
Draft	Technical	Specification	–		October	14,	2015	 	 	 	 	 	ISO/IEC	JTC	1/SC	22/WG	14	N1974	

	

	
	

	

TECHNICAL	 	 	 	 	 	 	 	 	 	 	 	 	 	 ISO/IEC	TS	
SPECIFICATION		 	 	 	 	 	 	 	 	 	 	 	 	 18661-5	

First	edition	
201y-mm-dd	

	

	

Information	technology	—	Programming	languages,	their	environments,	
and	system	software	interfaces	—	Floating-point	extensions	for	C	—		

Part	5:		
Supplementary	attributes	

Technologies	 de	 l’information	 —	 Langages	 de	 programmation,	 leurs	 environnements	 et	 interfaces	 du	
logiciel	système	—	Extensions	à	virgule	flottante	pour	C	—		

Partie	5:	Attributs	supplémentaires	

	

Reference	number	
ISO/IEC	TS	18661-5:201y(E)

ISO/IEC	TS	18661-5	 Draft	Technical	Specification	–	October	14,	2015	 	 	 						WG	14	N1974	

ii	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

	

	

	

	

	

	

	

©	ISO/IEC	2015	
All	rights	reserved.	Unless	otherwise	specified,	no	part	of	this	publication	may	be	reproduced	or	
utilized	otherwise	in	any	form	or	by	any	means,	electronic	or	mechanical,	including	
photocopying,	or	posting	on	the	internet	or	an	intranet,	without	prior	written	permission.	
Permission	can	be	requested	from	either	ISO	at	the	address	below	or	ISO’s	member	body	in	the	
country	of	the	requester.	

ISO	copyright	office	Case	postale	56	•	CH-1211	Geneva	20	Tel.	+	41	22	749	01	11	Fax	+	41	22	
749	09	47	E-mail	copyright@iso.org	Web	www.iso.org	

Published	in	Switzerland	

COPYRIGHT	PROTECTED	DOCUMENT

WG	14	N1974	 Draft	Technical	Specification	–	October	14,	2015		 ISO/IEC	TS	18661-5	

©	ISO/IEC	2015	–	All	rights	reserved	 iii	
	

Foreword	...	iv	
Introduction	..	v	
1	 Scope	...	1	
2	 Conformance	..	1	
3	 Normative	references	...	1	
4	 Terms	and	definitions	..	2	
5	 C	standard	conformance	..	2	
5.1	 Freestanding	implementations	..	2	
5.2	 Predefined	macros	...	2	
6	 Standard	pragmas	..	2	
7	 Evaluation	formats	..	3	
8	 Optimization	controls	...	6	
9	 Reproducibility	...	11	
10	 Alternate	exception	handling	..	14	
Bibliography	..	23	
	

	 	

ISO/IEC	TS	18661-5	 Draft	Technical	Specification	–	October	14,	2015	 	 	 						WG	14	N1974	

iv	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

Foreword	
ISO	 (the	 International	 Organization	 for	 Standardization)	 and	 IEC	 (the	 International	 Electrotechnical	
Commission)	 form	 the	 specialized	 system	 for	 worldwide	 standardization.	 National	 bodies	 that	 are	
members	 of	 ISO	 or	 IEC	 participate	 in	 the	 development	 of	 International	 Standards	 through	 technical	
committees	established	by	the	respective	organization	to	deal	with	particular	fields	of	technical	activity.	
ISO	 and	 IEC	 technical	 committees	 collaborate	 in	 fields	 of	 mutual	 interest.	 Other	 international	
organizations,	 governmental	 and	non-governmental,	 in	 liaison	with	 ISO	and	 IEC,	 also	 take	part	 in	 the	
work.	In	the	field	of	information	technology,	ISO	and	IEC	have	established	a	joint	technical	committee,	
ISO/IEC	JTC	1.	

The	 procedures	 used	 to	 develop	 this	 document	 and	 those	 intended	 for	 its	 further	 maintenance	 are	
described	in	the	ISO/IEC	Directives,	Part	1.	In	particular	the	different	approval	criteria	needed	for	the	
different	 types	 of	 document	 should	 be	 noted.	 This	 document	 was	 drafted	 in	 accordance	 with	 the	
editorial	rules	of	the	ISO/IEC	Directives,	Part	2	(see	www.iso.org/directives).	

Attention	is	drawn	to	the	possibility	that	some	of	the	elements	of	this	document	may	be	the	subject	of	
patent	 rights.	 ISO	 and	 IEC	 shall	 not	 be	 held	 responsible	 for	 identifying	 any	 or	 all	 such	 patent	 rights.	
Details	 of	 any	 patent	 rights	 identified	 during	 the	 development	 of	 the	 document	 will	 be	 in	 the	
Introduction	and/or	on	the	ISO	list	of	patent	declarations	received	(see	www.iso.org/patents).	

Any	trade	name	used	in	this	document	is	information	given	for	the	convenience	of	users	and	does	not	
constitute	an	endorsement.	

For	 an	 explanation	 on	 the	 meaning	 of	 ISO	 specific	 terms	 and	 expressions	 related	 to	 conformity	
assessment,	 as	 well	 as	 information	 about	 ISO's	 adherence	 to	 the	 WTO	 principles	 in	 the	 Technical	
Barriers	to	Trade	(TBT)	see	the	following	URL:	Foreword	-	Supplementary	information	

The	committee	responsible	 for	 this	document	 is	 ISO/IEC	 JTC	1,	 Information	technology,	Subcommittee	
SC	22,	Programming	languages,	their	environments,	and	system	software	interfaces.	

ISO/IEC	 TS	 18661	 consists	 of	 the	 following	 parts,	 under	 the	 general	 title	 Information	 technology	—	
Programming	languages,	their	environments,	and	system	software	interfaces	—	Floating-point	extensions	
for	C:	

⎯ Part	1:	Binary	floating-point	arithmetic	

⎯ Part	2:	Decimal	floating-point	arithmetic	

⎯ Part	3:	Interchange	and	extended	types	

⎯ Part	4:	Supplementary	functions	

⎯ Part	5:	Supplementary	attributes	

ISO/IEC	TS	18661-1	updates	ISO/IEC	9899:2011,	Information	technology	—	Programming	Language	C,	
annex	 F	 in	 particular,	 to	 support	 all	 required	 features	 of	 ISO/IEC/IEEE	 60559:2011,	 Information	
technology	—	Microprocessor	Systems	—	Floating-point	arithmetic.	
	
ISO/IEC	 TS	 18661-2	 supersedes	 ISO/IEC	 TR	 24732:2009,	 Information	 technology	 —	 Programming	
languages,	their	environments	and	system	software	interfaces	—	Extension	for	the	programming	language	
C	to	support	decimal	floating-point	arithmetic.	
	
ISO/IEC	 TS	 18661-3,	 ISO/IEC	 TS	 18661-4,	 and	 ISO/IEC	 TS	 18661-5	 specify	 extensions	 to	 ISO/IEC	
9899:2011	for	features	recommended	in	ISO/IEC/IEEE	60559:2011.

WG	14	N1974	 Draft	Technical	Specification	–	October	14,	2015		 ISO/IEC	TS	18661-5	

©	ISO/IEC	2015	–	All	rights	reserved	 v	
	

Introduction	
Background	

IEC	60559	floating-point	standard	

The	 IEEE	 754-1985	 standard	 for	 binary	 floating-point	 arithmetic	 was	 motivated	 by	 an	 expanding	
diversity	 in	 floating-point	 data	 representation	 and	 arithmetic,	 which	made	writing	 robust	 programs,	5	
debugging,	 and	 moving	 programs	 between	 systems	 exceedingly	 difficult.	 Now	 the	 great	 majority	 of	
systems	 provide	 data	 formats	 and	 arithmetic	 operations	 according	 to	 this	 standard.	 The	 IEC	
60559:1989	 international	 standard	 was	 equivalent	 to	 the	 IEEE	 754-1985	 standard.	 Its	 stated	 goals	
were	the	following:	

1 Facilitate	movement	of	existing	programs	 from	diverse	computers	 to	 those	 that	adhere	 to	10	
this	standard.	

2 Enhance	 the	 capabilities	 and	 safety	 available	 to	 programmers	who,	 though	 not	 expert	 in	
numerical	 methods,	 may	 well	 be	 attempting	 to	 produce	 numerically	 sophisticated	
programs.	However,	we	recognize	that	utility	and	safety	are	sometimes	antagonists.		

3 Encourage	experts	to	develop	and	distribute	robust	and	efficient	numerical	programs	that	15	
are	portable,	by	way	of	minor	editing	and	recompilation,	onto	any	computer	that	conforms	
to	 this	standard	and	possesses	adequate	capacity.	When	restricted	to	a	declared	subset	of	
the	standard,	these	programs	should	produce	identical	results	on	all	conforming	systems.		

4 Provide	direct	support	for		

a. Execution-time	diagnosis	of	anomalies		20	

b. Smoother	handling	of	exceptions		

c. Interval	arithmetic	at	a	reasonable	cost		

5 Provide	for	development	of		

a. Standard	elementary	functions	such	as	exp	and	cos		

b. Very	high	precision	(multiword)	arithmetic		25	

c. Coupling	of	numerical	and	symbolic	algebraic	computation		

6 Enable	rather	than	preclude	further	refinements	and	extensions.		

To	these	ends,	the	standard	specified	a	floating-point	model	comprising	the	following:	

— formats	 –	 for	 binary	 floating-point	 data,	 including	 representations	 for	 Not-a-Number	 (NaN)	 and	
signed	infinities	and	zeros	30	

—	 operations	 –	 basic	 arithmetic	 operations	 (addition,	 multiplication,	 etc.)	 on	 the	 format	 data	 to	
compose	 a	 well-defined,	 closed	 arithmetic	 system;	 also	 specified	 conversions	 between	 floating-
point	formats	and	decimal	character	sequences,	and	a	few	auxiliary	operations	

—	 context	 –	 status	 flags	 for	 detecting	 exceptional	 conditions	 (invalid	 operation,	 division	 by	 zero,	
overflow,	underflow,	and	inexact)	and	controls	for	choosing	different	rounding	methods	35	

ISO/IEC	TS	18661-5	 Draft	Technical	Specification	–	October	14,	2015	 	 	 						WG	14	N1974	

vi	 		©	ISO/IEC	2015	–	All	rights	reserved	
	

The	ISO/IEC/IEEE	60559:2011	international	standard	is	equivalent	to	the	IEEE	754-2008	standard	for	
floating-point	arithmetic,	which	is	a	major	revision	to	IEEE	754-1985.		

The	 revised	 standard	 specifies	 more	 formats,	 including	 decimal	 as	 well	 as	 binary.	 It	 adds	 a	 128-bit	
binary	 format	 to	 its	basic	 formats.	 It	 defines	 extended	 formats	 for	 all	 of	 its	basic	 formats.	 It	 specifies	
data	interchange	formats	(which	may	or	may	not	be	arithmetic),	including	a	16-bit	binary	format	and	an	5	
unbounded	tower	of	wider	formats.	To	conform	to	the	floating-point	standard,	an	implementation	must	
provide	at	least	one	of	the	basic	formats,	along	with	the	required	operations.	

