WORKING DRAFT ISO SC22/WG14 — N1519: Latency Reducing Memory
Allocation: [v1.91 Oct 2010]

N1519: Latency Reducing Memory Allocation in the
C standard library —

A minimal change in the dynamic memory allocation API in order to reduce
system memory bandwidth usage

e THIS IS A PRERELEASE COPY ***

v1.91 11th October 2010

Niall Douglas MBS MA BSc ned Productions IT Consulting Limited
Cork, Ireland http://www.nedproductions.biz/
— Changelog:

— v1.91 draft 1 (11th Oct 2010): Pre-release to those who have partaken in consultation process so far.

— v1.00 (8th Sept 2010): First release onto http://mallocv2.wordpress.com/.

Contents Page
1 Normative references e e e e e e e e e e e 9
2 SCOPE .+ o o o 9
3 The proposed changes to the C programming language standard 9
7.5 Errors <errno.h> L e e e 10
7.22 General utilities <stdlib.h> e 10
7.22.3 Memory management functions Lo oo 11
7.22.3.1 The aligned_alloc function L oL 12

7.22.3.2 The aligned_realloc function oL 12

7.22.3.3 The batch_allocl function oo 13

7.22.3.4 The batch_alloc2 function 15

7.22.3.5 The batch_alloch function. 17

7.22.3.6 The calloc function L 19

7.22.3.7 The free function L 19

7.22.3.8 The malloc function 20

7.22.3.9 The malloc_usable_size function 20

7.22.3.10 The realloc function e 20

7.22.3.11 The try_aligned_realloc function, 21

7.22.3.12 The try_realloc function L L 22

4 Implementation notes L 22
Estimated implementation costso 23
Bibliography L e 24

http://www.nedproductions.biz/
http://mallocv2.wordpress.com/

ISO SC22/WG14 — N1519: Latency Reducing Memory Allocation:[v1.91 Oct 2010]

Figures

Figure 1 — A plot of the relative growths since 1997 of random access memory (RAM) speeds
and sizes for the best value (in terms of Mb/US$) memory sticks then available on the US
consumer market from 1997 - 2009, with speed depicted by squares on the left hand axis
and with size depicted by diamonds on the right hand axis. The dotted line shows the best
fit regression for speed which is linear, and the dashed line shows the best fit for size which
is a power regression. Note how that during this period memory capacity outgrew memory

speed by a factor of ten. Sources: [3] [4]..o

ISO SC22/WG14 — N1519: Latency Reducing Memory Allocation:[v1.91 Oct 2010]
Foreword

As is made very clear in Figure 1, the past twelve years have seen a 25x linear improvement in RAM
access speeds versus a 250x exponential improvement in RAM capacities. If these trends continue, in
2021 RAM capacity growth will have outpaced growth in its access speed by 3 x 103 times!

Such a mismatch in rates of growth, even if only a fraction of 3 x 101, has profound long term
consequences for computer software design which presently overwhelmingly assumes that RAM capacity
— not its speed of access — is that which is scarce. Virtual memory, as described in Denning’s classic
1970 paper [1], was developed as a system which sacrifices access speed (especially first time page access
latency) for the ability to allow software to be written as if available RAM capacity is higher than it
really is. Unfortunately, in the next decade it will be access speeds which will be far more scarce than
capacity.

Regressions of Speed and Capacity Growth in the
"Value Sweetspot" of Consumer PC Memory Sticks 1997-2009

30 -~ - 300
2 b
8 g
g 25 .‘ - 250 3
-] LA o
o . N
S 20 m.x / 200 9
(7] o / [.
_ _ .)
g' S y = 0.006x - 215.79 [o / £ 3
£ 15 - R?=0.9601 / 150 2
(] ..o' / b ~
_§§ RO ‘, L %g
o 10 ’ - 100 2%
a 4 2
2 RO < 2
g 5 el S50 &
2 RCLA | 2-% y = 2E-204x44.789 o
) .'. 2—--" R?=0.9851 =
s . - - - (©
f_u O i ™= T- T T T T T T T T T T 0 =>
:> Vo] ~ o0 [e2) o — (o} o < N Vo] ~ e} [e)]
o o o o 6 o o 9O © o © o ©o o
o o o o o &6 &6 &6 &6 6 6 o6 o o
— — — — o o o o (q\] o~ o~ o~ o~ (g}
& Size B Speed = = -Power (Size) <eee--- Linear (Speed)

Figure 1 — A plot of the relative growths since 1997 of random access memory
(RAM) speeds and sizes for the best value (in terms of Mb/US$) memory sticks
then available on the US consumer market from 1997 - 2009, with speed depicted
by squares on the left hand axis and with size depicted by diamonds on the right
hand axis. The dotted line shows the best fit regression for speed which is linear,
and the dashed line shows the best fit for size which is a power regression. Note
how that during this period memory capacity outgrew memory speed by a factor

of ten. Sources: [3] [4].

The ISO C memory allocation API (malloc(), realloc(), free() et al) is used by many languages
and systems far outside just C: the programming languages of C++, PHP, Python, Perl and Ruby are
among the best known languages to also use the C memory allocator. Its design, which predates even
the general availability of virtual memory, was crystallised in the Seventh Edition of Unix right back
in 1979 (see http://cm.bell-labs.com/7thEdMan/v7voll.pdf, page 297) and has been unchanged for
decades. It has no concept of block alignment (useful for stream and vector unit computation), no concept
of address space reservation (useful for creating space into which arrays can be extended without copy

Y Growth in all things constrained follows a logistic curve whereby the first third is approximately exponential,
the second third is approximately linear and the final third is approximately inverse exponential. As a result, the
projected mismatch in growth may be anything up to 3 x 102 but one cannot yet say for sure by how much.

http://cm.bell-labs.com/7thEdMan/v7vol1.pdf

ISO SC22/WG14 — N1519: Latency Reducing Memory Allocation:[v1.91 Oct 2010]

or move construction), no concept of speculative (i.e. non-moving) block resize attempts, no concept
of batch operations nor any concept of providing execution context awareness to the memory allocator
such that non-constant time operations can be avoided in latency sensitive situations such as interrupt
handlers. All of these limitations contribute significant and unnecessary additions to memory bandwidth
utilisation via unnecessary VM page committal and use of atomic locking, as well as excessive branchiness
in the logic executed by the CPU and therefore to average access latencies across the entire system. This
translates into less scalable performance especially in a symmetric multiprocessing configurations, as well
as to increased electricity consumption due to being unable to prevent the duplication of work performed.

Obviously, in time, the whole concept of what virtual memory is and how it is implemented will need to
be addressed, but we are not at that point yet. However, given that it can take up to a decade for ISO
standard changes to become generally available to programmers, surely now is the time to introduce the
most obvious and least controversial memory bandwidth utilisation and latency reducing improvements?

