of these terms, the term “overflow” is the most precise. As noted earlier, overflow is, in C parlance, 
something that can happen with both signed and unsigned integers, and our types and operations 
prevent overflow and nothing else. Nonetheless, referring to them as “non-overflowing” types and 
methods is awkward. Furthermore, overflow is not the only possibility…values could be truncated 
during conversion, and misinterpretation of sign can occur, meaning that “overflow” is no longer 
correct.  However, referring to operations as checked types and operations (and the others as unchecked 
types and operations) is straightforward and intuitive, albeit less precise. We will therefore use “ckd_” 
as a prefix when designating those types and operations that detect overflow, truncation, or 
misinterpretation of sign.  Any flag that determines if a number was computed correctly will be called 
an ‘exact’ flag. 
 

Invention 
While the committee's charter discourages invention, what constitutes “invention” is unclear. Is it 
invention to adopt __builtin_sadd_overflow(), implemented in GCC & Clang, but rename it? What if 
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we reorder the arguments? What if we make it produce compile-time constant expressions?  We feel 
the function is not suitable for standardization as is, but we could standardize something with the same 
functionality but a better signature. 
 

Ease of use 
Computing a complicated mathematical equation such as a * b + c * d becomes cumbersome when 
using functions (or function-like macros) to perform the math. Preserving an “overflow bit” 
complicates things further.  A solution that merely provided functions without overloading operators 
would be cumbersome. For example: add( multiply( a, b), multiply( c, d)) is harder to read, even 
without considering the possibility of overflow. 
 
However, restricting ourselves to functions does have several advantages: Operators introduce 
ambiguities in the syntax, which are traditionally resolved by precedence order and the associative rule. 
The associative property of addition implies that (a+b)+c == a+(b+c), which means the additions can 
be done in either order.  Technically C does not guarantee this, because signed integer overflow is 
undefined behavior, but when signed overflow wraps, the associative rule is preserved. However, the 
associative rule is also not preserved when considering overflow.  (UINT_MAX + 1) – 1 and 
UINT_MAX + (1 – 1) both produce the same result in mathematical integers, and in C signed integers 
when overflow wraps. However, the first evaluation overflows, but the second doesn’t. 
 
Furthermore, a discussion on the WG14 reflector reveals that everyone has their own approach to 
integer safety. A one-size-fits-all solution is unlikely to satisfy enough committee members to gain 
traction. 
 
We therefore choose to forego usability and implement a minimal “bare-bones” solution, upon which 
everyone can propose more user-friendly options. 
 
An alternative proposal would be to standardize access to overflow bits. The x86 family of processors, 
as well as many others, will have an ‘overflow flag’ that indicates if signed integer overflow occurred 
in the last operation. They also have a ‘carry flag’ to indicate if unsigned integer wrapping occurred. 
However, these flags, while common, are not universal. The DEC Alpha lacks them completely, but 
provides other mechanisms for detecting overflow.  Therefore, we must standardize some way of 
detecting when operations overflow, but we cannot standardize access to these flags. 
 
Extensions 
 
Our decision to produce a core proposal and supplemental proposal allows us to forego many 
extensions, delegating them to subsequent proposals, and we need only ensure that our core proposal 
makes them possible.  
 
For example, it has been suggested that we provide overflow checking for atomic types.  This could be 
done, but entails many difficulties dealing with concurrency, and would be best handled as a separate 
proposal.   We employ this same strategy to other suggestions, including operator overloading.  
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Compatibility with N2501 
N2501 proposes adorning ISO C with “extended” integers, that support an arbitrary width. They 
behave much like bit-fields, and they can have a minimum of 1 value bit, with no official maximum, 
although unofficially they may support millions of value bits.  While these integers support all of the 
standard C operators, operations on extended integers are currently unchecked.  A proposal to endow 
extended integers with checked types and operations would be useful should both this proposal and 
N2501 be standardized.  Such a proposal would be useful, but should be distinct from both our core and 
supplemental proposals. 
 
We can address some technical details in the “Proof of Concept” section. 
 

Compile-time evaluation 
A solution that can be used to compute compile-time constant expressions is preferable to one that 
cannot be used at compile-time. Only the GCC supplemental functions provide compile-time constant 
expressions.  However, this can also be a quality-of-implementation issue; many platforms may choose 
to make their checked arithmetic provide constant expressions, and we should not prevent them from 
doing so. 
 
