
Proposal for C2x

WG14 N2381

Title: Allowing unnamed parameters in a function definition

Author, affiliation: Aaron Ballman, GrammaTech

Date: 2019-05-11

Proposal category: New features

Target audience: Developers working on combined C and C++ code bases

Abstract: There are times when the identifier for a function parameter is unnecessary (such as when the

object is unused within the call), but C requires the identifier to be present nonetheless. This paper

proposes lifting that restriction.

Prior art: C++

Allowing unnamed parameters in a

function definition
Reply-to: Aaron Ballman (aaron@aaronballman.com)

Document No: N2381

Date: 2019-05-11

Summary of Changes
N2381

• Original proposal

Introduction and Rationale
In C17, it is permissible for function declarations to elide the identifier in a parameter declaration, but it is

a constraint violation to elide an identifier for a function parameter in the definition of a function. Some C

users may find the restriction surprising because of the inconsistency between function declarations and

definitions. Further, this restriction is not in place for C++ and this can lead to surprising compiler

diagnostics for users who are compiling header files in mixed language modes [0, 1].

There are several circumstances in which it is beneficial for program maintainability and expressing

programmer intent to allow a programmer to elide these identifiers.

A common idiom when designing interfaces involving callbacks is to allow the programmer to pass in

additional information to the API calling the callback which is passed to the callback itself. Consider the

SSL_CTX_set_client_hello_cb() function from OpenSSL [2], which has an interface like:

typedef int (*SSL_client_hello_cb_fn)(SSL *s, int *al, void *arg);

void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn *f,

 void *arg);

The caller of SSL_CTX_set_client_hello_cb() can pass a void * argument to this function and the

same value will be passed along to the eventual callback call through the function pointer. If the caller of

SSL_CTX_set_client_hello_cb() does not need to pass extra information through arg, they may

wish to explicitly demonstrate to the compiler that the argument is unused within the callback, despite the

argument being required as part of the API contract. By eliding the identifier for the last parameter, the

programmer can explicitly signal to the compiler that they do not intend to use the information passed as

the argument.

Popular compiler implementations often have an option to warn on unused declarations, including

function parameters that are not used [3] and allowing the user to elide the name of a parameter is a way

for a programmer to explicitly specify their intent to the compiler and silence such diagnostics.

Proposal
This paper proposes allowing the identifier in a parameter declaration to be elided in both function

declarations (as it is today in C17) and in function definitions (moving forward in C2x), as shown below.

C17 C2x
int SSL_callback(SSL *s, int *al,

 void *);

int SSL_callback(SSL *s, int *al,

 void *arg) {

 // ... code that uses s and al,

 // but not arg.

 (void)arg; // Silences diagnostics.

 return 0;

}

int SSL_callback(SSL *s, int *al,

 void *);

int SSL_callback(SSL *s, int *al,

 void *) {

 // ... code that uses s and al.

 return 0;

}

Interaction With K&R C Function Definitions
There is a question as to whether eliding parameter names in a K&R C function definition can cause

conflicts due to typedefs. Specifically, whether it is ambiguous without lookahead to determine if a token

is the type in parameter type list (sans name) or an identifier in an identifier list. Consider a code example

like:

typedef int foo;

void func();

void func(foo) double foo; { }

If we allowed parameter identifiers to be elided in function definitions, does the definition of func()

introduce a function with a parameter type list or an identifier list?

This is a non-issue because the previous code is non-conforming in C17 already. C17 6.7.6.3p11 states:

If, in a parameter declaration, an identifier can be treated either as a typedef name or as a

parameter name, it shall be taken as a typedef name.

Additionally, C17 6.9.1p6 states:

If the declarator includes an identifier list, each declaration in the declaration list shall have at

least one declarator, those declarators shall declare only identifiers from the identifier list, and

every identifier in the identifier list shall be declared. An identifier declared as a typedef name

shall not be redeclared as a parameter. …

Indeed, I cannot find a C compiler that accepts the above code in the presence of the typedef [4], but all

of the compilers tested accepted the code in the absence of the typedef [5], which suggests the standard

is reasonably clear on this point.

Based on the belief that there are not problematic interactions with K&R C function definitions, this paper

does not propose any changes related to such definitions.

Proposed Wording
The wording proposed is a diff from the committee draft of ISO/IEC 9899-2017. Green text is new text,

while red text is deleted text.

Modify 6.9.1p5:

If the declarator includes a parameter type list, the declaration of each parameter shall include an

identifier, except for the special case of a parameter list consisting of a single parameter of type void,

in which case there shall not be an identifier. Nno declaration list shall follow. If such a declarator

consists of a single parameter of type void, the parameter declarator shall not include an identifier.

Acknowledgements
I would like to recognize the following people for their help in this work: Lars Gullik Bjønnes, Jens

Gustedt, and Robert Seacord.

References
[0] parameter name omitted, C++ vs C. https://stackoverflow.com/questions/8776810/parameter-name-

omitted-c-vs-c/8776886

[1] Why the unnamed parameter warning discrepency between C and C++?.

https://stackoverflow.com/questions/12181852/why-the-unnamed-parameter-warning-discrepency-

between-c-and-c

[2] SSL_CTX_set_client_hello_cb.

https://www.openssl.org/docs/man1.1.1/man3/SSL_CTX_set_client_hello_cb.html

[3] https://godbolt.org/z/HaiZFq

[4] https://godbolt.org/z/sdD31P

[5] https://godbolt.org/z/vP4LAT

	Summary of Changes
	N2381

	Introduction and Rationale
	Proposal
	Interaction With K&R C Function Definitions
	Proposed Wording
	Acknowledgements
	References