The	revised	standard	specifies	more	operations.	New	requirements	include	–	among	others	–	arithmetic	
operations	 that	 round	 their	 result	 to	 a	 narrower	 format	 than	 the	 operands	 (with	 just	 one	 rounding),	
more	 conversions	with	 integer	 types,	more	 classifications	 and	 comparisons,	 and	more	operations	 for	10	
managing	flags	and	modes.	New	recommendations	include	an	extensive	set	of	mathematical	 functions	
and	seven	reduction	functions	for	sums	and	scaled	products.	

The	 revised	 standard	 places	 more	 emphasis	 on	 reproducible	 results,	 which	 is	 reflected	 in	 its	
standardization	of	more	operations.	For	the	most	part,	behaviors	are	completely	specified.	The	standard	
requires	conversions	between	 floating-point	 formats	and	decimal	character	sequences	 to	be	correctly	15	
rounded	for	at	least	three	more	decimal	digits	than	is	required	to	distinguish	all	numbers	in	the	widest	
supported	 binary	 format;	 it	 fully	 specifies	 conversions	 involving	 any	 number	 of	 decimal	 digits.	 It	
recommends	that	transcendental	functions	be	correctly	rounded.	

The	 revised	 standard	 requires	 a	way	 to	 specify	 a	 constant	 rounding	 direction	 for	 a	 static	 portion	 of	
code,	 with	 details	 left	 to	 programming	 language	 standards.	 This	 feature	 potentially	 allows	 rounding	20	
control	without	incurring	the	overhead	of	runtime	access	to	a	global	(or	thread)	rounding	mode.	

Other	features	recommended	by	the	revised	standard	include	alternate	methods	for	exception	handling,	
controls	 for	 expression	 evaluation	 (allowing	 or	 disallowing	 various	 optimizations),	 support	 for	 fully	
reproducible	results,	and	support	for	program	debugging.	

The	revised	standard,	like	its	predecessor,	defines	its	model	of	floating-point	arithmetic	in	the	abstract.	25	
It	 neither	 defines	 the	 way	 in	 which	 operations	 are	 expressed	 (which	 might	 vary	 depending	 on	 the	
computer	 language	 or	 other	 interface	 being	 used),	 nor	 does	 it	 define	 the	 concrete	 representation	
(specific	 layout	 in	 storage,	 or	 in	 a	processor's	 register,	 for	 example)	of	data	or	 context,	 except	 that	 it	
does	 define	 specific	 encodings	 that	 are	 to	 be	 used	 for	 the	 exchange	 of	 floating-point	 data	 between	
different	implementations	that	conform	to	the	specification.	30	

IEC	60559	does	not	include	bindings	of	its	floating-point	model	for	particular	programming	languages.	
However,	 the	 revised	 standard	 does	 include	 guidance	 for	 programming	 language	 standards,	 in	
recognition	 of	 the	 fact	 that	 features	 of	 the	 floating-point	 standard,	 even	 if	 well	 supported	 in	 the	
hardware,	are	not	available	to	users	unless	the	programming	language	provides	a	commensurate	level	
of	support.	The	implementation’s	combination	of	both	hardware	and	software	determines	conformance	35	
to	the	floating-point	standard.	

C	support	for	IEC	60559	

The	 C	 standard	 specifies	 floating-point	 arithmetic	 using	 an	 abstract	 model.	 The	 representation	 of	 a	
floating-point	 number	 is	 specified	 in	 an	 abstract	 form	 where	 the	 constituent	 components	 (sign,	
exponent,	significand)	of	 the	representation	are	defined	but	not	 the	 internals	of	 these	components.	 In	40	
particular,	 the	 exponent	 range,	 significand	 size,	 and	 the	 base	 (or	 radix)	 are	 implementation-defined.	
This	allows	flexibility	for	an	implementation	to	take	advantage	of	its	underlying	hardware	architecture.	
Furthermore,	certain	behaviors	of	operations	are	also	implementation-defined,	for	example	in	the	area	
of	handling	of	special	numbers	and	in	exceptions.	

WG	14	N1974	 Draft	Technical	Specification	–	October	14,	2015		 ISO/IEC	TS	18661-5	

©	ISO/IEC	2015	–	All	rights	reserved	 vii	
	

The	reason	for	this	approach	is	historical.	At	the	time	when	C	was	first	standardized,	before	the	floating-
point	 standard	 was	 established,	 there	 were	 various	 hardware	 implementations	 of	 floating-point	
arithmetic	in	common	use.	Specifying	the	exact	details	of	a	representation	would	have	made	most	of	the	
existing	implementations	at	the	time	not	conforming.	

Beginning	with	 ISO/IEC	9899:1999	(C99),	C	has	 included	an	optional	second	 level	of	 specification	 for	5	
implementations	 supporting	 the	 floating-point	 standard.	 C99,	 in	 conditionally	 normative	 annex	 F,	
introduced	 nearly	 complete	 support	 for	 the	 IEC	 60559:1989	 standard	 for	 binary	 floating-point	
arithmetic.	 Also,	 C99’s	 informative	 annex	 G	 offered	 a	 specification	 of	 complex	 arithmetic	 that	 is	
compatible	with	IEC	60559:1989.	

ISO/IEC	9899:2011	(C11)	includes	refinements	to	the	C99	floating-point	specification,	though	it	is	still	10	
based	on	IEC	60559:1989.	C11	upgraded	annex	G	from	“informative”	to	“conditionally	normative”.	

ISO/IEC	 TR	 24732:2009	 introduced	 partial	 C	 support	 for	 the	 decimal	 floating-point	 arithmetic	 in	
ISO/IEC/IEEE	60559:2011.	 ISO/IEC	TR	24732,	 for	which	technical	content	was	completed	while	 IEEE	
754-2008	was	still	 in	 the	 later	stages	of	development,	specifies	decimal	 types	based	on	ISO/IEC/IEEE	
60559:2011	decimal	formats,	though	it	does	not	include	all	of	the	operations	required	by	ISO/IEC/IEEE	15	
60559:2011.	

Purpose	

The	 purpose	 of	 ISO/IEC	TS	 18661	 is	 to	 provide	 a	 C	 language	 binding	 for	 ISO/IEC/IEEE	 60559:2011,	
based	on	 the	C11	 standard,	 that	delivers	 the	goals	of	 ISO/IEC/IEEE	60559	 to	users	 and	 is	 feasible	 to	
implement.	It	is	organized	into	five	parts.	20	

ISO/IEC	 TS	 18661-1	 provides	 changes	 to	 C11	 that	 cover	 all	 the	 requirements,	 plus	 some	 basic	
recommendations,	 of	 ISO/IEC/IEEE	 60559:2011	 for	 binary	 floating-point	 arithmetic.	 C	
implementations	 intending	 to	 support	 ISO/IEC/IEEE	 60559:2011	 are	 expected	 to	 conform	 to	
conditionally	normative	annex	F	as	enhanced	by	the	changes	in	ISO/IEC	TS	18661-1.	

ISO/IEC	 TS	 18661-2	 enhances	 ISO/IEC	 TR	 24732	 to	 cover	 all	 the	 requirements,	 plus	 some	 basic	25	
recommendations,	 of	 ISO/IEC/IEEE	 60559:2011	 for	 decimal	 floating-point	 arithmetic.	 C	
implementations	 intending	 to	 provide	 an	 extension	 for	 decimal	 floating-point	 arithmetic	 supporting	
ISO/IEC/IEEE	60559:2011	are	expected	to	conform	to	ISO/IEC	TS	18661-2.	

ISO/IEC	TS	18661-3	(Interchange	and	extended	types),	ISO/IEC	TS	18661-4	(Supplementary	functions),	
and	 ISO/IEC	 TS	 18661-5	 (Supplementary	 attributes)	 cover	 recommended	 features	 of	 ISO/IEC/IEEE	30	
60559:2011.	 C	 implementations	 intending	 to	 provide	 extensions	 for	 these	 features	 are	 expected	 to	
conform	to	the	corresponding	parts.	

Additional	background	on	supplementary	attributes	

ISO/IEC/IEEE	 60559:2011	 defines	 alternatives	 for	 certain	 attributes	 of	 floating-point	 semantics	 and	
intends	 that	 programming	 languages	 provide	 means	 by	 which	 a	 program	 can	 specify	 which	 of	 the	35	
alternative	 semantics	 apply	 to	 a	 given	block	 of	 code.	 The	program	 specification	 of	 attributes	 is	 to	 be	
constant	(fixed	at	translation	time),	not	dynamic	(changeable	at	execution	time).	

ISO/IEC	 TS	 18661	 provides	 these	 attributes	 by	 means	 of	 standard	 pragmas,	 where	 the	 pragma	
parameters	represent	the	alternative	semantics.		

The	FENV_ROUND	 and	FENV_DEC_ROUND	pragmas,	 specified	 in	 ISO/IEC	TS	18661-1	and	 ISO/IEC	TS	40	
18661-2,	 respectively,	 provide	 the	 rounding	 direction	 attributes	 required	 by	 ISO/IEC/IEEE	
60559:2011.	

ISO/IEC	TS	18661-5	 Draft	Technical	Specification	–	October	14,	2015	 	 	 						WG	14	N1974	

viii	 		©	ISO/IEC	2015	–	All	rights	reserved	
	

ISO/IEC/IEEE	60559:2011	recommends	attributes	for	

— preferredWidth: evaluation formats for floating-point operations

— value-changing optimizations: allow/disallow program transformations that might affect floating-point result
values 5	

— alternate exception handling: methods of handling floating-point exceptions

— reproducibility: support for getting floating-point result values and exceptions that are exactly reproducible
on other systems 10	

This	part	of	ISO/IEC	TS	18661	specifies	pragmas	that	provide	these	attributes.	

Note	 that	 the	 pragmas	 introduced	 by	 ISO/IEC	 TS	 18661	 are	 similar	 to	 the	 floating-point	 pragmas	
(FENV_ACCESS,	 FP_CONTRACT,	 CX_LIMITED_RANGE)	 that	 are	 already	 in	 ISO/IEC	 9899.	 They	 all	
have	the	same	general	syntactic	form,	usage	requirements,	and	range	of	effect.	

DRAFT	TECHNICAL		SPECIFICATION	 ISO/IEC/TS	18661-5:201y(E)	

	

©	ISO/IEC	2015	–	All	rights	reserved	 1	
	

	

Information	technology	—	Programming	languages,	their	
environments,	and	system	software	interfaces	—	Floating-point	
extensions	for	C	—		
	5	
Part	5:		
Supplementary	attributes	

1	 Scope	

This	 part	 of	 ISO/IEC	 TS	 18661	 extends	 programming	 language	 C	 to	 include	 support	 for	 attributes	
specified	and	recommended	in	ISO/IEC/IEEE	60559:2011.	10	

2	 Conformance	

An	implementation	conforms	to	this	part	of	ISO/IEC	TS	18661	if	

a) it	meets	the	requirements	for	a	conforming	implementation	of	C11	with	all	the	changes	to	C11	as	
specified	in	parts	1-5	of	ISO/IEC	TS	18661;		
	15	

b) it	conforms	to	ISO/IEC	TS	18661-1	or	ISO/IEC	TS	18661-2	(or	both);	and	
	

c) it	defines	__STDC_IEC_60559_ATTRIBS__	to	201ymmL.	
	