We have decided to forgo standardizing compile-time constant expressions in our checked arithmetic, 
and leave it as a quality-of-implementation issue. 
 

Completeness 
The GCC builtins, as well as Java, ignore division, remainder, or shifting operations. They consider 
only addition, subtraction, and multiplication. We will therefore restrict ourselves to these operations. 
 

Namespace Pollution 
It has been suggested that the GCC builtins, by defining many functions pollute the namespace, and a 
suitable standard proposal would suffer the same fate. This problem is being addressed by N2409, and 
we will not address it separately here. 
 
Functions vs. Macros 
 
There has been some debate over whether we should use functions or macros to provide checked 
integer arithmetic. Using functions confers the following advantages: 
 

• A compiler can verify the correctness of function argument types. 
• Function return values can be non-ignorable, thanks to the new [[nodiscard]] attribute 
• Functions can be invoked from other languages that provide a bridge to C function calls. 

 
Using macros confers the following advantages: 
 

• Since macros are type-independent, one macro can replace a family of functions, by servicing 
many different types of arguments. 
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The builtins used by GCC and Clang provide both sets of advantages, because they are not 
implemented as functions or macros. However, we cannot prescribe that the compile magic they utilize 
can or should be ported to every C platform. 
 
We have therefore provided a compromise: We use macros in most places to achieve a simpler API and 
type independence. We have also provided a few functions for the most common cases where people 
might want access from other languages. 

Approach Conclusion 
Given our design decisions, we have decided to provide a core proposal, and a supplemental proposal.  
The core proposal is low-level, and not necessarily easy to use. But it serves as a suitable foundation to 
provide friendlier APIs for the same functionality. Other proposals, such as a ‘checked’ qualifier to 
address integer types, can leverage the core proposal. 
 
The supplemental proposal does exactly this: it leverages the core proposal. Hence it is worthwhile 
only if the core proposal is acceptable. It requires no additional intrinsic functions, and could be 
implemented as a few additional headers and macros.  
 

Core Proposal 
The core proposal is based on standardizing the GCC Builtins, with addressing their shortcomings. 
That is, they will have acceptable names and signatures. 
 
This proposal consists of the following macros: 
 
  ckd_add(&result, x, y) 
  ckd_sub(&result, x, y) 
  ckd_mul(&result, x, y) 
 
Each macro performs its operation on two unchecked integers x and y, fills result with the result of the 
computation, and returns true if the computation is valid. Both x and y may be any integer type, and 
result is a pointer to an integer of any type.  If it were a function, the signature of ckd_add() would be: 
 
  bool ckd_add(int_type1 *result, int_type2 x, int_type3 y); 
 
A platform might implement these macros using functions (eg __ckd_int_add(), __ckd_long_add(), 
etc), but is not required to. 
 
The result will be the result of the computation. For ckd_add(), result will have the same value as x + y, 
if defined. 
 
The return value will be true unless the operation produces a result that cannot be represented in the 
type implied by usual arithmetic conversions, or converting that result to the type indicated by the first 
argument results in truncation or misinterpretation of sign. If the return value is true, then result 
actually points to the correct mathematical value of the operation. If the return value is false, then the 
value that result points to is indeterminate; it might be the low-order bits of the correct mathematical 
value, or the result of sign misinterpretation, depending on the behavior of unchecked overflow. 
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These macros have several properties: 
• They are already supported with minimal changes in GCC and Clang. 
• They do not require a ‘checked integer type’ 
• They check for overflow as well as any conversion error when storing the result 
• They cannot be chained together. An expression like a + b * c requires two non-

overlapping macro calls. 
 
In addition to these macros, we also provide a handful of functions to do the same thing. Each function 
takes operands of a single type, and computes a result using that type. These functions are 
[[nodiscard]], which provides some security that their return value must not be ignored. Finally, as 
functions, they can be called from other languages. 
 
To mimic the GCC implementation, we only provide functions to operate on signed and unsigned ints, 
longs, and long longs. 
 

Supplemental Proposal 
The supplemental proposal builds on top of the macros defined in the core proposal. 
 