I am certainly not the person with sufficient expertise to propose such wide ranging changes to an
entire programming language. My area of expertise is relatively small: I am the author of a reasonably
popular third-party memory allocator called nedmalloc [5], and for many years I have felt that the C
memory allocation API really needed a few small tweaks to help its users make better use of it. To
that end, during the summer of 2010 I had informal discussions with a number of people as to what
form these changes ought to take. In the Autumn of 2010, I launched a single purpose website at http:
//mallocv2.wordpress.com/ containing an early draft of the text herein with a commenting system
and announced it as widely as I could, and indeed many useful comments did ensue. The standards text
changes proposed in this document are the result of my best attempts to coalesce the many suggestions,
ideas and thoughts which have been gathered over these recent months from all the parties involved.

Choosing what to include, or more accurately, what to exclude from this change proposal has not been
easy. Given the luke warm to cold reception given by the ISO committees to previous attempts to change
the memory allocation API in C++2), I felt that if this proposal has any chance whatsoever of being
accepted then it needs to be absolutely as small as possible. To that end, I have specifically removed as
much of what could and perhaps ought to be improved as possible, and hopefully as a result leaving the
minimum needed which needs to be changed in order to reduce system utilisation of memory bandwidth.
As a result, implementation time is very quick: approximately fifteen man-hours was required to
modify a copy of dlmalloc [6], including testing, for Microsoft Windows and POSIX Linux using standard
system APIs. There is no reason to believe that any changes introduced by this proposal would have any
adverse effect on any architecture for which ISO C is supported.

My thanks go to all those who participated in these discussions. In particular, I would like to thank Doug
Lea for his unwavering advice, support and help throughout the past five years; Jason Evans (author
of jemalloc, the allocator used by Mozilla Firefox and the BSD standard C library implementation)
for a very detailed and comprehensive response to this proposal; Peter Buhr for his detailed thoughts
and discussions concerning whether alignment should be a sticky property of allocated blocks; and both
Jeffrey Hellrung and Jeffrey Yasskin for their long and detailed comments and ideas on the mallocv2
single purpose consultative website. I would also like to thank David Dice and John Benito, as well as
David Keaton, Blaine Garst, Thomas Plum and Larry Jones for their useful feedback. Lastly I would
like to thank those on the Usenet discussion group comp.std.c for their responses — if I knew your real
names I would give them here!

Niall Douglas
11th October 2010
Cork, Ireland.

D Specifically, the ISO/IEC JTC1/SC22/WG21 papers N1850, N2045 and N2271.

http://mallocv2.wordpress.com/
http://mallocv2.wordpress.com/

ISO SC22/WG14 — N1519: Latency Reducing Memory Allocation:[v1.91 Oct 2010]

Introduction

Before I detail the specific proposed changes to N1494, the C1X working draft text, I thought it appro-
priate that a quick overview is given of the design choices made during the development of this proposal
and why these were made. Given the severe importance of the memory allocator API far outside the C
programming language, I think it important to show what consideration was given to what and why.

Features of this proposal:

a) A two tier memory allocation API composed of the simple, easy to use API and the complex,
powerful API. In all cases the simple API calls the complex API with predefined parameters (and
example implementations are supplied in this proposal text).

b) As has always been the case in C, any block allocated by any of the memory management functions
is interchangeable with any other block allocated by those functions. In other words, you can always
free() or realloc() any allocated block no matter how so allocated via the standard API. This
guarantee greatly simplifies block management, especially where one cannot use templated types to
enforce pointer management traits as one would in C++.

¢) The complex API is fundamentally a batch operator permitting very significant performance in-
creases. Three forms are given which differ only in the amount of data they consume and output.
Care was taken to ensure that a single implementation for all three complex APIs can be written,
and the compiler’s optimizer is left with the task of reducing that single implementation down to an
optimal configuration for each call. Care was also taken to segment the cache lines between the data
used by each operation such that an OpenMP based parallel execution would perform optimally.

d) The ability to obtain the actual size allocated which may in some circumstances be much larger
than the size requested.

e) The ability to resize an aligned block while maintaining alignment. This feature is very useful for
expanding arrays of sixteen byte aligned vectors such as is required by SSE and AVX based CPU
vector extensions.

f) The ability to attempt the resizing of a block which returns failure if the block cannot be resized
without relocating it. This feature is particularly useful for object orientated languages such as
C++.

g) The ability to reserve address space which allows realloc() to expand an allocation into the re-
served region without relocating it. This feature is absolutely essential for systems not providing a
fault driven page allocation system®, and even for traditional paged virtual memory systems it sig-
nificantly helps to reduce the amount of memory copying and memory zeroing performed throughout
the system i.e. a great reduction in memory bandwidth utilisation®).

h) The ability to request that any non-essential processing (such as segment coalescing) is not performed
during a particular call. This feature is very useful for usage of the memory allocator during time
critical semi-periodic routines such as interrupt handlers.

i) A formal interface allowing third party additions to functionality via the flags parameter. This
feature is useful for enabling most of the features which were considered but not included (listed
below) as well as testing experimental allocators.

3Note that I have a forthcoming academic paper detailing the performance and scalability gains enabled
by outsourcing the kernel memory page management system into user space by making use of the hardware
virtualisation of the CPU’s Memory Management Unit. Under such a system, almost the entire process of
memory management within each process can be made independent from all other processes, however one of the
consequences is that committing memory really does commit a real page of memory rather than a placeholder
which is later made real when first accessed by the CPU. Therefore, over-committing memory through asking
for a block size far larger than is actually needed — which is currently how address reservation is implemented —
would waste significant amounts of real physical RAM.

YDFor applications which perform a lot of large allocations and frees — e.g. the GNU C++ compiler — the
performance gain from this alone can be up to 10% already today. As memory capacity utilisation increases, this
benefit will increase.

ISO SC22/WG14 — N1519: Latency Reducing Memory Allocation:[v1.91 Oct 2010]

j)

For the purposes of compatibility with POSIX, the batch operators can optionally output the errno
result for each operation into an array. This avoids having to run through a thread local variable,
and is therefore very fast.

Features which were considered but NOT included:

a)

The ability to traverse and query memory to discover its state and use context e.g. in which allocated
block is an address located? Is a location in reserved, allocated or free memory? To which execution
binary does this location belong? And so on.

Rationale: While highly desirable due to its usefulness in many scenarios such as working out
from where to load translations of user interface text, I could not see how to standardise such
a facility across all platforms including those of the near future. Additionally, the assumptions
required about the facilities provided by the host operating system are very high and too high
in my opinion for an ISO standard.

The ability to specify the block’s size during a free() operation, thus saving the need to look up a
block’s size and/or the need to store the block’s size.

Rationale: As much as memory allocation specialists would love this feature, it introduces
significant inter-operability problems between different blocks allocated via different means.
It also introduces problems with security and potentially malevolent usage, and indeed the
overheads introduced by ensuring that the size given is feasible would be far slower than not
having it at all.

Backwards block resizing i.e. where the pointer to the block is moved backwards in memory into
a preceding region of free space. This is useful in a wide range of algorithms such as deque and
various forms of buffering as well as helping to reduce memory fragmentation and increase cache
locality.

Rationale: Given how infrequently this feature would be used and the potential consequences
upon internal implementation for some types of allocator, I felt that such a feature ought not to
be standardised. There is no reason why third-party support for this feature cannot be added
via the flags parameter.