An	implementation	conforms	to	the	optional	specification	for	alternate	exception	handling	in	this	part	20	
of	ISO/IEC	TS	18661	if,	in	addition	to	the	above,	

d) it	defines	__STDC_IEC_60559_ATTRIB_ALTERNATE_EXCEPTION_HANDLING__	to	201ymmL.	

3	 Normative	references	

The	 following	 documents,	 in	whole	 or	 in	 part,	 are	 normatively	 referenced	 in	 this	 document	 and	 are	
indispensable	 for	 its	 application.	 For	 dated	 references,	 only	 the	 edition	 cited	 applies.	 For	 undated	25	
references,	the	latest	edition	of	the	referenced	document	(including	any	amendments)	applies.	

ISO/IEC	9899:2011,	Information	technology	—	Programming	languages	—	C	

ISO/IEC/IEEE	 60559:2011,	 Information	 technology	—	 Microprocessor	 Systems	—	 Floating-point	
arithmetic	

ISO/IEC	TS	18661-1:2014,	 Information	 technology	—	Programming	 languages,	 their	 environments	and	30	
system	software	interfaces	—	Floating-point	extensions	for	C	—	Part	1:	Binary	floating-point	arithmetic	

ISO/IEC	TS	18661-2:2015,	 Information	 technology	—	Programming	 languages,	 their	 environments	and	
system	software	interfaces	—	Floating-point	extensions	for	C	—	Part	2:	Decimal	floating-point	arithmetic	

ISO/IEC	TS	18661-5	 Draft	Technical	Specification	–	October	14,	2015	 	 	 						WG	14	N1974	

2	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

ISO/IEC	TS	18661-3:2015,	 Information	 technology	—	Programming	 languages,	 their	 environments	and	
system	software	interfaces	—	Floating-point	extensions	for	C	—	Part	3:	Interchange	and	extended	types	

ISO/IEC	TS	18661-4:2015,	Information	Technology	—	Programming	languages,	their	environments,	and	
system	software	interfaces	—	Floating-point	extensions	for	C	—	Part	4:	Supplementary	functions		

4	 Terms	and	definitions	5	

For	 the	 purposes	 of	 this	 document,	 the	 terms	 and	 definitions	 given	 in	 ISO/IEC	 9899:2011,	
ISO/IEC/IEEE	 60559:2011,	 ISO/IEC	 TS	 18661-1:2014,	 ISO/IEC	 TS	 18661-2:2015,	 ISO/IEC	
TS	18661-3:2015,	ISO/IEC	TS	18661-4:2015,	and	the	following	apply.	

4.1	

C11	10	
standard	ISO/IEC	9899:2011,	Information	technology	—	Programming	languages	C,	including	Technical	
Corrigendum	1	(ISO/IEC	9899:2011/Cor.	1:2012)	

5	 C	standard	conformance	

5.1	 Freestanding	implementations	

The	specification	in	C11	+	TS18661-1	+	TS18661-2	allows	freestanding	implementations	to	conform	to	15	
this	part	of	ISO/IEC	TS	18661.	

5.2	 Predefined	macros	

Change	to	C11	+	TS18661-1	+	TS18661-2	+	TS18661-3	+	TS18661-4:		

In	6.10.8.3#1,	add:	

__STDC_IEC_60559_ATTRIBS__	 The	 integer	 constant	 201ymmL,	 intended	 to	 indicate	20	
support	of	attributes	specified	and	recommended	in	IEC	60559.	

__STDC_IEC_60559_ATTRIB_ALTERNATE_EXCEPTION_HANDLING__	 	The	 integer	
constant	201ymmL,	intended	to	indicate	support	of	the	alternate	exception	handling	
attributes	specified	and	recommended	in	IEC	60559.	

6	 Standard	pragmas	25	

C11	 provides	 standard	 pragmas	 (6.10.6)	 for	 specifying	 certain	 attributes	 pertaining	 to	 floating-point	
behavior	within	a	compound	statement	or	file.	This	part	of	ISO/IEC	TS	16881	extends	this	practice	by	
introducing	additional	standard	pragmas	to	support	the	attributes	recommended	by	IEC	60559.	

Change	to	C11	+	TS18661-1	+	TS18661-2	+	TS18661-3	+	TS18661-4:		

In	6.10.6#2,	append	to	the	list	of	standard	pragmas:	30	

#pragma STDC FENV_FLT_EVAL_METHOD width
#pragma STDC FENV_DEC_EVAL_METHOD width
#pragma STDC FENV_ALLOW_VALUE_CHANGING_OPTIMIZATION on-off-switch		
#pragma STDC FENV_ALLOW_ASSOCIATIVE_LAW on-off-switch	
#pragma STDC FENV_ALLOW_DISTRIBUTIVE_LAW on-off-switch	35	
#pragma STDC FENV_ALLOW_MULTIPLY_BY_RECIPROCAL on-off-switch	

WG	14	N1974	 Draft	Technical	Specification	–	October	14,	2015		 ISO/IEC	TS	18661-5	

©	ISO/IEC	2015	–	All	rights	reserved	 3	
	

#pragma STDC FENV_ALLOW_ZERO_SUBNORMAL on-off-switch	
#pragma STDC FENV_ALLOW_CONTRACT_FMA on-off-switch	
#pragma STDC FENV_ALLOW_CONTRACT_OPERATION_CONVERSION on-off-switch	
#pragma STDC FENV_ALLOW_CONTRACT on-off-switch	
#pragma STDC FENV_REPRODUCIBLE on-off-switch 5	
#pragma STDC FENV_EXCEPT	action except-list	

width:	specified	with	the	pragmas	(7.6.1c,	7.6.1d)	

action,	except-list:	specified	with	the	pragma	(7.6.1g.1)	

7	 Evaluation	formats	

IEC	 60559	 recommends	 attributes	 for	 specifying	 a	 preferred	 width	 for	 operation	 results.	 These	10	
preferred	widths	 correspond	 to	 the	 evaluation	 formats	 defined	 in	 C11,	 though	C11	does	 not	 provide	
means	for	the	user	to	control	the	evaluation	format.	This	part	of	ISO/IEC	TS	16881	provides	pragmas	in	
<fenv.h>	to	control	the	evaluation	format,	using	constants	with	the	values	of	the	FLT_EVAL_METHOD	
and	DEC_EVAL_METHOD	macros	(5.2.4.2.2a)	to	represent	the	evaluation	formats.	

The	evaluation	methods	in	C99	apply	to	floating-point	operators,	but	not	to	math	functions.	Hence,	they	15	
do	not	apply	to	the	IEC	60559	operations	that	are	provided	as	library	functions.	This	clause	specifies	a	
macro	 the	user	can	define	 to	cause	 the	generic	macros	 in	<tgmath.h>	 to	be	evaluated	 like	 floating-
operators.	

Changes	to	C11	+	TS18661-1	+	TS18661-2	+	TS18661-3	+	TS18661-4:		

After	5.2.4.2.2a#3,	insert:	20	

[3a]	 The	 FLT_EVAL_METHOD	 and	 DEC_EVAL_METHOD	 macros	 characterize	 the	 use	 of	
evaluation	 formats	 at	 the	 point	 in	 the	 program	where	 the	macro	 is	 used.	 Thus,	 the	 values	 of	
these	macros	 reflect	 the	 state	 of	 any	 evaluation	method	 pragmas	 (7.6.1c,	 7.6.1d)	 that	 are	 in	
effect.	 These	macros	 shall	 not	 be	 used	 in	 a	#if	 or	#elif	 expression	 within	 the	 scope	 of	 a	
corresponding	evaluation	method	pragma.	25	

After	7.6.1b,	insert:	

7.6.1c	 Evaluation	method	pragma	

Synopsis	

[1] #define __STDC_WANT_IEC_60559_ATTRIBS_EXT__
#include <fenv.h> 30	
#pragma STDC FENV_FLT_EVAL_METHOD width

Description			

[2]	 The	FENV_FLT_EVAL_METHOD	 pragma	 sets	 the	 evaluation	method	 for	 standard	 floating	
types	 and	 for	 binary	 interchange	 and	 extended	 floating	 types	 to	 the	 evaluation	 method	
represented	by	width.	The	parameter	width	is	an	expression	in	one	of	the	forms	35	

0
decimal-constant	
−	decimal-constant	

ISO/IEC	TS	18661-5	 Draft	Technical	Specification	–	October	14,	2015	 	 	 						WG	14	N1974	

4	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

or	

DEFAULT

where	 the	 value	 of	 an	 expression	 is	 a	 possible	 value	 of	 the	 FLT_EVAL_METHOD	 macro,	 as	
specified	 in	 5.2.4.2.2a.	 An	 expression	 represents	 the	 evaluation	method	 corresponding	 to	 its	
value	 (5.2.4.2.2a)	 and	 DEFAULT	 designates	 the	 implementation’s	 default	 evaluation	 method	5	
(characterized	 by	 the	 FLT_EVAL_METHOD	 macro	 where	 no	 FENV_FLT_EVAL_METHOD	
pragma	is	in	effect).	width	may	be	-1,	0,	or	DEFAULT.	Which,	if	any,	other	values	of	width	are	
supported	is	implementation-defined.	Use	of	unsupported	values	of	width	results	in	undefined	
behavior.	The	pragma	shall	occur	either	outside	external	declarations	or	preceding	all	explicit	
declarations	and	statements	inside	a	compound	statement.	When	outside	external	declarations,	10	
the	pragma	takes	effect	 from	its	occurrence	until	another	FENV_FLT_EVAL_METHOD	pragma	
is	encountered,	or	until	the	end	of	the	translation	unit.	When	inside	a	compound	statement,	the	
pragma	 takes	effect	 from	 its	occurrences	until	 another	FENV_FLT_EVAL_METHOD	 pragma	 is	
encountered	(including	within	a	nested	compound	statement),	or	until	the	end	of	the	compound	
statement;	 at	 the	 end	 of	 a	 compound	 statement	 the	 state	 for	 the	 pragma	 is	 restored	 to	 its	15	
condition	just	before	the	compound	statement.	