We first propose a type to represent checked integers: 
 
  ckd_$TYPE_t 
 
This type provides access to its value, as well as access to an ‘exact’ flag. It could be implemented as a 
struct, but need not be. 
 
Here $TYPE represents the type of integer value, as indicated in the following table: 
 
$TYPE Type 
int signed int 

uint unsigned int 

long signed long 

ulong unsigned long 

llong signed long long 

ullong unsigned long long 

char signed char 

uchar unsigned char 

short signed short 

ushort unsigned short 

intmax intmax_t 

uintmax uintmax_t 

size size_t 
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$TYPE Type 
ptrdiff ptrdiff_t 

intptr intptr_t 

uintptr uintptr_t 

intN intN_t 

uintN uintN_t 

 
Note that plain char is not supported…only signed and unsigned chars may undergo checked arithmetic 
operations. 
 
The last two types employ a size N, and indicate a signed or unsigned integer of exactly N bits.  The 
precise set of values for N for which signed or unsigned checked integer types are defined is 
implementation-dependent. 
 
The following function-like macros provide access to the contents of this type. Note that the contents 
need not be addressable.  The macro 
 
  bool ckd_exact(x) 
 
returns true if x’s exact flag has been set.  The macro 
 
  $TYPE ckd_value(x) 
 
returns x’s value. If the exact flag is set, x’s value is implied to correctly represent the mathematical 
value of whatever operation(s) produced x.  If the exact flag is clear and the type is signed, then x’s 
value is unspecified. If the type is unsigned, then x’s value is the expected result of modular arithmetic. 
(If the C committee adopts two’s-complement representation, then the value will be specified to be the 
expected two’s-complement result regardless of the type’s signedness.) (On platforms with twos-
complement arithmetic, x might represent the lower-order bits of the mathematically correct value.) 
 
The following functions can be used to construct a checked value: 
 
  ckd_$TYPE_t make_ckd_$TYPE_t($TYPE value, bool exact); 
 
This explicitly constructs a checked integer type given the plain integer and an exact flag (which will 
typically be true, indicating that the value is correct. However, a false exact flag could be useful to 
explicitly indicate an error inside an expression). 
 
The following macros from the core proposal: 
 
  ckd_add(&result, x, y) 
  ckd_sub(&result, x, y) 
  ckd_mul(&result, x, y) 
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are enhanced. In the supplemental proposal, x and y can be any integer type or any checked integer 
type. Likewise, result may be a pointer to any integer type or checked integer type. If result points to a 
checked integer type, the exact flag of result is set to the same Boolean value that is returned. 
 
To complete the supplemental proposal, these macros can also take the following forms: 
 
  ckd_add(x,y) 
  ckd_sub(x,y) 
  ckd_mul(x,y) 
 
Each macro performs its operation on two integers, checked or unchecked, and returns a result as a 
checked integer. Both x and y may be any integer type or any checked integer type. The resulting type 
of the checked integer’s value is based on the usual arithmetic conversions, as described in C17 
s6.3.1.8. 
 
The two-argument macro forms have several properties: 
 

• They do less than the three-argument macro forms. They check for overflow, but do not 
indicate conversion errors. 

• They do require the ckd_$TYPE_t type to be defined.  
• These macros allow chaining. That is, the expression ckd_add( a, ckd_mul( b, c)) will compute 

a + b * c, and indicate if any error occurs.  
• The type of the expression follows the usual arithmetic conversions. 

 
Since checked integer types do not provide any type conversions, the result of these macros cannot be 
assigned to a plain integer type, or a checked integer of the wrong type. Thus, these macros provide 
type-safety. 
 

Proof of Concept (Type-Generic Macros) 
To verify that the supplemental proposal is feasible, we provide the following code. This code uses the 
__builtin_add_overflow() function from GCC, and should compile with a sufficiently modern version 
of GCC or Clang. It implements the ckd_add() macro from the supplemental proposal, although it only 
considers its parameters to be 32-bit signed ints, checked or unchecked.  
 