Iterator based rather than array based batch operators. This is useful as it avoids having to preallo-
cate scratch space as well as being much more amenable to many kinds of idiomatic usage, especially
in C++.

Rationale: My difficulty with this idea is how to implement it safely and efficiently in C while
allowing the use of OpenMP to parallelise the batch operation. I came to the conclusion that
array based batch operations are much easier, and besides either variable length arrays or the
magic stack allocation function alloca() is available on almost all platforms nowadays.

Segregated allocation pools. This is a very useful feature allowing a large range of security and per-
formance improvements to be made. Its exclusion will no doubt be one of the most controversial.

Rationale: My difficulty in standardising this was to encapsulate all possible use scenarios. For
example, an allocation pool which exists in cryptographically secure or transactional memory
is very feasible, as are allocation pools which exist on non-local NUMA nodes. I am sure that
these will become standardised one day, but I don’t think that time is now.

Node vs. Array allocation, where the latter is a form of stack based allocator useful for temporary
allocations. This class of allocation strategy serves as a middle-man between stack based and full
heap based allocation, and due to its speed it is one of the most common reasons to employ a
‘non-standard’ memory allocation technique (Berger et al, 2002) [7].

Rationale: My difficulty here is that this type of allocator is essentially an “increment the
pointer” system which offers no protection against memory corruption and malevolent or erro-
neous usage. Without a proper deployment of “anti-stack smashing” measures — which implies
that the memory used for such allocations must come from a separate execution bit disabled
source — it would reopen many of the security problems in C based code only very recently
quashed. Also, pointers returned from the array allocator could not be interchanged with

ISO SC22/WG14 — N1519: Latency Reducing Memory Allocation:[v1.91 Oct 2010]
pointers returned from the node allocator as the former lack the metadata (i.e. the header and
footer of the block) required to allow it unless magic segment headers are employed? .

g) Thread local pool allocation. This is a feature used by modern Java implementations to allow the
allocation and deallocation of memory in tens of CPU cycles rather than the hundreds (or thousands)
of CPU cycles required by even the simplest malloc() invocation.

Rationale: This looks like a very desirable feature on paper, especially given that Java’s
memory allocation performance is several orders faster than that of C’s. However, Java’s
runtime has exclusive access to its environment which allows it to make assumptions about
how memory will be used. In fact, this feature is a form of an “increment the pointer” allocator
with all its attendent problems, so all the problems there apply here too. There is no reason
however why third-party support for this feature cannot be added via the flags parameter.

1 Normative references

The following normative documents contain provisions which, through reference in this text, constitute
provisions of this proposal. For dated references, subsequent amendments to, or revisions of, any of
these publications do not apply. However, parties to agreements based on this proposal are encouraged
to investigate the possibility of applying the most recent editions of the normative documents indicated
below. For undated references, the latest edition of the normative document referred to applies. Members
of ISO and ITEC maintain registers of currently valid International Standards.

ISO/IEC 9899, Programming Language C

~ N1494%), Neat revision of C standard, ‘C1X’, http: //www. open-std. org/ jtcl/ sc22/wg14/ wuw/
docs/n1494. pdf

The remainder of this document is based on the June 25th 2010 edition of N1494.

2 Scope

The following are within the scope of this proposal:

— Section 7.5.2 (Errors <errno.h>) in ISO/IEC 9899:N1494.
— The preamble of Section 7.22 (General utiltiies <stdlib.h>) in ISO/TEC 9899:N1494.
— Section 7.22.3 (Memory Management functions) in ISO/TEC 9899:N1494.

3 The proposed changes to the C programming language
standard

Dark green highlighting has been used to distinguish the additions to the original text.

®)Magic segment headers work by aligning the address of segments to round multiples, so for example one might
round segments to 2Mb (a ‘huge page’ on x64) boundaries. One can then always find the ‘owning’ segment for a
block by masking out the bottom 2Mb of bits and checking for a magic value at that location.

To be published.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1494.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1494.pdf

ISO SC22/WG14 — N1519: Latency Reducing Memory Allocation:[v1.91 Oct 2010]

7.5 Errors <errno.h>

1)
2)

The header <errno.h> defines several macros, all relating to the reporting of error conditions.

The macros are

EDOM

EILSEQ
ENOMEM
ENOSPC
ERANGE

which expand to integer constant expressions with type int, distinct positive values, and which are
suitable for use in #if preprocessing directives; and

errno

which expands to a modifiable lvalue that has type int and thread local storage duration, the value
of which is set to a positive error number by several library functions. If a macro definition is

suppressed in order to access an actual object, or a program defines an identifier with the name
errno, the behavior is undefined.

7.22 General utilities <stdlib.h>

)

2)

10

The header <stdlib.h> declares five types, two structures and several functions of general utility,
and defines several macros.

The types declared are size_t and wchar_t (both described in 7.19),

div_t

which is a structure type that is the type of the value returned by the div function,
ldiv_t

which is a structure type that is the type of the value returned by the 1div function, and
11div_t

which is a structure type that is the type of the value returned by the 11div function.

The structures declared are

#ifndef MALLOCATION2_DEFINED
#define MALLOCATION2_DEFINED
struct mallocation2 {

void *ptr;

size_t size;
}
#endif

which is used by the batch_alloc2 function; and

#ifndef MALLOCATION5_DEFINED
#define MALLOCATION5_DEFINED
struct mallocation5 {
void *ptr;
size_t size;
size_t alignment;
size_t reserve;
uintmax_t flags;
}
#endif

which is used by the batch_allocb function.

The macros defined are NULL (described in 7.19);
EXIT_FAILURE

and

ISO SC22/WG14 — N1519: Latency Reducing Memory Allocation:[v1.91 Oct 2010]

EXIT_SUCCESS

which expand to integer constant expressions that can be used as the argument to the exit function
to return unsuccessful or successful termination status, respectively, to the host environment;

RAND_MAX

which expands to an integer constant expression that is the maximum value returned by the rand
function; and

MB_CUR_MAX

which expands to a positive integer expression with type size_t that is the maximum number of

bytes in a multibyte character for the extended character set specified by the current locale (category
LC_CTYPE), which is never greater than MB_LEN_MAX;

M2_ZERO_MEMORY

which is a single set bit in an integer which when set in the flags parameter of one of the
batch_alloc* functions requests the memory allocator to return any newly allocated space ini-
tialized to all bits zero;

M2 _PREVENT _MOVE

which is a single set bit in an integer which when set in the flags parameter of one of the
batch_alloc* functions inhibits the address relocation of an object being resized by the memory
allocator;

M2 _CONSTANT_TIME

which is a single set bit in an integer which when set in the flags parameter of one of the
batch_alloc* functions requests that the memory allocator avoid any non-essential (e.g. housekeep-
ing) operations (which may take an unpredictable length of time) during this particular operation;
M2 RESERVE_IS _MULT

which is a single set bit in an integer which when set in the flags parameter of one of the
batch_alloc* functions causes the memory allocator to multiply the reservation size by the us-
able size of the block at the time of this particular operation before usage;

M2_BATCH_IS_ALL_ALLOC
which is a single set bit in an integer which when set in the flags parameter of one of the

batch_alloc* functions causes the memory allocator to assume that all the operations in this batch
are allocations of new objects (i.e. no resizing, no modifications, no deallocations);

M2_BATCH_IS_ALL_REALLOC
which is a single set bit in an integer which when set in the flags parameter of one of the

batch_alloc* functions causes the memory allocator to assume that all the operations in this batch
are modifications of existing objects (i.e. no new allocations, no deallocations);

M2_BATCH_IS_ALL_FREE
which is a single set bit in an integer which when set in the flags parameter of one of the

batch_alloc* functions causes the memory allocator to assume that all the operations in this batch
are deallocations of existing objects (i.e. no new allocations, no resizing, no modifications);

M2_USERFLAGS_FIRST

which is the first available bit set aside for use by allocator extensions in the flags parameter of
one of the batch_alloc* functions; and
M2_USERFLAGS_LAST

which is the last available bit set aside for use by allocator extensions in the flags parameter of one
of the batch_allock functions?”).