7.6.1d	 Evaluation	method	pragma	for	decimal	

Synopsis	

[1] #define __STDC_WANT_IEC_60559_DFP_EXT__
#define __STDC_WANT_IEC_60559_ATTRIBS_EXT__ 20	
#include <fenv.h>
#pragma STDC FENV_DEC_EVAL_METHOD width

Description			

[2]	The	FENV_DEC_EVAL_METHOD	pragma	sets	the	evaluation	method	for	decimal	interchange	
and	 extended	 floating	 types	 to	 the	 evaluation	 method	 represented	 by	width.	 The	 parameter	25	
width	is	an	expression	in	one	of	the	forms	

0
decimal-constant	
−	decimal-constant	

or	30	

DEFAULT

where	 the	 value	 of	 an	 expression	 is	 a	 possible	 value	 of	 the	 DEC_EVAL_METHOD	 macro,	 as	
specified	 in	 5.2.4.2.2a.	 An	 expression	 represents	 the	 evaluation	method	 corresponding	 to	 its	
value	 (5.2.4.2.2a)	 and	 DEFAULT	 designates	 the	 implementation’s	 default	 evaluation	 method	
(characterized	 by	 the	 DEC_EVAL_METHOD	 macro	 where	 no	 FENV_DEC_EVAL_METHOD	35	
pragma	is	in	effect).	width	may	be	-1,	1,	or	DEFAULT.	Which,	 if	any,	other	values	of	width	are	
supported	is	implementation-defined.	Use	of	unsupported	values	of	width	results	in	undefined	
behavior.	The	pragma	shall	occur	either	outside	external	declarations	or	preceding	all	explicit	
declarations	and	statements	inside	a	compound	statement.	When	outside	external	declarations,	
the	pragma	takes	effect	 from	its	occurrence	until	another	FENV_DEC_EVAL_METHOD	pragma	40	
is	encountered,	or	until	the	end	of	the	translation	unit.	When	inside	a	compound	statement,	the	
pragma	 takes	effect	 from	 its	occurrences	until	 another	FENV_DEC_EVAL_METHOD	 pragma	 is	

WG	14	N1974	 Draft	Technical	Specification	–	October	14,	2015		 ISO/IEC	TS	18661-5	

©	ISO/IEC	2015	–	All	rights	reserved	 5	
	

encountered	(including	within	a	nested	compound	statement),	or	until	the	end	of	the	compound	
statement;	 at	 the	 end	 of	 a	 compound	 statement	 the	 state	 for	 the	 pragma	 is	 restored	 to	 its	
condition	just	before	the	compound	statement.	

At	the	end	of	7.12#2,	append:	

[2]	 ….	 These	 types	reflect	 the	 evaluation	 method	 where	 no	 evaluation	 method	 pragma	5	
(7.6.1c,	7.6.1d)	is	in	effect.	

[2a]	 For	 each	 of	 the	 types	 above,	 a	 type-like	 macro	 with	 the	 same	 name	 expands	 to	 a	
designation	 for	 the	 type	 whose	 range	 and	 precision	 (5.2.4.2.2a)	 are	 used	 for	 evaluating	
operations	and	constants	of	 the	corresponding	standard,	binary,	or	decimal	 floating	 type.	The	
macro	 reflects	 the	 actual	 evaluation	 method,	 which	 might	 be	 determined	 by	 an	 evaluation	10	
method	pragma	(7.6.1c,	7.6.1d).	Use	of	#undef	to	remove	the	macro	definition	will	ensure	that	
the	actual	type	will	be	referred	to.	

After	7.25#2,	insert:	

[2a]	Except	for	functions	that	round	result	to	a	narrower	type,	if	the	macro	

__STDC_TGMATH_OPERATOR_EVALUATION__ 15	

is	defined	at	 the	point	 in	 the	program	where	<tgmath.h>	 is	 first	 included,	 the	 format	of	 the	
generic	 parameters	 of	 the	 function	 invoked	 by	 a	 type-generic	 macro	 is	 determined	 by	 the	
effective	evaluation	method	(see	5.2.4.2.2	and	5.2.4.2.2a),	based	on	the	types	of	the	arguments	
for	generic	parameters.	The	semantic	type	of	the	expanded	type-generic	macro	is	unchanged	by	
the	evaluation	method.	Neither	the	arguments	for	generic	parameters	nor	the	result	are	narrowed	to	their	20	
semantic	 types.	 Thus,	 (if	 the	 macro	 __STDC_TGMATH_OPERATOR_EVALUATION__	 is	
appropriately	defined)	 the	evaluation	method	affects	 the	operations	provided	by	type-generic	
macros	and	floating-point	operators	in	the	same	way.	See	EXAMPLE	2	below.	

After	the	first	bullet	in	7.25#3c,	insert	the	bullet:	

If	the	macro	25	

__STDC_TGMATH_OPERATOR_EVALUATION__

is	defined	at	 the	point	 in	 the	program	where	<tgmath.h>	 is	 first	 included,	 the	 format	of	 the	
generic	parameters	of	the	function	invoked	is	given	by	the	effective	evaluation	method	based	on	
the	 type	 determined	 below.	 The	 semantic	 type	 of	 the	 expanded	 type-generic	 macro	 is	
unchanged	by	the	evaluation	method.	30	

In	7.25#7,	change	“EXAMPLE”	to	“EXAMPLE	1”.	

ISO/IEC	TS	18661-5	 Draft	Technical	Specification	–	October	14,	2015	 	 	 						WG	14	N1974	

6	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

After	7.25#7,	append:	

[7a]	EXAMPLE	2	 The	following	code	uses	wide	evaluation	to	avoid	overflow	and	underflow.			

 #define __STDC_WANT_IEC_60559_ATTRIBS_EXT__
#define __STDC_TGMATH_OPERATOR_EVALUATION__
#include <fenv.h> 5	
#include <tgmath.h>
{
 #pragma STDC FLT_EVAL_METHOD 1
 float x, y, z;
	 ….	10	
 z = sqrt(x * x + y * y);
}

Because	of	the	use	of	the	evaluation	method	pragma,	the	sum	of	squares,	whose	semantic	type	
is	float,	 is	 evaluated	with	 the	 range	 and	 precision	 of	double,	 hence	 does	 not	 overflow	 or	
underflow.	The	expanded	<tgmath.h>	macro	sqrt	acquires	the	semantic	type	of	 its	argument:	15	
float.	However,	because	the	macro	__STDC_TGMATH_OPERATOR_EVALUATION__	is	defined	
before	the	inclusion	of	<tgmath.h>,	the	sqrt	macro	behaves	like	an	operator	with	respect	to	
the	 evaluation	 method	 and	 does	 not	 narrow	 its	 argument	 to	 its	 semantic	 type.	 Without	 the	
definition	 of	 the	 macro	 __STDC_TGMATH_OPERATOR_EVALUATION__,	 the	 sqrt	 macro	
would	 expand	 to	 sqrtf	 and	 its	 evaluated	 argument	 would	 be	 converted	 to	 float,	 which	20	
might	overflow	or	underflow.	

8	 Optimization	controls	

IEC	60559	recommends	attributes	to	allow	and	disallow	value-changing	optimizations,	individually	and	
collectively.	C11	Annex	F	disallows	value-changing	optimizations,	except	for	contractions	(which	can	be	
controlled	 as	 a	 group	 with	 the	 FP_CONTRACT	 pragma).	 This	 part	 of	 ISO/IEC	 TS	 18661	 provides	25	
pragmas	 to	allow	or	disallow	certain	value-changing	optimizations,	 including	 those	mentioned	 in	 IEC	
60559.	These	pragmas	apply	to	all	floating	types,	not	just	the	real	floating	types	(which	provide	the	IEC	
60559	formats).	

Change	to	C11	+	TS18661-1	+	TS18661-2	+	TS18661-3	+	TS18661-4:		

After	7.6.1d,	insert:	30	

7.6.1e	 Optimization	control	pragmas	

[1]	 The	 pragmas	 in	 this	 subclause	 can	 be	 used	 to	 allow	 the	 implementation	 to	 do	 certain	
floating-point	 optimizations	 that	 are	 generally	 disallowed	 because	 the	 optimization	 might	
change	 values	 of	 floating-point	 expressions.	 These	 pragmas	 apply	 to	 all	 floating	 types.	 It	 is	
unspecified	whether	optimizations	allowed	by	these	pragmas	occur	consistently,	or	at	all.	These	35	
pragmas	 (among	other	 standard	pragmas)	 apply	 to	 user	 code.	 They	do	not	 apply	 to	 code	 for	
operators	or	library	functions	that	might	be	placed	inline	by	the	implementation.	

[2]	Some	of	the	pragmas	allow	optimizations	based	on	identities	of	real	number	arithmetic	that	
are	not	valid	 for	(IEC	60559)	 floating-point	arithmetic	(5.1.2.3,	F.9.2).	Optimizations	based	on	
identities	 that	 are	valid	 for	 floating-point	 arithmetic	 are	always	allowed.	Optimizations	based	40	
on	identities	derived	from	identities	whose	use	is	allowed	(either	by	a	standard	pragma	or	by	
virtue	of	being	valid	for	floating-point	arithmetic)	may	also	be	done.	

[3]	These	pragmas	do	not	affect	the	requirements	on	volatile	or	atomic	variables.	

WG	14	N1974	 Draft	Technical	Specification	–	October	14,	2015		 ISO/IEC	TS	18661-5	

©	ISO/IEC	2015	–	All	rights	reserved	 7	
	

[4]	 Each	 pragma	 shall	 occur	 either	 outside	 external	 declarations	 or	 preceding	 all	 explicit	
declarations	and	statements	inside	a	compound	statement.	When	outside	external	declarations,	
the	 pragma	 takes	 effect,	 on	 each	 optimization	 it	 controls,	 from	 its	 occurrence	 until	 another	
pragma	 that	 affects	 the	 same	optimization	 is	 encountered,	 or	 until	 the	 end	 of	 the	 translation	
unit.	 When	 inside	 a	 compound	 statement,	 the	 pragma	 takes	 effect,	 on	 each	 optimization	 it	5	
controls,	 from	 its	 occurrence	 until	 another	 pragma	 that	 affects	 the	 same	 optimization	 is	
encountered	(including	within	a	nested	compound	statement),	or	until	the	end	of	the	compound	
statement;	 at	 the	 end	 of	 a	 compound	 statement	 the	 state	 for	 allowing	 each	 optimization	
controlled	by	the	pragma	is	restored	to	its	condition	just	before	the	compound	statement.	

7.6.1e.1	The	FENV_ALLOW_VALUE_CHANGING_OPTIMIZATION	pragma	10	

Synopsis	

[1] #define __STDC_WANT_IEC_60559_ATTRIBS_EXT__
#include <fenv.h>
#pragma STDC FENV_ALLOW_VALUE_CHANGING_OPTIMIZATION on-off-switch

Description			15	

[1]	This	pragma	 is	 equivalent	 to	all	 the	optimization	pragmas	 specified	below,	with	 the	 same	
value	of	on-off-switch	(ON,	OFF,	or	DEFAULT).	

[2]	NOTE	 The	FENV_ALLOW_VALUE_CHANGING_OPTIMIZATION	 pragma	does	not	 affect	
the	evaluation	methods.	Nevertheless,	an	evaluation	method	characterized	by	a	negative	value	
of	 width	 (5.2.4.2.2a)	 might	 allow	 for	 indeterminable	 evaluation	 formats,	 hence	 unspecified	20	
result	values.		