// Prints (on 64-bit RHEL7.5 and MacOS 15.4): 
// Sum is: 2147483646, overflow is 1 
 
#include <limits.h> 
#include <stdio.h> 
#include <stdbool.h> 
#include <inttypes.h> 
 
/* T is an exact-width integer type, which __builtin_add_overflow 
   supports */ 
 
#define CKD(T) ckd_ ## T 
#define DEFINE_CKD_TYPE(T)                      \ 
  typedef struct ckd_s_ ## T {                  \ 
    bool overflow;                              \ 
    T value;                                    \ 
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  } CKD(T) 
 
#define make_ckd(T, x) ((ckd_ ## T) {false, x}) 
 
#define CKD_ADD_CKD_CKD(T) ckd_add_ckd_ ## T ## _ckd_ ## T 
#define DEFINE_CKD_ADD_CKD_CKD(T)                                       \ 
  CKD(T)                                                                \ 
    CKD_ADD_CKD_CKD(T)(CKD(T) x, CKD(T) y) {                            \ 
    CKD(T) result;                                                      \ 
    result.value = 0;                                                   \ 
    result.overflow =                                                   \ 
      __builtin_add_overflow( x.value, y.value, &(result.value))        \ 
      || x.overflow || y.overflow;                                      \ 
    return result;                                                      \ 
  } 
 
#define CKD_ADD_CKD_UNCKD(T) ckd_add_ckd_ ## T ## _ ## T 
#define DEFINE_CKD_ADD_CKD_UNCKD(T)                                     \ 
  CKD(T)                                                                \ 
    CKD_ADD_CKD_UNCKD(T)(CKD(T) x, T y) {                               \ 
    return CKD_ADD_CKD_CKD(T)(x,make_ckd(T,y));                         \ 
} 
 
#define CKD_ADD_UNCKD_CKD(T) ckd_add_ ## T ## _ckd_ ## T 
#define DEFINE_CKD_ADD_UNCKD_CKD(T)                     \ 
  CKD(T)                                                \ 
    CKD_ADD_UNCKD_CKD(T)(T x, CKD(T) y) {               \ 
    return CKD_ADD_CKD_CKD(T)(make_ckd(T,x),y);         \ 
  } 
 
#define CKD_ADD_UNCKD_UNCKD(T) ckd_add_ ## T ## _ ## T 
#define DEFINE_CKD_ADD_UNCKD_UNCKD(T)                           \ 
  CKD(T)                                                        \ 
    CKD_ADD_UNCKD_UNCKD(T)(T x, T y) {                          \ 
    return CKD_ADD_CKD_CKD(T)(make_ckd(T,x),make_ckd(T,y));     \ 
  } 
 
#define DEFINE_CKD(T)                           \ 
  DEFINE_CKD_TYPE(T);                           \ 
  DEFINE_CKD_ADD_CKD_CKD(T);                    \ 
  DEFINE_CKD_ADD_CKD_UNCKD(T);                  \ 
  DEFINE_CKD_ADD_UNCKD_CKD(T);                  \ 
  DEFINE_CKD_ADD_UNCKD_UNCKD(T); 
 
DEFINE_CKD(int32_t); 
DEFINE_CKD(uint32_t); 
DEFINE_CKD(int64_t); 
DEFINE_CKD(uint64_t); 
 
#define ckd_add(x,y)                                                    \ 
  _Generic((x),                                                         \ 
           CKD(int32_t):                                                \ 
           (_Generic((y),                                               \ 
                     CKD(int32_t): ckd_add_ckd_int32_t_ckd_int32_t,     \ 
                     int32_t: ckd_add_ckd_int32_t_int32_t,              \ 
                     /* ...Address other integer types... */            \ 
                     default: NULL /* error */)),                       \ 
           int32_t:                                                     \ 
           (_Generic((y),                                               \ 
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                     CKD(int32_t): ckd_add_int32_t_ckd_int32_t,         \ 
                     int32_t: ckd_add_int32_t_int32_t,                  \ 
                     /* ...Address other integer types... */            \ 
                     default: NULL /* error */)),                       \ 
           /* ...Address other integer types... */                      \ 
           default: NULL /* error */)                                   \ 
  (x,y) 
 
 
int32_t main() { 
  int32_t x = INT_MAX; 
  int32_t y = 1; 
  int w = -2.0; 
  CKD(int32_t) z = ckd_add( ckd_add( x, y), w); 
  printf("Sum is: %d, overflow is %d\n", z.value, z.overflow); 
  return 0; 
} 
 
This implementation illustrates how checked integers could be implemented without using “compiler 
magic”.  It would need to be extended to 64-bit integers and 32-bit unsigned integers. Platform vendors 
would also want to add a support layer that translates standard types (int, long, etc.) to the exact types 
and back.  Eventually other types (e.g. int128_t) would also need to be supported. 
 