7.22.3 Memory management functions

1) The order and contiguity of storage allocated by successive calls to the aligned_alloc, batch_alloc*,
calloc, malloc, and realloc functions is unspecified. The pointer returned if the allocation suc-
ceeds is suitably aligned so that it may be assigned to a pointer to any type of object with a

") For example, these might be #define M2 USERFLAGS FIRST (1<<16) and #define M2 USERFLAGS_LAST
(1<<31), so allocator extensions can in this situation use the bits denoted by the set bits in the mask 0xFFFF0000.

11

ISO SC22/WG14 — N1519: Latency Reducing Memory Allocation:[v1.91 Oct 2010]

fundamental alignment requirement and then used to access such an object or an array of such
objects in the space allocated (until the space is explicitly deallocated). The lifetime of an allocated
object extends from the allocation until the deallocation. Each such allocation shall yield a pointer
to an object disjoint from any other object. The pointer returned points to the start (lowest byte ad-
dress) of the allocated space. If the space cannot be allocated according to the parameters supplied,
a null pointer is returned. If the size of the space requested is zero, the behavior is implementation-
defined: either a null pointer is returned, or the behavior is as if the size were some nonzero value,
except that the returned pointer shall not be used to access an object.

7.22.3.1 The aligned_alloc function

Synopsis

1)

4)

#include <stdlib.h>
void *aligned alloc(size_t alignment, size_t size);

Description

The aligned_alloc function allocates space for an object whose alignment is specified by alignment,
whose size is specified by size, and whose value is indeterminate. The value of alignment shall
be a valid alignment supported by the implementation and the value of size shall be an integral
multiple of alignment.

The effects of the aligned_alloc function shall be equivalent to:

void *aligned_alloc(size_t alignment, size_t size)

{
void *mem=0;
size_t count=1;
/* Optional */ if(0==size) size=1;
batch_alloc1(NULL, &mem, &count, &size, alignment, 0, 0);
return count 7 mem : NULL;
}
Returns

The aligned_alloc function returns either a null pointer or a pointer to the allocated space.

7.22.3.2 The aligned _realloc function

Synopsis

1)

12

#include <stdlib.h>
void *aligned realloc(void *ptr, size_t alignment, size_t size);

Description

The aligned realloc function deallocates the old object pointed to by ptr and returns a pointer
to a new object whose alignment is specified by alignment and whose size is specified by size. The
contents of the new object shall be the same as that of the old object prior to deallocation, up to
the lesser of the new and old sizes. Any bytes in the new object beyond the size of the old object
have indeterminate values.

If ptr is a null pointer, the aligned realloc function behaves like the aligned malloc function
for the specified alignment and size. Otherwise, if ptr does not match a pointer earlier returned
by a memory management function, or if the space has been deallocated by a call to a memory
management function, the behavior is undefined. If memory for the new object cannot be allocated,
the old object is not deallocated and its value is unchanged.

The effects of the aligned realloc function shall be equivalent to:

ISO SC22/WG14 — N1519: Latency Reducing Memory Allocation:[v1.91 Oct 2010]

void *aligned_realloc(void *ptr, size_t alignment, size_t size)

{
size_t count=1;
batch_allocl1(NULL, &ptr, &count, &size, alignment, 0, 0);
return count 7 ptr : NULL;

}

Returns

The aligned realloc function returns a pointer to the new object (which may have the same value
as a pointer to the old object), or a null pointer if the new object could not be allocated.

7.22.3.3 The batch_allocl function

Synopsis

)

#include <stdlib.h>
void **batch_allocl(int *errnos, void **ptrs, size_t *restrict count,

size_t *restrict size, size_t alignment, size_t reserve, uintmax_t flags);

Description

The batch_allocl function performs a series of up to (xcount) allocations or reallocations of
objects each of which is sized to no less than (*size), or if size is NULL or (*size) is zero then
it performs a series of up to (*count) deallocations of objects.

Firstly, if (*size) is non-zero, the value of (*size) is modified to be the eventual usable space for
each allocation® | taking account of any non-zero value of alignment if necessary. Secondly, if ptrs
is zero, an object sufficient to store a (*count) member array of void * is made and returned on
exit (see Returns below).

Then, for each member of the array ptrs[n] where 0 < n < (*count) (which may be implemented
sequentially or in parallel):

a)

If size is NULL or (*size) is zero, and ptrs[n] is zero, no action occurs. This occurrance is
considered as always successful for the purposes of calculating (*count) on exit (see Returns
below), and if errnos is not NULL then errnos[n] is set to zero.

If size is NULL or (*size) is zero, and ptrs[n] is non-zero, the space pointed to by ptrs[n]
is deallocated, that is, made available for further allocation. If the pointer to the space does
not match a pointer earlier returned by a memory management function, or if the space has
been deallocated by a call to a memory management function, the behavior is undefined.

If the deallocation is successful, ptrs[n] is set to zero and if errnos is not NULL, then
errnos[n] is also set to zero. If the deallocation is not successful, ptrs[n] is not modified
and if errnos is not NULL, then errnos[n] is set to an implementation-dependent value
conforming with the requirements of Section 7.5 (Errors <errno.h>).

If (xsize) is non-zero and ptrs[n] is zero, space is allocated for an object whose alignment
is specified by alignment if non-zero, whose size is specified by (*size), and whose value is
indeterminate unless flags contains the flag M2_ZERO_MEMORY, whereupon the space shall be
initialized to all bits zero. If alignment is non-zero, it shall be a valid alignment supported by
the implementation.

If the allocation is successful, ptrs[n] is set to point at the allocated space and if errnos is
not NULL, then errnos[n] is also set to zero. If the allocation is not successful and if errnos
is not NULL, then errnos[n] is set to one of:

i) ENOMEM in the situation that the system has insufficient free memory to satisfy the alloca-
tion of the object.

8)In other words, the allocator rounds the size up to whatever its nearest internal granularity is that satisfies

the requirements established by the parameters on entry.