7.6.1e.2	The	FENV_ALLOW_ASSOCIATIVE_LAW	pragma	

Synopsis	

[1] #define __STDC_WANT_IEC_60559_ATTRIBS_EXT__
#include <fenv.h> 25	
#pragma STDC FENV_ALLOW_ASSOCIATIVE_LAW on-off-switch

Description			

[2]	This	pragma	allows	or	disallows	optimizations	based	on	 the	 associative	 laws	 for	 addition	
and	multiplication	

x	+	(y	+	z)	=	(x	+	y)	+	z	30	
x	×	(y	×	z)	=	(x	×	y)	×	z	

where	on-off-switch	is	one	of	

ON	–	allow	application	of	the	associative	laws	

OFF	–	do	not	allow	application	of	the	associative	laws	

DEFAULT	–	“off”	35	

ISO/IEC	TS	18661-5	 Draft	Technical	Specification	–	October	14,	2015	 	 	 						WG	14	N1974	

8	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

[3]	 Note	 that	 this	 pragma	 allows	 optimizations	 based	 on	 similar	 mathematical	 identities	
involving	subtraction	and	division.	For	example,	since	the	identity	x	−	y	=	x	+	(−y)	is	valid	for	IEC	
60559	floating-point	arithmetic	(F.9.2),	this	pragma	also	allows	optimizations	based	on	

x	+	(y	−	z)	=	(x	+	y)	−	z	

Similarly,	 if	 the	 states	 for	 this	 pragma	 and	 the	FENV_ALLOW_MULTIPLY_BY_RECIPROCAL	5	
pragma	(7.6.1e.4)	are	both	“on”,	then	optimizations	based	on	the	following	are	allowed:	

x	×	(y	/	z)	=	(x	×	y)	/	z	

Note	also	that,	since	the	commutative	laws	

x	+	y	=	y	+	x	
x	×	y	=	y	×	x	10	

are	 valid	 for	 IEC	 60559	 floating-point	 arithmetic,	 the	 pragma	 allows	 optimizations	 based	 on	
identities	derived	from	the	associative	and	commutative	laws,	such	as	

x	+	(z	+	y)	=	(x	+	y)	+	z	

7.6.1e.3	The	FENV_ALLOW_DISTRIBUTIVE_LAW	pragma	

Synopsis	15	

[1] #define __STDC_WANT_IEC_60559_ATTRIBS_EXT__
#include <fenv.h>
#pragma STDC FENV_ALLOW_DISTRIBUTIVE_LAW on-off-switch

Description			

[2]	 This	 pragma	 allows	 or	 disallows	 optimizations	 based	 on	 the	 distributive	 laws	 for	20	
multiplication	and	division	

x	×	(y	+	z)	=	(x	×	y)	+	(x	×	z)	
x	×	(y	−	z)	=	(x	×	y)	−	(x	×	z)	
(x	+	y)	/	z	=	(x	/	z)	+	(y	/	z)	
(x	−	y)	/	z	=	(x	/	z)	−	(y	/	z)	25	

	where	on-off-switch	is	one	of	

ON	–	allow	application	of	the	distributive	laws	

OFF	–	do	not	allow	application	of	the	distributive	laws	

DEFAULT	–	“off”	

7.6.1e.4	The	FENV_ALLOW_MULTIPLY_BY_RECIPROCAL	pragma	30	

Synopsis	

[1] #define __STDC_WANT_IEC_60559_ATTRIBS_EXT__
#include <fenv.h>
#pragma STDC FENV_ALLOW_MULTIPLY_BY_RECIPROCAL on-off-switch

WG	14	N1974	 Draft	Technical	Specification	–	October	14,	2015		 ISO/IEC	TS	18661-5	

©	ISO/IEC	2015	–	All	rights	reserved	 9	
	

Description			

[2]	This	 pragma	 allows	or	 disallows	optimizations	 based	on	 the	mathematical	 equivalence	 of	
division	and	multiplication	by	the	reciprocal	of	the	denominator	

x	/	y	=	x	×	(1	/	y)	

where	on-off-switch	is	one	of	5	

ON	–	allow	multiply	by	reciprocal		

OFF	–	do	not	allow	multiply	by	reciprocal	

DEFAULT	–	“off”	

7.6.1e.5	The	FENV_ALLOW_ZERO_SUBNORMAL	pragma	

Synopsis	10	

[1] #define __STDC_WANT_IEC_60559_ATTRIBS_EXT__
#include <fenv.h>
#pragma STDC FENV_ALLOW_ZERO_SUBNORMAL on-off-switch

Description			

[2]	This	pragma	allows	or	disallows	replacement	of	 subnormal	operands	and	results	by	zero,	15	
where	on-off-switch	is	one	of	

ON	–	allow	replacement	of	subnormals	with	zero		

OFF	–	do	not	allow	replacement	of	subnormals	with	zero	

DEFAULT	–	“off”	

[3]	Within	 the	 scope	of	 this	pragma,	 the	 floating-point	operations	affected	by	 the	pragma	are	20	
the	 same	 operations	 as	 would	 be	 affected	 by	 the	 FENV_ROUND	 and	 FENV_DEC_ROUND	
pragmas	(7.6.1a,	7.6.1b).	Thus,	subnormal	operands	and	results	of	affected	operations	may	be	
replaced	 by	 zero.	 Functions	 not	 affected	 by	 the	 pragma	 behave	 as	 though	 no	
FENV_ALLOW_ZERO_SUBNORMAL	pragma	were	in	effect	at	the	site	of	the	call.	

7.6.1e.6	The	FENV_ALLOW_CONTRACT_FMA	pragma	25	

Synopsis	

[1] #define __STDC_WANT_IEC_60559_ATTRIBS_EXT__
#include <fenv.h>
#pragma STDC FENV_ALLOW_CONTRACT_FMA on-off-switch

ISO/IEC	TS	18661-5	 Draft	Technical	Specification	–	October	14,	2015	 	 	 						WG	14	N1974	

10	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

Description			

[2]	 This	 pragma	 allows	 or	 disallows	 contraction	 (6.5)	 of	 floating-point	 multiply	 and	 add	 or	
subtract	(with	the	result	of	the	multiply)	

x * y + z	
x * y − z	5	
x + y * z	
x − y * z	

where	on-off-switch	is	one	of	

ON	–	allow	contraction	for	floating-point	multiply-add		

OFF	–	do	not	allow	contraction	for	floating-point	multiply-add	10	

DEFAULT	–	implementation	defined	whether	“on”	or	“off”

[3]	NOTE	 IEC	60559	uses	the	term	synthesize	instead	of	contract.	

7.6.1e.7	The	FENV_ALLOW_CONTRACT_OPERATION_CONVERSION	pragma	

Synopsis	

[1] #define __STDC_WANT_IEC_60559_ATTRIBS_EXT__ 15	
#include <fenv.h>
#pragma STDC FENV_ALLOW_CONTRACT_OPERATION_CONVERSION on-off-switch

Description			

[2]	 This	 pragma	 allows	 or	 disallows	 contraction	 (6.5)	 of	 a	 floating-point	 operation	 and	 a	
conversion	(of	the	result	of	the	operation),	where	on-off-switch	is	one	of	20	

ON	–	allow	contraction	for	floating-point	operation-conversion		

OFF	–	do	not	allow	contraction	for	floating-point	operation-conversion	

DEFAULT	–	implementation	defined	whether	“on”	or	“off”	

[3]	Within	 the	 scope	of	 this	pragma,	 the	 floating-point	operations	affected	by	 the	pragma	are	
the	 same	 operations	 as	 would	 be	 affected	 by	 the	 FENV_ROUND	 and	 FENV_DEC_ROUND	25	
pragmas	(7.6.1a,	7.6.1b).	Thus,	an	affected	operation	may	be	contracted	with	a	conversion	of	its	
result.	 Functions	 not	 affected	 by	 the	 pragma	 behave	 as	 though	 no	
FENV_ALLOW_CONTRACT_OPERATION_CONVERSION	pragma	were	in	effect	at	the	site	of	the	
call.	

WG	14	N1974	 Draft	Technical	Specification	–	October	14,	2015		 ISO/IEC	TS	18661-5	

©	ISO/IEC	2015	–	All	rights	reserved	 11	
	

	[4]	EXAMPLE	 For	the	code	sequence	

 #define __STDC_WANT_IEC_60559_ATTRIBS_EXT__
#include <fenv.h>
#include <math.h>
#pragma STDC FENV_ALLOW_CONTRACT_OPERATION_CONVERSION ON 5	
float f1, f2;
double d1, d2;
…
f1 = d1 * d2;
f2 = sqrt(d1); 10	

the	multiply	 (operation)	 and	 assignment	 (conversion)	 are	 allowed	 to	 be	 evaluated	with	 just	 one	
rounding	(to	the	range	and	precision	of	float).	If	the	on-off-switch	for	the	pragma	were	OFF,	then	
the	multiply	 would	 have	 to	 be	 rounded	 according	 to	 the	 evaluation	method	 and	 the	 assignment	
would	 require	 a	 second	 rounding.	 With	 the	 given	 code,	 the	 sqrt	 function	 may	 be	 replaced	 by	
fsqrt,	avoiding	the	need	for	a	separate	operation	to	convert	the	double	result	of	sqrt	to	float.		15	

7.6.1e.8	The	FENV_ALLOW_CONTRACT	pragma	

Synopsis	

[1] #define __STDC_WANT_IEC_60559_ATTRIBS_EXT__
#include <fenv.h>
#pragma STDC FENV_ALLOW_CONTRACT on-off-switch 20	

Description			

[2]	This	pragma	allows	or	disallows	contraction	(6.5)	 for	 floating-point	operations,	where	on-
off-switch	is	one	of	

ON	–	allow	contraction	for	floating-point	operations		

OFF	–	do	not	allow	contraction	for	floating-point	operations	25	

DEFAULT	–	implementation	defined	whether	“on”	or	“off”	

[3]	 The	 optimizations	 controlled	 by	 this	 pragma	 include	 those	 controlled	 by	 the	
FENV_ALLOW_CONTRACT_FMA	 and	 FENV_ALLOW_CONTRACT_OPERATION_CONVERSION	
pragmas.	

[4]	 This	 pragma	 is	 equivalent	 to	 the	FP_CONTRACT	 pragma	 in	<math.h>:	 the	 two	 pragmas	30	
may	 be	 used	 interchangeably,	 provided	 the	 appropriate	 header	 is	 included	 and	 the	
implementation	defines	__STDC_WANT_IEC_60559_ATTRIBS_EXT__.	

9	 Reproducibility	

IEC	 60559	 recommends	 an	 attribute	 to	 facilitate	 writing	 programs	 whose	 floating-point	 results	 and	
exception	 flags	 will	 be	 reproducible	 on	 any	 implementation	 that	 supports	 the	 language	 and	 library	35	
features	used	by	the	program.	Such	code	must	use	only	those	features	of	the	language	and	library	that	
support	reproducible	results.	These	features	include	ones	with	a	well-defined	binding	to	reproducible	
features	of	IEC	60559,	so	that	no	unspecified	or	implementation-defined	behavior	is	admitted.	This	part	
of	ISO/IEC	TS	18661	provides	a	pragma	to	support	the	IEC	60559	attribute	for	reproducible	results	and	
gives	requirements	for	programs	to	have	reproducible	results.	40	

ISO/IEC	TS	18661-5	 Draft	Technical	Specification	–	October	14,	2015	 	 	 						WG	14	N1974	

12	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

Change	to	C11	+	TS18661-1	+	TS18661-2	+	TS18661-3	+	TS18661-4:		

After	7.6.1e,	insert:	

7.6.1f	 Reproducible	results	

[1]	The	pragma	in	this	subclause	supports	the	reproducible	results	attribute	recommended	in	
IEC	 60559.	 Where	 the	 state	 of	 the	 pragma	 is	 “on”,	 floating-point	 numerical	 results	 and	5	
exception	 flags	 are	 reproducible	 on	 implementations	 that	 define	
__STDC_IEC_60559_ATTRIBS__	and	that	support	the	language	and	library	features	used	by	
the	 source	 code,	 provided	 the	 source	 code	 uses	 a	 limited	 set	 of	 features	 as	 described	 below	
(7.6.1f.2).		