This implementation could also be extended to handle extra types if they are known when it is 
implemented. The _Generic operator used in the ckd_add() macro must have all types enumerated that 
it can handle. Adding new types that match one of the listed types requires no more work than mapping 
the new type to the listed types independently. However, adding a differently-sized type, such as one of 
the extended integer types from N2501 would require enhancing the _Generic operators in the code, 
and this would not scale with the potentially millions of new types from N2501.  Ideally, some 
additional power, such as identifying the width of an extended int type would permit a more powerful 
implementation. 
 

Proof of Concept (2- vs 3-arguement Macros) 
To verify that the supplemental proposal is feasible, we provide the following code. This code 
illustrates how a macro can be overloaded to use variadic forms, complete with type-safety. That is, if 
add() is invoked with invalid arguments, a compiler error is produced. 
 
// Prints (on MacOS) 
// Test A: 42 
// Test B: 2020 
 
int printf(const char *format, ...); 
 
void add3(int* ret, int x, int y) { 
  *ret = x + y; 
} 
 
int add2(int x, int y) { 
  return x + y; 
} 
 
#define add(w, ...)                             \ 
  _Generic((w),                                 \ 
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           int*: add3,                          \ 
           int: add2                            \ 
           )(w, __VA_ARGS__) 
 
int main() { 
  printf("Test A: %i\n", add(40, 2)); 
  int temp; 
  add(&temp, 2000, 20); 
  printf("Test B: %i\n", temp); 
} 
 
 

Proposed Wording Changes 
Core Proposal 
Add a new subsection to section 7.22.6: 
 
7.22.6.3 Checked Integer Arithmetic 
 
7.22.6.3.1 Checked Integer Arithmetic Macros 
 
Synopsis 
1  
#include <stdlib.h> 
bool ckd_add(type1 *result, type2 a, type3 b); 
bool ckd_sub(type1 *result, type2 a, type3 b); 
bool ckd_mul(type1 *result, type2 a, type3 b); 
 
Description 
2 These generic macros perform addition, subtraction, or multiplication on a and b, storing the result 
of the operation in the value pointed to by result. In other words, *result is assigned the result of 
computing a + b, a – b, or a * b. 
 
3 Both a and b must be signed or unsigned character or integer types. They may be any integer type 
and they need not be the same type. The result pointer must reference a value of a signed or 
unsigned character or integer type. 
 
Returns 
4 These macros return true if the type of the first argument is sufficient to hold the result of the 
computation. If these macros return true, the value assigned to *result correctly represents the 
mathematical result of the operation. If these macros return false, then the type of *result is not 
sufficient to contain the mathematical result. In this case, *result is the expected result of modular 
arithmetic on two’s-complement representation with silent wrap-around on overflow. 
 
5 EXAMPLE  If a and b are values of type signed int, and *result is a signed long, then 
   chk_sub(result, a, b); 
will indicate if a – b can be expressed as a signed long. If signed long has a greater width than signed 
int, this will always be possible and this macro will return true. 
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7.22.6.3.2 Checked Integer Arithmetic Functions 
 
Synopsis 
1  
#include <stdlib.h> 
[[nodiscard]] bool ckd_add_int(int *result, int a, int b); 
[[nodiscard]] bool ckd_sub_int(int *result, int a, int b); 
[[nodiscard]] bool ckd_mul_int(int *result, int a, int b); 
 
[[nodiscard]] bool ckd_add_long(long *result, long a, long b); 
[[nodiscard]] bool ckd_sub_long(long *result, long a, long b); 
[[nodiscard]] bool ckd_mul_long(long *result, long a, long b); 
 
[[nodiscard]] bool ckd_add_llong(long long *result, long long a, long 
long b); 
[[nodiscard]] bool ckd_sub_llong(long long *result, long long a, long 
long b); 
[[nodiscard]] bool ckd_mul_llong(long long *result, long long a, long 
long b); 
 