13

ISO SC22/WG14 — N1519: Latency Reducing Memory Allocation:[v1.91 Oct 2010]

ii) Otherwise, an implementation-dependent value conforming with the requirements of Sec-
tion 7.5 (Errors <errno.h>).

d) If (xsize) is non-zero and ptrs([n] is non-zero, the properties of the space pointed to by
ptrs[n] is modified such that its alignment is at least the value of alignment if non-zero
and its usable size is at least the value of (*size). If the new usable size of the object is
greater than the old usable size of the object, the additional bytes beyond the old usable size
of the object have interdeterminate values unless flags contains the flag M2_ZERO_MEMORY,
whereupon the additional bytes shall be initialized to all bits zero. If flags does not contain
the flag M2_PREVENT_MOVE, the space containing the contents of the object may be relocated to
a location with sufficient free space after the object such that the request can be satisfied — in
the event of such a relocation, the contents of ptrs[n] shall be updated to point at the new
object storage.

If the modification is successful and if errnos is not NULL, then errnos[n] is also set to zero.

If the modification is not successful and if errnos is not NULL, then errnos[n] is set to one
of:

i) ENOMEM in the situation that the system has insufficient free memory to satisfy the expan-
sion of the size of the object.

ii) ENOSPC in the situation that the flag M2_PREVENT_MOVE was specified and there is insuffi-
cient free space existing after the existing object to satisfy the expansion of the size of the
object or the alignment of the existing object is not sufficient to match alignment.

iii) Otherwise, an implementation-dependent value conforming with the requirements of Sec-
tion 7.5 (Errors <errno.h>).

5) If the value of reserve is non-zero, the allocator may set aside an additional space of at least
(reserve — (xsize)) bytes after the usable space occupied by the object such that subsequent
expansions of the size of the object up to at least reserve bytes will try to not cause the relocation
of the storage of the object. The value of this parameter is treated as a hint of intended use by the
application to the allocator?), so implementations are free to ignore the value of this parameter in
some or all situations or configurations. If flags contains the flag M2 _RESERVE_IS MULT, the value
specified by reserve is multiplied by the value of (*size) before use.

6) The effects of the batch_allocl function shall be equivalent to:

void **batch_allocl(int *errnos, void **ptrs, size_t *restrict count,

size_t *restrict size, size_t alignment, size_t reserve, uintmax_t flags)
{

size_t n, maxn=*count;

/* Note that some implementations use malloc for variable length

arrays: this may induce recursion. */
struct mallocationb mdata[maxn], *mdataptrs[maxn];
if (!ptrs && ! (ptrs=malloc(maxn*sizeof (void *))))

{
*count=0;
return NULL;
}
for(n=0; n<maxn; n++)
{

mdataptrs[n]=mdata+n;
mdata[n] .ptr=ptrs[n];

Nn particular, 8-bit, 16-bit and 32-bit architectures have limited available address space and so implementations
may choose to completely ignore the value of this parameter on the basis that observing it may cause free address
space to become exhausted before free physical memory. In addition, present architectures and operating system
designs only show a major benefit when object sizes are relatively large (in the order of a few hundred thousand
bytes) so allocators may choose to honor this value only with larger object sizes.

14

ISO SC22/WG14 — N1519: Latency Reducing Memory Allocation:[v1.91 Oct 2010]

mdataln] .size=size 7 *size : 0;
mdata[n] .alignment=alignment;
mdata[n] .reserve=reserve;
mdata[n] .flags=flags;
}
batch_allocb5(errnos, mdataptrs, count);
if (size) *size=(size_t)-1;
for(n=0; n<maxn; n++)

{
ptrs[n]=mdataln] .ptr;
if(size && mdata[n].size<*size) *size=mdatal[n].size;
}
return ptrs;
}
Returns

The batch_allocl function returns the value of ptrs if it was non-zero on entry. If ptrs was zero
on entry, an object sufficient to store a (*count) member array of void * is allocated and returned
— in this situation, the returned pointer must be freed using the free function when its contents are
no longer needed. If there was insufficient free memory to allocate the object containing the array
of void *, a null pointer is returned and (*count) is set to zero.

The batch_allocl function sets the value of (*size) to the smallest usable size of any object
allocated during the batch operation.

The batch_allocl function sets the value of (*count) to the number of successful operations
executed during the batch operation.

7.22.3.4 The batch_alloc2 function

Synopsis

1)

#include <stdlib.h>
_Bool batch_alloc2(int *errnos, struct mallocation2 **restrict mdataptrs,
size_t *restrict count, size_t alignment, size_t reserve, uintmax_t flags);

Description

The batch_alloc?2 function performs a series of up to (*count) allocations, reallocations or deallo-
cations of objects.

For each member of the array mdataptrs [n] where 0 < n < (*count) (which may be implemented
sequentially or in parallel):

a) If mdataptrs[n]->size is zero, and mdataptrs [n]->ptr is zero, no action occurs. This occur-
rance is considered as always successful for the purposes of calculating (*count) on exit (see
Returns below), and if errnos is not NULL then errnos[n] is set to zero.

b) If mdataptrs[n]->size is zero, and mdataptrs [n]->ptr is non-zero, the space pointed to by
mdataptrs [n] ->ptr is deallocated, that is, made available for further allocation. If the pointer
to the space does not match a pointer earlier returned by a memory management function, or

if the space has been deallocated by a call to a memory management function, the behavior is
undefined.

If the deallocation is successful, mdataptrs[n]->ptr is set to zero and if errnos is not NULL,
then errnos[n] is also set to zero. If the deallocation is not successful, mdataptrs [n]->ptr is
not modified and if errnos is not NULL, then errnos [n] is set to an implementation-dependent
value conforming with the requirements of Section 7.5 (Errors <errno.h>).

¢) If mdataptrs[n]->size is non-zero and mdataptrs[n]->ptr is zero, space is allocated for
an object whose alignment is specified by alignment if non-zero, whose size is specified by

15

ISO SC22/WG14 — N1519: Latency Reducing Memory Allocation:[v1.91 Oct 2010]

mdataptrs [n]->size, and whose value is indeterminate unless flags contains the flag M2_ZERO_MEMORY,
whereupon the space shall be initialized to all bits zero. If alignment is non-zero, it shall be
a valid alignment supported by the implementation.

If the allocation is successful, mdataptrs[n]->ptr is set to point at the allocated space,
mdataptrs[n]->size is set to the usable size of the object and if errnos is not NULL, then
errnos[n] is also set to zero. If the allocation is not successful and if errnos is not NULL,
then errnos[n] is set to one of:

i) ENOMEM in the situation that the system has insufficient free memory to satisfy the alloca-
tion of the object.

ii) Otherwise, an implementation-dependent value conforming with the requirements of Sec-
tion 7.5 (Errors <errno.h>).

d) If mdataptrs[n]->size is non-zero and mdataptrs[n]->ptr is non-zero, the properties of the
space pointed to by mdataptrs [n] ->ptr is modified such that its alignment is at least the value
of alignment if non-zero and its usable size is at least the value of mdataptrs [n]->size. If the
new usable size of the object is greater than the old usable size of the object, the additional bytes
beyond the old usable size of the object have interdeterminate values unless flags contains
the flag M2_ZERO_MEMORY, whereupon the additional bytes shall be initialized to all bits zero.
If flags does not contain the flag M2_PREVENT_MOVE, the space containing the contents of the
object may be relocated to a location with sufficient free space after the object such that the
request can be satisfied — in the event of such a relocation, the contents of mdataptrs [n]->ptr
shall be updated to point at the new object storage.