[2]	 An	 implementation	 that	 defines	 __STDC_IEC_60559_ATTRIBS__	 also	 defines	 either	10	
__STDC_IEC_60559_BFP__	 or	 __STDC_IEC_60559_DFP__,	 or	 both.	 If	 the	
implementation	 defines	 __STDC_IEC_60559_BFP__,	 it	 supports	 reproducible	 results	 for	
binary	 floating-point	arithmetic.	 If	 the	 implementation	defines	__STDC_IEC_60559_DFP__,	
it	 supports	 reproducible	 results	 for	 decimal	 floating-point	 arithmetic.	 If	 the	 implementation	
defines	__STDC_IEC_60559_TYPES__,	 then	 it	supports	reproducible	results	 for	code	using	15	
its	 interchange	 floating	 types.	 If	 the	 implementation	defines	__STDC_IEC_60559_FUNCS__	
and	 it	 provides	 a	 set	 of	 correctly	 rounded	 math	 functions	 (7.31.6a),	 then	 it	 supports	
reproducible	results	for	code	using	correctly	rounded	math	functions	from	that	set.	

7.6.1f.1	The	FENV_REPRODUCIBLE	pragma	

Synopsis	20	

[1] #define __STDC_WANT_IEC_60559_ATTRIBS_EXT__
#include <fenv.h>
#pragma STDC FENV_REPRODUCIBLE on-off-switch

Description			

[2]	This	pragma	enables	or	disables	 support	 for	 reproducible	 results.	The	pragma	shall	occur	25	
either	outside	external	declarations	or	preceding	all	explicit	declarations	and	statements	inside	
a	 compound	 statement.	When	 outside	 external	 declarations,	 the	 pragma	 takes	 effect	 from	 its	
occurrence	until	another	FENV_REPRODUCIBLE	pragma	is	encountered,	or	until	the	end	of	the	
translation	 unit.	 When	 inside	 a	 compound	 statement,	 the	 pragma	 takes	 effect	 from	 its	
occurrence	 until	 another	 FENV_REPRODUCIBLE	 pragma	 is	 encountered	 (including	 within	 a	30	
nested	 compound	 statement),	 or	 until	 the	 end	 of	 the	 compound	 statement;	 at	 the	 end	 of	 a	
compound	 statement	 the	 state	 for	 the	 pragma	 is	 restored	 to	 its	 condition	 just	 before	 the	
compound	statement.		

[3]	If	the	state	of	the	pragma	is	“on”,	then	the	effects	of	the	following	are	implied	

#pragma STDC FENV_ACCESS ON 35	
#pragma STDC FENV_ALLOW_VALUE_CHANGING_OPTIMIZATION OFF	

and	if	__STDC_IEC_60559_BFP__	is	defined	

#pragma STDC FENV_FLT_EVAL_METHOD 0

WG	14	N1974	 Draft	Technical	Specification	–	October	14,	2015		 ISO/IEC	TS	18661-5	

©	ISO/IEC	2015	–	All	rights	reserved	 13	
	

and	if	__STDC_IEC_60559_DFP__	is	defined	

#pragma STDC FENV_DEC_EVAL_METHOD 1

[4]	 If	 the	 pragma	 appears	 with	 the	 on-off-switch	 OFF	 under	 the	 effect	 of	 a	 pragma	 with	
on-off-switch	ON,	then	the	states	of	the	FENV_ACCESS	pragma,	the	value-changing	optimization	
pragmas,	and	the	evaluation	method	pragmas		(even	an	evaluation	method	pragma	whose	state	5	
was	 explicitly	 changed	 under	 the	 effect	 of	 the	 pragma	with	 on-off-switch	ON)	 revert	 to	 their	
states	 prior	 to	 the	 pragma	with	 on-off-switch	ON.	 The	 pragma	with	on-off-switch	OFF	 has	 no	
effect	if	it	occurs	where	the	state	of	the	pragma	is	“off”.	

[5]	The	“default”	state	of	the	pragma	is	“off”.	

[6]	 The	 implementation	 should	 produce	 a	 diagnostic	 message	 if,	 where	 the	 state	 of	 the	10	
FENV_REPRODUCIBLE	 pragma	 is	 “on”,	 the	 source	 code	 uses	 a	 language	 or	 library	 feature	
whose	results	may	not	be	reproducible.		

7.6.1f.2	Reproducible	code	

[1]	 Following	 are	 requirements	 for	 a	 code	 sequence	 in	 order	 that	 its	 results	 will	 be	
reproducible.	If	the	code	uses	optional	features	noted	below,	then	results	are	reproducible	only	15	
on	implementations	that	support	those	features.		

⎯ The	 code	 translates	 into	 a	 sequence	 of	 floating-point	 operations	 that	 are	 bound	 to	 IEC	
60559	operations,	as	described	in	F.3	in	the	table	entitled	“Operation	binding”.		

⎯ The	code	does	not	contain	any	use	that	may	result	in	undefined	behavior.	The	code	does	not	
depend	on	any	behavior	that	is	unspecified,	implementation-defined,	or	locale-specific.	See	20	
Annex	J.	

⎯ The	code	is	under	the	effect	of	the	FENV_REPRODUCIBLE	pragma	(with	state	“on”).	

⎯ The	code	does	not	set	the	state	of	any	pragma	that	allows	value-changing	optimizations	to	
“on”	or	“default”.	

⎯ The	code	does	not	set	the	state	of	the	FENV_ACCESS	pragma	to	“off”	or	“default”.	25	

⎯ The	code	does	not	use	the	FENV_FLT_EVAL_METHOD	pragma	with	any	width	except	0	or	1.	
Support	for	width	equal	to	1	is	an	optional	feature.	

⎯ The	code	does	not	use	the	FENV_DEC_EVAL_METHOD	pragma	with	any	width	except	1	or	2.	
Support	for	width	equal	to	2	is	an	optional	feature.	

⎯ Use	 of	 an	 FENV_EXCEPT	 pragma	 with	 an	 except-list	 that	 includes	 sub-exceptions	 is	 an	30	
optional	feature.		

⎯ The	code	does	not	use	an	FENV_EXCEPT	pragma	with	an	action	BREAK,	TRY,	or	CATCH.	

⎯ The	code	does	not	use	the	long double	type.	

⎯ If	__STDC_IEC_60559_BFP__	 is	 not	 defined	by	 the	 implementation,	 the	 code	does	not	
use	any	standard	floating	types.	35	

ISO/IEC	TS	18661-5	 Draft	Technical	Specification	–	October	14,	2015	 	 	 						WG	14	N1974	

14	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

⎯ Even	if	__STDC_IEC_60559_TYPES__	is	defined,	the	code	does	not	use	extended	floating	
types.	Even	if	__STDC_IEC_60559_TYPES__	is	defined,	some	interchange	floating	types	
are	optional	features.	

⎯ The	code	does	not	use	complex	or	imaginary	types.	

⎯ The	code	does	not	use	signaling	NaNs.	5	

⎯ The	code	does	not	use	the	remquo	functions.	

⎯ The	code	does	not	depend	on	the	sign	of	a	zero	result	or	the	quantum	of	a	decimal	result	for	
the	fmin,	fmax,	fminmag,	and	fmaxmag	functions	when	the	arguments	are	equal.	

⎯ The	code	does	not	depend	on	the	payloads	(F.10.13)	or	sign	bits	of	quiet	NaNs.	

⎯ The	code	does	not	depend	on	the	“underflow”	or	“inexact”	floating-point	exceptions	or	flags.	10	

⎯ The	code	does	not	use	extended	integer	types.		

⎯ The	 code	 does	 not	 depend	 on	 conversions	 between	 binary	 floating	 types	 and	 character	
sequences	 with	 more	 than	 M	 +	 3	 significant	 decimal	 digits,	 where	 M	 is	 17	 if	
__STDC_IEC_60559_TYPES__	 is	 not	 defined	 (by	 the	 implementation),	 and	 M	 is	
1	+	⎡p×log10(2)⎤,	 where	 p	 is	 the	 precision	 of	 the	 widest	 supported	 binary	 interchange	15	
floating	 type,	 if	 __STDC_IEC_60559_TYPES__	 is	 defined.	 Even	 if	
__STDC_IEC_60559_TYPES__	 is	 defined,	 support	 for	 interchange	 floating	 types	wider	
than	 binary64	 is	 an	 optional	 feature.	 (This	 specification	 differs	 from	 IEC	 60559	 which	
requires	 that	 an	 implementation	 supporting	 reproducibility	 not	 limit	 the	 number	 of	
significant	decimal	digits	for	correct	rounding.)	20	

⎯ The	code	does	not	depend	on	the	actual	character	sequence	in	printf	results	with	style	a	
(or	A),	 nor	 does	 it	 depend	 on	 numerical	 values	 of	 such	 results	when	 the	 precision	 is	 not	
sufficient	for	an	exact	representation.			

10	Alternate	exception	handling	

IEC	 60559	 arithmetic	 raises	 floating-point	 exceptions	 as	 a	 way	 to	 inform	 the	 program	 when	 an	25	
operation	encounters	problematic	 inputs,	 such	 that	no	one	result	would	be	suitable	 for	all	 situations.	
The	default	exception	handling	in	IEC	60559	is	intended	to	be	more	useful	in	more	situations	than	other	
schemes,	or	at	least	predictable.	However,	other	exception	handling	is	more	useful	in	certain	situations.	
Thus,	IEC	60559	describes	alternate	exception	handling	and	recommends	that	programming	languages	
provide	a	means	for	the	program	to	specify	which	exception	handling	will	be	done.	30	

Changes	to	C11	+	TS18661-1	+	TS18661-2	+	TS18661-3	+	TS18661-4:		

After	7.6.1f.2,	insert:	

7.6.1g	 Alternate	exception	handling	

[1]	When	a	floating-point	exception	is	raised,	the	IEC	60559	default	exception	handling	sets	the	
appropriate	 exception	 flag(s),	 returns	 a	 specified	 result,	 and	 continues	 execution.	 IEC	 60559	35	
also	prescribes	alternate	exception	handling.	The	pragma	in	this	subclause	provides	a	means	for	
the	program	to	choose	the	method	of	exception	handling.	The	pragma	applies	to	operations	on	
all	floating-point	types.	

WG	14	N1974	 Draft	Technical	Specification	–	October	14,	2015		 ISO/IEC	TS	18661-5	

©	ISO/IEC	2015	–	All	rights	reserved	 15	
	

[2]	 For	 the	 “underflow”	 exception,	 the	 chosen	 exception	 handling	 occurs	 if	 the	 exception	 is	
raised,	whether	the	default	result	would	be	exact	or	inexact,	unless	stated	otherwise.	

[3]	 Alternate	 exception	 handling	 is	 an	 optional	 feature	 for	 implementations	 that	 support	 IEC	
60559	attributes.	Implementations	that	provide	the	feature	define	the	macro	

__STDC_IEC_60559_ATTRIB_ALTERNATE_EXCEPTION_HANDLING__ 5	

as	well	as	

__STDC_IEC_60559_ATTRIBS__

See	6.10.8.3.	