[[nodiscard]] bool ckd_add_uint(unsigned int *result, unsigned int a, 
unsigned int b); 
[[nodiscard]] bool ckd_sub_uint(unsigned int *result, unsigned int a, 
unsigned int b); 
[[nodiscard]] bool ckd_mul_uint(unsigned int *result, unsigned int a, 
unsigned int b); 
 
[[nodiscard]] bool ckd_add_ulong(unsigned long *result, unsigned long 
a, unsigned long b); 
[[nodiscard]] bool ckd_sub_ulong(unsigned long *result, unsigned long 
a, unsigned long b); 
[[nodiscard]] bool ckd_mul_ulong(unsigned long *result, unsigned long 
a, unsigned long b); 
 
[[nodiscard]] bool ckd_add_ullong(unsigned long long *result, 
unsigned long long a, unsigned long long b); 
[[nodiscard]] bool ckd_sub_ullong(unsigned long long *result, 
unsigned long long a, unsigned long long b); 
[[nodiscard]] bool ckd_mul_ullong(unsigned long long *result, 
unsigned long long a, unsigned long long b); 
 
 
Description 
2 These functions perform addition, subtraction, or multiplication on a and b, storing the result of the 
operation in the value pointed to by result. In other words, *result is assigned the result of 
computing a + b, a – b, or a * b. 
 
Returns 
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3 These functions return true if the type of the first argument is sufficient to hold the result of the 
computation. If these functions return true, the value assigned to *result correctly represents the 
mathematical result of the operation. If these functions return false, then the type of *result is not 
sufficient to contain the mathematical result. In this case, *result is the expected result of modular 
arithmetic on two’s-complement representation with silent wrap-around on overflow. 
 

Supplemental Proposal 
 
Instead of the instructions in the Core Proposal, add the following new subsection to section 7.22.6. 
This implies that all checked types, functions, and macros will be available in sdlib.h:  
 
7.22.6.3 Checked Integer Arithmetic  
 
Synopsis 
1 The following integer types support checked integer arithmetic. Each direct type has a key that 
appears for functions that support that type*: 
 

The footnote on 7.22.6.3p1 should state: 
 

*  Note that the char type does not support checked integer arithmetic. 
 
 
Direct Type Key 
signed int int 
unsigned int uint 
signed long long 
unsigned long ulong 
signed long long llong 
unsigned long long ullong 
signed char char 

unsigned char uchar 

signed short short 

unsigned short ushort 

intmax_t intmax 
uintmax_t uintmax 
size_t size 
ptrdiff_t ptrdiff 
intptr_t intptr 
uintptr_t uintptr 
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2 In addition, exact-width integer functions and types may exist for certain widths. The precise set of 
widths supported by exact-width integer functions is implementation-defined. For each width N, a 
platform may support any subset of the following types: 
 
Direct Type Key 
intN_t intN 
uintN_t uintN 
int_leastN_t int_leastN 

uint_leastN_t uint_leastN 

int_fastN_t int_fastN 

uint_fastN_t uint_fastN 

 
3 For each integer type that supports checked integer arithmetic, the type 
 
  ckd_type_t 
 
is a complete object type, other than an array type, that indicates a checked value. This includes an 
integer value and a flag that indicates exactness; that is whether overflow, truncation, or 
misinterpretation of sign occur when computing the integer value.  The “type” in “chk_type_t” is 
taken from the Key column that corresponds to the direct type in the above tables.* 
 

The footnote on 7.22.6.3p3 should state: 
 

*  For example, the ckd_ulong_t type indicates a checked value of type unsigned long. 
 
 
7.22.6.3.1 The ckd_exact Macro 
 
Synopsis 
1  
#include <stdlib.h> 
bool ckd_exact(ckd_type_t x); 
 
Description 
2 If x is a checked integer, the ckd_exact macro indicates if x was computed using one or more 
operations that did not produce the mathematically correct result. 
 
Returns 
3 The ckd_exact macro returns false if overflow, truncation, or misinterpretation of sign occurred 
when x was computed and true otherwise. 
 