If the modification is successful, mdataptrs [n]->size is updated to reflect the new usable size
of the modified object and if errnos is not NULL, then errnos[n] is also set to zero. If the
modification is not successful and if errnos is not NULL, then errnos[n] is set to one of:

i) ENOMEM in the situation that the system has insufficient free memory to satisfy the expan-
sion of the size of the object.

ii) ENOSPC in the situation that the flag M2_PREVENT_MOVE was specified and there is insuffi-
cient free space existing after the existing object to satisfy the expansion of the size of the
object or the alignment of the existing object is not sufficient to match alignment.

iii) Otherwise, an implementation-dependent value conforming with the requirements of Sec-
tion 7.5 (Errors <errno.h>).

4) If the value of reserve is non-zero, for each allocation and reallocation the allocator may set aside an
additional space of at least (reserve — mdataptrs[n]->size) bytes after the usable space occupied
by the object such that subsequent expansions of the size of the object up to at least reserve
bytes will try to not cause the relocation of the storage of the object. The value of this parameter
is treated as a hint of intended use by the application to the allocator'®, so implementations are
free to ignore the value of this parameter in some or all situations or configurations. If flags
contains the flag M2_RESERVE_IS_MULT, the value specified by reserve is multiplied by the value of
mdataptrs [n]->size before use.

5) The effects of the batch_alloc2 function shall be equivalent to:

_Bool batch_alloc2(int *errnos, struct mallocation2 **restrict mdataptrs,
size_t *restrict count, size_t alignment, size_t reserve, uintmax_t flags);

{

101n particular, 8-bit, 16-bit and 32-bit architectures have limited available address space and so implementations
may choose to completely ignore the value of this parameter on the basis that observing it may cause free address
space to become exhausted before free physical memory. In addition, present architectures and operating system
designs only show a major benefit when object sizes are relatively large (in the order of a few hundred thousand
bytes) so allocators may choose to honor this value only with larger object sizes.

16

ISO SC22/WG14 — N1519: Latency Reducing Memory Allocation:[v1.91 Oct 2010]

size_t n, maxn=%count;

/* Note that some implementations use malloc for variable length
arrays: this may induce recursion. */

struct mallocation5 mdata[maxn], *mdatabSptrs[maxn];

for(n=0; n<maxn; n++)

{
mdatabptrs [n]=mdata+n;
mdata[n] .ptr=mdataptrs[n]->ptr;
mdata[n] .size=mdataptrs[n]->size;
mdata[n] .alignment=alignment;
mdata[n] .reserve=reserve;
mdata[n] .flags=flags;

}

batch_alloc5(errnos, mdatabptrs, count);
for(n=0; n<maxn; n++)

{
mdataptrs[n]->ptr=mdatal[n] .ptr;
mdataptrs[n]->size=mdata[n] .size;
}
return *count==maxn;
}
Returns

The batch_alloc2 function returns the value of 1 if all operations were completed successfully,
otherwise it returns zero.

The batch_alloc2 function sets the value of (*count) to the number of successful operations
executed during the batch operation.

7.22.3.5 The batch_alloc5 function

Synopsis

1)

#include <stdlib.h>
_Bool batch_alloc5(int *errnos, struct mallocationb **restrict mdataptrs,

size_t *restrict count);

Description

The batch_alloch function performs a series of up to (*count) allocations, reallocations or deallo-
cations of objects.

For each member of the array mdataptrs [n] where 0 < n < (*count) (which may be implemented
sequentially or in parallel):

2)

If mdataptrs[n]->size is zero, and mdataptrs [n]->ptr is zero, no action occurs. This occur-
rance is considered as always successful for the purposes of calculating (*count) on exit (see
Returns below), and if errnos is not NULL then errnos[n] is set to zero.

If mdataptrs[n]->size is zero, and mdataptrs[n]->ptr is non-zero, the space pointed to by
mdataptrs[n] ->ptr is deallocated, that is, made available for further allocation. If the pointer
to the space does not match a pointer earlier returned by a memory management function, or
if the space has been deallocated by a call to a memory management function, the behavior is
undefined.

If the deallocation is successful, mdataptrs [n]->ptr is set to zero and if errnos is not NULL,
then errnos[n] is also set to zero. If the deallocation is not successful, mdataptrs [n]->ptr is
not modified and if errnos is not NULL, then errnos[n] is set to an implementation-dependent
value conforming with the requirements of Section 7.5 (Errors <errno.h>).

17

ISO SC22/WG14 — N1519: Latency Reducing Memory Allocation:[v1.91 Oct 2010]

¢) If mdataptrs[n]->size is non-zero and mdataptrs[n]->ptr is zero, space is allocated for an
object whose alignment is specified by mdataptrs[n]->alignment if non-zero, whose size is
specified by mdataptrs [n] ->size, and whose value is indeterminate unless mdataptrs [n]->flags
contains the flag M2_ZERO_MEMORY, whereupon the space shall be initialized to all bits zero. If
mdataptrs[n]->alignment is non-zero, it shall be a valid alignment supported by the imple-
mentation.

If the allocation is successful, mdataptrs[n]->ptr is set to point at the allocated space,
mdataptrs[n]->size is set to the usable size of the object, mdataptrs[n]->reserve is set
to the actual reservation made and if errnos is not NULL, then errnos[n] is also set to zero.
If the allocation is not successful and if errnos is not NULL, then errnos[n] is set to one of:

i) ENOMEM in the situation that the system has insufficient free memory to satisfy the alloca-
tion of the object.

ii) Otherwise, an implementation-dependent value conforming with the requirements of Sec-
tion 7.5 (Errors <errno.h>).

d) If mdataptrs[n]->size is non-zero and mdataptrs[n]->ptr is non-zero, the properties of
the space pointed to by mdataptrs[n]->ptr is modified such that its alignment is at least
the value of mdataptrs[n]->alignment if non-zero and its usable size is at least the value of
mdataptrs[n]->size. If the new usable size of the object is greater than the old usable size of
the object, the additional bytes beyond the old usable size of the object have interdeterminate
values unless mdataptrs[n]->flags contains the flag M2_ZERO_MEMORY, whereupon the addi-
tional bytes shall be initialized to all bits zero. If mdataptrs[n]->flags does not contain the
flag M2 _PREVENT _MOVE, the space containing the contents of the object may be relocated to a
location with sufficient free space after the object such that the request can be satisfied — in
the event of such a relocation, the contents of mdataptrs[n]->ptr shall be updated to point
at the new object storage.