7.6.1g.1	The	FENV_EXCEPT pragma	

Synopsis	10	

[1] #define __STDC_WANT_IEC_60559_ATTRIBS_EXT__
#include <fenv.h>
#pragma STDC FENV_EXCEPT action except-list

Description			

[2]	The	FENV_EXCEPT	pragma	sets	the	method	specified	by	action	for	handling	the	exceptions	15	
represented	by	except-list.		

[3]	 The	 pragma	 shall	 occur	 either	 outside	 external	 declarations,	 unless	 stated	 otherwise,	 or	
preceding	all	explicit	declarations	and	statements	inside	a	compound	statement,	which	then	is	
the	compound	statement	associated	with	the	pragma.	When	outside	external	declarations,	the	
pragma	action	 for	a	designated	exception	takes	effect	from	the	occurrence	of	the	pragma	until	20	
another	FENV_EXCEPT	pragma	designating	the	same	exception	is	encountered,	or	until	the	end	
of	the	translation	unit.	When	inside	a	compound	statement,	the	pragma	action	for	a	designated	
exception	takes	effect	from	the	occurrence	of	the	pragma	until	another	FENV_EXCEPT	pragma	
designating	 the	 same	 exception	 is	 encountered	 (including	 within	 a	 nested	 compound	
statement),	or	until	 the	end	of	 the	compound	statement;	at	 the	end	of	a	compound	statement	25	
the	state	 for	handling	each	exceptions	 in	except-list	 is	restored	to	 its	condition	 just	before	the	
compound	statement.	

[4]	Within	the	scope	of	an	FENV_EXCEPT	pragma,	the	floating-point	operations	affected	by	the	
pragma	 are	 the	 same	 operations	 as	 would	 be	 affected	 by	 the	 FENV_ROUND	 and	
FENV_DEC_ROUND	pragmas	(7.6.1a,	7.6.1b).	Thus,	exceptions	raised	by	affected	operations	are	30	
handled	 according	 to	 the	 specified	 action.	 Functions	 not	 affected	 by	 the	 pragma	 behave	 as	
though	no	FENV_EXCEPT	pragma	were	in	effect	at	the	site	of	the	call.	

[5]	Within	the	scope	of	an	FENV_EXCEPT	pragma,	explicitly	accessing	the	flag	of	a	designated	
exception	results	in	undefined	behavior.		

ISO/IEC	TS	18661-5	 Draft	Technical	Specification	–	October	14,	2015	 	 	 						WG	14	N1974	

16	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

[6]	 except-list	 shall	 be	 a	 comma-separated	 list	 of	 supported	 exception	 designations	 (or	 one	
supported	 exception	 designation).	 The	 supported	 exception	 designations	 shall	 include	 the	
exception	macro	identifiers	(7.6)	

FE_DIVBYZERO
FE_INEXACT 5	
FE_INVALID
FE_OVERFLOW
FE_UNDERFLOW
FE_ALL_EXCEPT

and	should	include	designations	for	the	sub-exceptions	10	

—	 “invalid”	floating-point	exceptions	from	add	and	subtract	operators	and	functions	that	add	
or	subtract	(7.12.13a.1,	7.12.13a.2),	not	caused	by	signaling	NaN	input	

FE_INVALID_ADD

—	 “invalid”	 floating-point	 exceptions	 from	 divide	 operators	 and	 functions	 that	 divide	
(7.12.13a.4),	not	caused	by	signaling	NaN	input	15	

FE_INVALID_DIV

—	 “invalid”	 floating-point	 exceptions	 from	 functions	 that	 compute	 multiply-add	 (7.12.13.1,	
7.12.13a.5)	and	 from	contracted	multiply	and	add	operators,	not	caused	by	signaling	NaN	
input	

FE_INVALID_FMA 20	

—	 “invalid”	 floating-point	 exceptions	 from	 conversions	 from	 floating	 to	 integer	 types,	 not	
caused	by	signaling	NaN	input	

FE_INVALID_INT

—	 “invalid”	 floating-point	 exceptions	 from	 ilogb	 and	 llogb	 functions,	 not	 caused	 by	
signaling	NaN	input	25	

FE_INVALID_ILOGB

—	 “invalid”	 floating-point	 exceptions	 from	 multiply	 operators	 and	 functions	 that	 multiply	
(7.12.13a.3),	not	caused	by	signaling	NaN	input	

FE_INVALID_MUL

—	 “invalid”	 floating-point	 exceptions	 from	 the	quantize	 functions,	 not	 caused	by	 signaling	30	
NaN	input	

FE_INVALID_QUANTIZE

—	 “invalid”	floating-point	exceptions	from	the	remainder	and	remquo	functions,	not	caused	
by	signaling	NaN	input	

FE_INVALID_REM 35	

—	 “invalid”	 floating-point	 exceptions	 from	 functions	 that	 compute	 square	 root	 (7.12.7.5,	
7.12.13a.6),	not	caused	by	signaling	NaN	input	

FE_INVALID_SQRT

—	“invalid”	floating-point	exceptions	caused	by	signaling	NaN	input	
FE_INVALID_SNAN 40	

WG	14	N1974	 Draft	Technical	Specification	–	October	14,	2015		 ISO/IEC	TS	18661-5	

©	ISO/IEC	2015	–	All	rights	reserved	 17	
	

—	 “invalid”	 floating-point	 exceptions	 from	 relational	 operators	 and	 comparison	macros,	 not	
caused	by	signaling	NaN	input	

FE_INVALID_UNORDERED

—	 “divide-by-zero”	floating-point	exceptions	from	divide	operators	and	functions	that	divide	
FE_DIVBYZERO_ZERO 5	

—	 “divide-by-zero”	floating-point	exceptions	from	logarithm	and	logb	functions		
FE_DIVBYZERO_LOG

[7]	action	shall	be	a	designation	of	a	supported	exception	handling	method,	which	shall	include	

—	 default	exception	handling	(as	specified	in	IEC	60559).	
DEFAULT 10	

—	 default	exception	handling,	but	without	setting	the	flag.	
NO_FLAG

—	 default	exception	handling,	but	whether	the	flag	is	set	(as	with	default	exception	handling),	
and	for	which	operations	and	their	occurrences,	is	unspecified.	

OPTIONAL_FLAG 15	

—	 abrupt	 underflow.	 If	 an	 “underflow”	 floating-point	 exception	 occurs	 (see	 IEC	 60559),	 the	
operation	delivers	a	result	with	magnitude	zero	or	the	minimum	normal	magnitude	(for	the	
result	 format)	 and	with	 the	 same	 sign	as	 the	default	 result,	 sets	 the	 “underflow”	 floating-
point	exception	flag,	and	raises	the	“inexact”	floating-point	exception.	When		

	20	
rounding	to	nearest,	ties	to	even	
rounding	to	nearest,	ties	away	from	zero	

or	

rounding	toward	zero	

the	result	magnitude	is	zero.	When	rounding	toward	positive	infinity,	the	result	magnitude	25	
is	the	minimum	normal	magnitude	if	the	result	sign	is	positive,	and	zero	if	the	result	sign	is	
negative.	When	 rounding	 toward	 negative	 infinity,	 the	 result	 magnitude	 is	 the	minimum	
normal	magnitude	if	the	result	sign	is	negative,	and	zero	if	the	result	sign	is	positive.	Abrupt	
underflow	 has	 no	 effect	 on	 the	 interpretation	 of	 subnormal	 operands.	 The	 action	 has	 no	
effect	if	FE_UNDERFLOW	is	not	included	in	except-list.	30	

ABRUPT_UNDERFLOW

—	 break.	Terminate	execution	of	the	compound	statement	associated	with	the	pragma.	Then,	
continue	execution	after	the	associated	compound	statement.	When	termination	occurs,	the	
following	 apply:	if	 the	 execution	 to	 completion	 of	 the	 associated	 compound	 statement	
(without	 the	 break)	 would	 at	 any	 point	 modify	 an	 object,	 the	 value	 of	 the	 object	 is	35	
indeterminate;	 if	 the	 execution	would	modify	 the	 state	 of	 the	dynamic	 rounding	mode	or	
any	 state	 maintained	 by	 the	 standard	 library	 (e.g.,	 in	 the	 I/O	 system),	 the	 state	 is	
unspecified;	 the	 values	 of	 flags	 for	 the	 designated	 exceptions	 are	 unspecified.	 (Thus,	
termination	 may	 occur	 as	 soon	 as	 possible	 after	 the	 exception	 is	 raised,	 to	 maximize	
performance.)	The	pragma	with	this	action	shall	appear	only	in	a	compound	statement.	40	

BREAK	

ISO/IEC	TS	18661-5	 Draft	Technical	Specification	–	October	14,	2015	 	 	 						WG	14	N1974	

18	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

The	following	two	actions	work	together.	The	pragmas	with	these	actions	shall	appear	only	in	
compound	statements.	A	compound	statement	associated	with	a	try	action	may	be	paired	with	
one	or	more	compound	statements	each	associated	with	a	catch	action.	Compound	statements	
associated	 with	 catch	 actions	 shall	 appear	 contiguously	 immediately	 below	 the	 compound	
statement	associated	with	the	try	action,	except	for	white	space	(including	comments).	5	
	
—	 try.	The	designated	exceptions	may	be	handled	by	a	catch	action.	It	is	unspecified	whether	

flags	 for	 designated	 exceptions	 that	 are	 set	 in	 the	 execution	 of	 the	 associated	 compound	
statement	 are	 restored	 to	 their	 states	 before	 the	 associated	 compound	 statement.	 The	
associated	compound	statement	shall	not	be	the	statement	of	a	selection	(6.8.4)	or	iteration	10	
(6.8.5)	 statement.	 There	 shall	 be	 no	 jumps	 into	 or	 out	 of	 the	 associated	 compound	
statement,	other	than	to	handle	an	exception,	as	specified	below.	

TRY

—	 catch.	If	any	exception	with	the	same	designation	for	both	the	try	action	and	a	catch	action	
occurs	in	the	execution	of	the	compound	statement	associated	with	the	try	action,	jump	to	a	15	
compound	statement	associated	with	some	occurring	exception	with	the	same	designation	
for	 the	 try	 action	 and	 a	 catch	 action.	 Upon	 completion	 of	 the	 associated	 compound	
statement,	 continue	 execution	 after	 the	 last	 of	 the	 compound	 statements	 associated	with	
catch	actions.	Each	exception	designation	shall	be	listed	in	at	most	one	of	the	pragmas	with	
a	catch	action.	The	 jump	target	should	be	a	compound	statement	associated	with	 the	 first	20	
occurring	designated	exception.	When	the	jump	occurs,	the	following	apply:	if	the	execution	
of	the	associated	compound	statement	to	completion	(without	the	jump)	would	at	any	point	
modify	an	object,	the	value	of	the	object	is	indeterminate;	if	the	execution	would	modify	the	
state	of	the	dynamic	rounding	mode	or	any	state	maintained	by	the	standard	library	(e.g.,	in	
the	I/O	system),	the	state	is	unspecified.	(Thus,	the	jump	may	occur	as	soon	as	possible	after	25	
the	 exception	 is	 raised,	 to	 maximize	 performance).	 The	 compound	 statement	 associated	
with	 a	 catch	 action	 is	 executed	 only	 to	 handle	 an	 exception	 occurring	 in	 the	 compound	
statement	associated	with	 the	 try	 action.	There	shall	be	no	other	 jumps	 into	or	out	of	 the	
compound	statement	associated	with	a	catch	action.	