 
7.22.6.3.2 The ckd_value Macro 
 
Synopsis 



Page 17 
 

 

1 
#include <stdlib.h> 
type ckd_value(x); 
 
Description 
2 If x is a checked integer, the ckd_value macro indicates the value of x. 
 
3 If the exact flag is set, the value correctly represents the mathematical value of whatever operation(s) 
produced x. Otherwise, the value of x is the expected result of modular arithmetic on two’s-
complement representation with silent wraparound on overflow. 
 
Returns 
4 The ckd_value macro returns the value of x. 
 
 
7.22.6.3.3 The make_ckd_type_t functions 
 
Synopsis 
1  
#include <stdlib.h> 
ckd_type_t make_ckd_type_t(type value, bool exact); 
 
Description 
2 These functions explicitly construct a checked integer type given an unchecked integer and an exact 
flag. 
 
3 if the exact flag is false, the value is assumed to have involved overflow, truncation, or 
misinterpretation of sign.* Otherwise the value is assumed to be mathematically correct. 
 

The footnote on 7.31.2p3 should state: 
 

* Constructing a checked integer with an  exact flag set to false can be useful when 
explicitly indicating an error inside an expression. 

 
Returns 
5 These functions return a checked type that represents the value indicated by value and the exact 
state indicated by exact. 
 
7.22.6.3.4 Checked Integer Arithmetic Macros 
 
Synopsis 
1  
#include <stdlib.h> 
bool ckd_add(type1 *result, type2 a, type3 b); 
bool ckd_sub(type1 *result, type2 a, type3 b); 
bool ckd_mul(type1 *result, type2 a, type3 b); 
 
ckd_type_t ckd_add(type1 a, type2 b); 
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ckd_type_t ckd_sub(type1 a, type2 b); 
ckd_type_t ckd_mul(type1 a, type2 b); 
 
Description 
2 These generic macros perform addition, subtraction, or multiplication on a and b. In the first form, 
they store the result of the operation in the value pointed to by result, and in the second form, they 
return the result as a checked integer. 
 
3 Both a and b must be signed or unsigned character or integer types or checked integer types. They 
need not be the same type. 
 
4 In the first form, the result pointer must reference a value of a signed or unsigned character or integer 
type. In the second form, the result will be a checked integer whose type is determined by the usual 
arithmetic conversions. (Section 6.3.1.8) 
 
5 In the first form, the return type indicates if an error occurred in the operation or either argument was 
a checked type whose exact flag indicated an error. In the second form, this information is indicated by 
the exact flag in the return value. If this flag is set, the computed value correctly represents the 
mathematical value of the operation. Otherwise, the value of the returned object is the expected result 
of modular arithmetic on two’s-complement representation with silent wrap-around on overflow. 
 
Returns 
5 The first form macros return true if the type of the first argument is sufficient to hold the result of the 
computation. If these macros return true, the value assigned to *result correctly represents the 
mathematical result of the operation. If these macros return false, then the type of *result is not 
sufficient to contain the mathematical result. In this case, *result is the expected result of modular 
arithmetic on two’s-complement representation with silent wrap-around on overflow. If *result 
references a checked integer type then its exact flag will equal the macro’s return value. 
 
6 The second form macros return a checked integer type that indicates the result of the computation as 
well as an exact flag. 
 
7 EXAMPLE  If a and b are values of type signed int, and result is a signed long, then 
   chk_sub(result, a, b); 
will indicate if a – b can be expressed as a signed long. If signed long has a greater width than signed 
int, this will always be possible and this macro will return true. This behavior occurs whether result, 
a, and b are checked or unchecked. 
 
8 EXAMPLE  If  a and b are values of type signed int and signed long, then 
   chk_sub(a, b); 
returns a ckd_long_t	that indicates their difference, and whether computing the difference resulted 
in overflow.  It produces the same result if either	a, b or both are checked integers with set exact flags. 
 
 
7.22.6.3.5 Checked Integer Arithmetic Macros 
 
This section is identical to section “7.22.6.3.2 Checked Integer Arithmetic Functions” in the core 
proposal. 
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Add the following to chapter 7 in the “Future Library Directions” section: 
 
7.32.18 Checked Arithmetic Functions <stdlib.h> 
 
1 Type and function names that begin with ckd_ may be added to the declarations in the <stdlib.h> 
header. 
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