If the modification is successful, mdataptrs [n]->size is updated to reflect the new usable size
of the modified object and mdataptrs[n]->reserve is set to the actual reservation made for
the modified object and if errnos is not NULL, then errnos[n] is also set to zero. If the
modification is not successful and if errnos is not NULL, then errnos[n] is set to one of:

i) ENOMEM in the situation that the system has insufficient free memory to satisfy the expan-
sion of the size of the object.

ii) ENOSPC in the situation that the flag M2_PREVENT_MOVE was specified and there is in-
sufficient free space existing after the existing object to satisfy the expansion of the
size of the object or the alignment of the existing object is not sufficient to match
mdataptrs[n]->alignment.

iii) Otherwise, an implementation-dependent value conforming with the requirements of Sec-
tion 7.5 (Errors <errno.h>).

e) Ifthe value of mdataptrs [n]->reserve is non-zero, for each allocation and reallocation the allo-
cator may set aside an additional space of at least (mdataptrs [n]->reserve — mdataptrs[n]->size)
bytes after the usable space occupied by the object such that subsequent expansions of the size
of the object up to at least reserve bytes will try to not cause the relocation of the storage of the
object. The value of this parameter is treated as a hint of intended use by the application to the
allocator'V), so implementations are free to ignore the value of this parameter in some or all sit-
uations or configurations. If mdataptrs[n]->flags contains the flag M2 _RESERVE_IS _MULT, the

D1n particular, 8-bit, 16-bit and 32-bit architectures have limited available address space and so implementations
may choose to completely ignore the value of this parameter on the basis that observing it may cause free address
space to become exhausted before free physical memory. In addition, present architectures and operating system
designs only show a major benefit when object sizes are relatively large (in the order of a few hundred thousand
bytes) so allocators may choose to honor this value only with larger object sizes.

18

ISO SC22/WG14 — N1519: Latency Reducing Memory Allocation:[v1.91 Oct 2010]

value specified by mdataptrs [n]->reserve is multiplied by the value of mdataptrs[n]->size
before use.

Returns

The batch_alloch function returns the value of 1 if all operations were completed successfully,
otherwise it returns zero.

The batch_allocb function sets the value of (*count) to the number of successful operations
executed during the batch operation.

7.22.3.6 The calloc function

Synopsis

1)

1)

#include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

Description

The calloc function allocates space for an array of nmemb objects, each of whose size is size. The
space is initialized to all bits zero.

The effects of the calloc function shall be equivalent to:

void *calloc{size_t nmemb, size_t size)

{
void *mem=0;
size_t count=1, realsize=nmemb*size;
/* Optional */ if(O==realsize) realsize=1;
batch_allocl1(NULL, &mem, &count, &realsize, 0, 0, M2_ZERO_MEMORY);
return count ? mem : NULL;
}
Returns

The calloc function returns either a null pointer or a pointer to the allocated space.

7.22.3.7 The free function

Synopsis

1)

#include <stdlib.h>
void free(void *ptr);

Description

The free function causes the space pointed to by ptr to be deallocated, that is, made available
for further allocation. If ptr is a null pointer, no action occurs. Otherwise, if the argument does
not match a pointer earlier returned by a memory management function, or if the space has been
deallocated by a call to a memory management function, the behavior is undefined.

The effects of the free function shall be equivalent to:

void free(void *ptr)

{

size_t count=1;

batch_alloc1(NULL, &ptr, &count, NULL, NULL, NULL, 0);
}
Returns

The free function returns no value.

19

ISO SC22/WG14 — N1519: Latency Reducing Memory Allocation:[v1.91 Oct 2010]

7.22.3.8 The malloc function

Synopsis

1)

4)

#include <stdlib.h>
void *malloc(size_t size);

Description

The malloc function allocates space for an object whose size is specified by size and whose value
is indeterminate.

The effects of the malloc function shall be equivalent to:

void *malloc(size_t size)

{
void *mem=0;
size_t count=1;
/* Optional */ if(0O==size) size=1;
batch_allocl1(NULL, &mem, &count, &size, 0, 0, 0);
return count ? mem : NULL;

}

Returns

The malloc function returns either a null pointer or a pointer to the allocated space.

7.22.3.9 The malloc_usable_size function

Synopsis

)

#include <stdlib.h>
size_t malloc_usable_size(void *ptr);

Description

The malloc_usable_size function returns how much usable space has been allocated for the object
pointed to by ptr (which may be larger than or equal to the size originally requested). If ptr does
not match a pointer earlier returned by a memory management function, or if the space has been
deallocated by a call to a memory management function, the behavior is undefined.

Returns

The malloc_usable_size function returns how much usable space has been allocated for the object
pointed to by ptr.

7.22.3.10 The realloc function

Synopsis

1)

20

#include <stdlib.h>
void *realloc(void *ptr, size_t size);

Description

The realloc function deallocates the old object pointed to by ptr and returns a pointer to a new
object that has the size specified by size. The contents of the new object shall be the same as that
of the old object prior to deallocation, up to the lesser of the new and old sizes. Any bytes in the
new object beyond the size of the old object have indeterminate values.

ISO SC22/WG14 — N1519: Latency Reducing Memory Allocation:[v1.91 Oct 2010]

3)

If ptr is a null pointer, the realloc function behaves like the malloc function for the specified size.
Otherwise, if ptr does not match a pointer earlier returned by a memory management function,
or if the space has been deallocated by a call to a memory management function, the behavior is
undefined. If memory for the new object cannot be allocated, the old object is not deallocated and
its value is unchanged.

The effects of the realloc function shall be equivalent to'2):

void *realloc(void *ptr, size_t size)

{
size_t count=1;
batch_alloc1(NULL, &ptr, &count, &size, 0, 0, 0);
return count 7 ptr : NULL;

}

Returns

The realloc function returns a pointer to the new object (which may have the same value as a
pointer to the old object), or a null pointer if the new object could not be allocated.

7.22.3.11 The try_aligned_realloc function

Synopsis

)

#include <stdlib.h>
void *try_aligned realloc(void *ptr, size_t alignment, size t size);

Description

The try_aligned_realloc function tries to modify the properties of the existing object pointed to
by ptr such that its alignment is at least that specified by alignment and whose usable size is at
least that specified by size. If the properties of the object cannot be modified without relocating it,
the object is not modified and a null pointer is returned. Any bytes in the modified object beyond
the size of the old object have indeterminate values.

If ptris a null pointer, the try_aligned realloc function behaves like the aligned malloc function
for the specified alignment and size. Otherwise, if ptr does not match a pointer earlier returned
by a memory management function, or if the space has been deallocated by a call to a memory
management function, the behavior is undefined. If memory for the new object cannot be allocated,
the old object is not deallocated and its value is unchanged.

The effects of the try_aligned_realloc function shall be equivalent to®):

void *try_aligned_realloc(void *ptr, size_t alignment, size_t size)

{
size_t count=1;
batch_allocl(NULL, &ptr, &count, &size, alignment, O, M2_PREVENT_MOVE) ;
return count ? ptr : NULL;

}

Returns

The try_aligned realloc function returns a pointer to the object specified on entry, or a null
pointer if the object could not be modified without relocation or there was insufficient free memory
available to extend the size of the object.

12 An implementation may choose to set a reservation quantity according to a set of heuristics (e.g. a default
multiplier) and still be conformant with this standard.

13 An implementation may choose to set a reservation quantity according to a set of heuristics (e.g. a default
multiplier) and still be conformant with this standard.