CATCH	30	

The	following	two	actions	work	together.	The	pragmas	with	these	actions	shall	appear	only	in	
compound	 statements.	 A	 compound	 statement	 associated	 with	 a	 delayed-try	 action	 may	 be	
paired	 with	 one	 or	more	 compound	 statements	 each	 associated	 with	 a	 delayed-catch	 action.	
Compound	 statements	 associated	 with	 delayed-catch	 actions	 shall	 appear	 contiguously	
immediately	below	the	compound	statement	associated	with	the	delayed-try	action,	except	for	35	
white	space	(and	comments).	For	 (optional)	support	of	sub-expressions,	 the	exceptions,	 flags,	
and	functions	in	the	specification	below	are	assumed	to	be	extended	for	sub-expressions.		
	
—	 delayed-try.	 The	 designated	 exceptions	may	 be	 handled	 by	 a	delayed-catch	 action.	 Before	

executing	 the	 compound	 statement	 associated	 with	 the	 delayed-try	 action,	 save	 (as	 by	40	
fegetexceptflag)	 the	 states	of	 the	 flags	 for	 the	designated	exceptions,	 and	 then	 clear	
(as	 by	 feclearexcept)	 the	 designated	 exceptions.	 After	 normal	 completion	 of	 the	
associated	 compound	 statement,	 re-save	 the	 states	 of	 the	 designated	 exceptions.	 Then	
restore	 (as	 by	 fesetexceptflag)	 the	 designated	 exception	 flag	 states	 before	 the	
associated	 compound	 statement.	 The	 associated	 compound	 statement	 shall	 not	 be	 the	45	
statement	of	a	selection	(6.8.4)	or	iteration	(6.8.5)	statement.	There	shall	be	no	jumps	into	
or	out	of	the	associated	compound	statement.	

DELAYED_TRY

—	 delayed-catch.	 Test	 (as	 by	 fetestexceptflag)	 the	 exception	 flag	 states	 saved	 after	
completion	 of	 the	 compound	 statement	 associated	 with	 the	 delayed-try	 action.	 If	 any	50	

WG	14	N1974	 Draft	Technical	Specification	–	October	14,	2015		 ISO/IEC	TS	18661-5	

©	ISO/IEC	2015	–	All	rights	reserved	 19	
	

exception	with	 the	 same	designation	 for	 the	delayed-try	 action	and	a	delayed-catch	 action	
occurred	 (as	 determined	 by	 flag	 state	 tests),	 jump	 to	 the	 first	 compound	 statement	
associated	with	an	occurring	exception	with	the	same	designation	for	the	delayed-try	action	
and	 a	 delayed-catch	 action.	 Upon	 completion	 of	 the	 associated	 compound	 statement,	
continue	execution	after	the	last	of	the	compound	statements	associated	with	delayed-catch	5	
actions.	 Each	 exception	 designation	 shall	 be	 listed	 in	 at	most	 one	 of	 the	 pragmas	with	 a	
delayed-catch	 action.	 The	 compound	 statement	 associated	 with	 a	 delayed-catch	 action	 is	
executed	only	to	handle	an	exception	occurring	in	the	compound	statement	associated	with	
the	delayed-try	action.	There	shall	be	no	other	jumps	into	or	out	of	the	compound	statement	
associated	with	a	delayed-catch	action.	10	

DELAYED_CATCH	

EXAMPLE	 This	example	illustrates	behavioral	differences	between	try	and	catch	actions	and	
delayed-try	and	delayed-catch	actions.	

Code	sequence	with	try	and	catch	actions:	

#pragma STDC FENV_ACCESS ON 15	
#include <fenv.h>
double d[n];
float f[n];
…	
{ 20	

#pragma STDC FENV_EXCEPT TRY FE_DIVBYZERO, FE_OVERFLOW
for (i=0; i<n; i++) {

f[i] = 1.0 / d[i];
}

} 25	
{

#pragma STDC FENV_EXCEPT CATCH FE_DIVBYZERO
printf(“divide-by-zero\n”);

}
{ 30	

#pragma STDC FENV_EXCEPT CATCH FE_OVERFLOW
printf(“overflow\n”);

}
…	

The	same	code	but	with	delayed-try	and	delayed-catch	actions:	35	

ISO/IEC	TS	18661-5	 Draft	Technical	Specification	–	October	14,	2015	 	 	 						WG	14	N1974	

20	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

#pragma STDC FENV_ACCESS ON
#include <fenv.h>
double d[n];
float f[n];
…	5	
{

#pragma STDC FENV_EXCEPT DELAYED_TRY \
FE_DIVBYZERO, FE_OVERFLOW

for (i=0; i<n; i++) {
f[i] = 1.0 / d[i]; 10	

}
}
{

#pragma STDC FENV_EXCEPT DELAYED_CATCH FE_DIVBYZERO
printf(“divide-by-zero\n”); 15	

}
{

#pragma STDC FENV_EXCEPT DELAYED_CATCH FE_OVERFLOW
printf(“overflow\n”);

} 20	
…	

The	following	table	shows	examples	of	inputs	and	results	for	the	two	code	sequences	above.	

	 try	-	catch	 delayed-try	–	delayed-catch	
Input	d	 0.5,	0.0	
Results	 	 	
f	=	1	/ d indeterminate,	

indeterminate	
2.0,	infinity	

output	 “divide-by-zero”	 “divide-by-zero”	
“divide-by-zero”	flag	 unspecified	(set	or	restored)	 restored	
“overflow”	flag	 unchanged	 restored	(unchanged)	

	 	
Input	d	 0.5,	−1e100	
Results	 	 	
f	=	1	/ d indeterminate,	

indeterminate	
2.0,	infinity	

output	 “overflow”	 “overflow”	
“divide-by-zero”	flag	 unchanged	 restored	(unchanged)	
“overflow”	flag	 unspecified	(set	or	restored)	 restored	

	 	
Input	d	 −1e100,	0.0	

Results	 	 	
f	=	1	/ d indeterminate,	

indeterminate	
infinity,	infinity	

output	 “overflow”	
(recommended)	or	
“divide-by-zero”	

“divide-by-zero”	

“divide-by-zero”	flag	 unspecified	(set	or	restored)	 restored	
“overflow”	flag	 unspecified	(set	or	restored)	 restored	
	

WG	14	N1974	 Draft	Technical	Specification	–	October	14,	2015		 ISO/IEC	TS	18661-5	

©	ISO/IEC	2015	–	All	rights	reserved	 21	
	

NOTE	 The	delayed-try	and	delayed-catch	actions	are	deterministic.	They	can	be	implemented	
with	 the	 floating-point	exception	 flags.	The	 following	code	sequence	 is	equivalent	 to	 the	code	
sequence	using	delayed-try	and	delayed-catch	in	the	example	above.		

#pragma STDC FENV_ACCESS ON
#include <fenv.h> 5	
double d[n];
float f[n];
…	
{

fexcept_t old_except, new_except; 10	
fegetexceptflag(&old_except, FE_DIVBYZERO | FE_OVERFLOW);
feclearexcept(FE_DIVBYZERO | FE_OVERFLOW);
{

for (i=0; i<n; i++) {
f[i] = 1.0 / d[i]; 15	

}
}
fegetexceptflag(&new_except, FE_DIVBYZERO | FE_OVERFLOW);
fesetexceptflag(&old_except, FE_DIVBYZERO | FE_OVERFLOW);
if (fetestexceptflag(&new_except, FE_DIVBYZERO)) { 20	
 printf(“divide-by-zero\n”);
}
else if (fetestexceptflag(&new_except, FE_OVERFLOW)) {
 printf(“overflow\n”);
} 25	

}
…	
	

NOTE	 The	 try	 and	 catch	 actions	 are	 not	 deterministic	 (see	 example	 above),	 which	 allows	
more	implementation	flexibility	for	better	performance.		30	
	
In	most	cases,	the	try	and	catch	actions	can	be	implemented	like	delayed-try	and	delayed-catch	
actions,	 though	 not	 for	 the	 “underflow”	 exception	 (which	 occurs	 without	 causing	 the	
“underflow”	 flag	 to	 be	 set,	 in	 cases	 of	 exact	 results	 near	 the	 underflow	 threshold).	 Such	 an	
implementation	 would	 not	 always	 handle	 the	 first	 occurring	 designated	 exception,	 as	35	
recommended.	
	
An	implementation	of	try	and	catch	actions	using	floating-point	exception	traps	might	well	be	
able	 to	 handle	 the	 first	 occurring	 designated	 exception	 (including	 “underflow”),	 as	
recommended,	and	achieve	better	performance.		40	

In	7.6.1g.1,	in	the	try	bullet,	attach	a	footnote	to	the	wording:	

The	associated	compound	statement	shall	not	be	the	statement	of	a	selection	(6.8.4)	or	iteration	
(6.8.5)	statement.	

where	the	footnote	is:	

*)	 The	 compound	 statements	 associated	 with	 a	 try	 action	 and	 its	 catch	 actions,	 together	45	
enclosed	in	braces,	may	be	the	statement	of	a	selection	or	iteration	statement.	For	example,	the	
following	code	segment	is	permitted:	

ISO/IEC	TS	18661-5	 Draft	Technical	Specification	–	October	14,	2015	 	 	 						WG	14	N1974	

22	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

for (i = 0; i < n; i++) {
{

#pragma STDC FENV_EXCEPT TRY FE_OVERFLOW
y[i] = x[i] * x[i];

} 5	
{

#pragma STDC FENV_EXCEPT CATCH FE_OVERFLOW
y[i] = DBL_MAX;

}
} 10	

In	6.5.16.2,	in	footnote	113,	change:	

For	 example,	 if	 annex	 F	 is	 in	 effect,	 the	 floating	 types	 involved	have	 IEC	60559	 formats,	 and	
FLT_EVAL_METHOD	is	0,	the	equivalent	code	would	be:	

to:	

For	 example,	 if	 annex	 F	 is	 supported,	 the	 floating	 types	 involved	 have	 IEC	 60559	 formats,	15	
FLT_EVAL_METHOD	is	0,	and	no	FENV_EXCEPT	pragma	is	in	effect,	the	equivalent	code	would	
be:	
	

	

WG	14	N1974	 Draft	Technical	Specification	–	October	14,	2015		 ISO/IEC	TS	18661-5	

©	ISO/IEC	2015	–	All	rights	reserved	 23	
	

Bibliography	

[1]	 IEC	60559:1989,	Binary	floating-point	arithmetic	for	microprocessor	systems,	second	edition	

[2]	 IEEE	754−1985,	IEEE	Standard	for	Binary	Floating-Point	Arithmetic	

[3]	 IEEE	754-2008,	IEEE	Standard	for	Floating-Point	Arithmetic	

[4]	 IEEE	854−1987,	IEEE	Standard	for	Radix-Independent	Floating-Point	Arithmetic	5	

[5]	 ISO/IEC	9899:2011/Cor.1:2012,	 Information	 technology	—	 Programming	 languages	—	
C	/	Technical	Corrigendum	1	