21

ISO SC22/WG14 — N1519: Latency Reducing Memory Allocation:[v1.91 Oct 2010]

7.22.3.12 The try_realloc function
Synopsis

1) #include <stdlib.h>
void *try_realloc(void *ptr, size_t size);

Description

2) The try.realloc function tries to modify the properties of the existing object pointed to by ptr
such that its usable size is at least that specified by size. If the properties of the object cannot be
modified without relocating it, the object is not modified and a null pointer is returned. Any bytes
in the modified object beyond the size of the old object have indeterminate values.

3) If ptr is a null pointer, the try_realloc function behaves like the malloc function for the specified
size. Otherwise, if ptr does not match a pointer earlier returned by a memory management function,
or if the space has been deallocated by a call to a memory management function, the behavior is
undefined. If memory for the new object cannot be allocated, the old object is not deallocated and
its value is unchanged.

4) The effects of the try_realloc function shall be equivalent to'®:

void *try_realloc(void *ptr, size_t size)

{
size_t count=1;
batch_alloc1(NULL, &ptr, &count, &size, 0, 0, M2_PREVENT_MOVE) ;
return count 7 ptr : NULL;

}

Returns

5) The try_realloc function returns a pointer to the object specified on entry, or a null pointer if the
object could not be modified without relocation or there was insufficient free memory available to
extend the size of the object.

4 Implementation notes

In order to test the features proposed in this document, a copy of dlmalloc [6] was modified to implement
this API. dlmalloc is a well known memory allocator with support for the Microsoft Windows “Win32”
API and the standard POSIX API as implemented by Unix derived operating systems such as Linux,
BSD and Apple Mac OS X among others. The following notes and cost estimates resulted from this
work, and you can find it at:

git://github.com/ned14/C1X_N1519.git

Firstly, it is strongly suggested that for 32-bit architectures that requests for address space reservation are
ignored once the amount of free address space available drops below a certain threshold. For 16-bit or less
architectures, it is suggested that implementors consider whether to always ignore requests for address
space reservation — the API has been designed to work in either situation, though without reservation
the expansion of an allocation would typically require relocation and its consequent memory copy.

Secondly, the additional logic required to implement address space reservation for blocks smaller than a
few hundred kilobytes isn’t currently worth the gains made by avoiding unnecessary memory copies on
current microprocessor designs and current operating system designs. In my testing, the point at which
the allocator hands off allocation to the kernel VM system is about the point when avoiding memory
copies becomes worth the extra logic. I would therefore suggest that address space reservation only be

) An implementation may choose to set a reservation quantity according to a set of heuristics (e.g. a default
multiplier) and still be conformant with this standard.

22

git://github.com/ned14/C1X_N1519.git

ISO SC22/WG14 — N1519: Latency Reducing Memory Allocation:[v1.91 Oct 2010]

implemented when the block is sufficiently large (typically 128Kb-256Kb on most systems) to use the
kernel VM functions directly. Hence, the remainder of these notes consider that situation exclusively.

For Win32, the VirtualAlloc function permits explicit address space reservation using the MEM_RESERVE
flag. Once reserved, individual zero-initialized 4Kb pages within the reserved region can be committed and
decommitted at will using the VirtualAlloc (MEM_COMMIT) and VirtualFree (MEM_DECOMMIT) functions
though actual page commital is delayed until first access. The contents of a page can also be thrown
away without recommitting the page using VirtualAlloc (MEM_RESET) — it is suggested to implementors
that reductions in large allocations with reservations simply reset the newly freed pages rather than
decommitting them in order to avoid unnecessary page clearing (i.e. filling the page with zeros) if the
allocation is later expanded once again, but to offer an option to force decommittal in order to help trap
out of range memory accesses.

For POSIX, the situation is somewhat different because here one must commit the region being reserved
first, and then decommit and/or mprotect what you don’t need. By default, the POSIX mmap function
will only commit memory pages if there is sufficient free space available in the swap file — unless the
non-POSIX flag MAP_NORESERVE is supported by the system (which is the case for all recent versions of
major Unix implementations) which if specified bypasses the reservation of the space in the swap file and
therefore enabling proper address space reservation. As is the case with Microsoft Windows, actual page
commital is delayed until first access, and memory pages can be decommitted using the POSIX function
madvise (MADV_DONTNEED) (though note that this is an extremely slow call on some implementations).
Many implementations (e.g. BSD and its derivatives) provide the non-POSIX flag MADV_FREE for use with
madvise which allows the contents of pages to be thrown away rather than decommitted — again, as with
MEM_RESET in Microsoft Windows, this facility can be used to avoid unnecessary page clearing. Lastly,
some implementations also provide the non-POSIX function mremap which allows the fast relocation of
the contents of an allocation from one place to another.

Estimated implementation costs

dlmalloc is a simple allocator by modern standards — though this simplicity of implementation gives it
surprising speed in single-threaded operation. It consists of a smallbin allocator which is a simple two’s
power best fit allocator for blocks less than 256 bytes, a largebin allocator which uses a bitwise trie
index of free spaces for blocks between 256 bytes and 256Kb and the mmap allocator which uses mmap
or VirtualAlloc directly. dlmalloc operates a simple global spinlock around its code, and so use by
multiple threads is serialized. Because of this, while OpenMP can do wonders for the performance of the
batch operators, it made no sense for dlmalloc and so OpenMP support was not added.

Modifying dlmalloc to support the proposed API was particularly trivial as it already supports fast batch
allocation via its proprietary independent_comalloc API, so where the flag M2 BATCH_IS_ALL_ALLOC is
set it uses independent_comalloc. independent_comalloc works by finding a free region large enough
to hold all the new allocations, and then writing in all the appropriate headers and footers for each of
the allocations — thus avoiding a search of the free space lists per new allocation, and therefore executing
the batch operation very considerably faster. Where the flag M2_CONSTANT_TIME is set it simply skips the
free segment scan for coalescing opportunities which is by default run every 4096 free operations. Past
these, the single-threaded design of dlmalloc didn’t really allow much more optimization.

The total time taken for this modification was 15 man hours including testing on Linux, Apple Mac OS
X and Microsoft Windows. Other, more complex allocators would no doubt take somewhat longer, but I
doubt that it would be significantly more so. Despite the apparent complexity of this proposal on paper,
its implementation is wvery easy because almost everything it needs is already present, but currently
publicly unexposed, in any allocator implementation. Also, each of the APIs can be implemented by
a single piece of source code which the compiler optimizes out the bits which aren’t needed for that
particular instantiation.

23

ISO SC22/WG14 — N1519: Latency Reducing Memory Allocation:[v1.91 Oct 2010]
Bibliography

ISO/IEC 9899, Programming Language C

~ N1494'9) | Next revision of C standard, ‘C1X’, http: // www. open-std. org/ jtcl/ sc22/wg14/ wuw/
docs/n1494. pdf

ISO/IEC 14882, Programming Language C++

~ N1850'%), Towards a Better Allocation Model http: // www. open-std. org/ jtcl/ sc22/wg21/ docs/
papers/ 2005/ n1850. pdf

— N2045') | Improving STL Allocators http: // www. open-std. org/ jtcl/ sc22/wg21/ docs/ papers/
2006/ n2045. html

~ N2271'%) | EASTL — Electronic Arts Standard Template Library http: //www. open-std. org/ jtcl/
sc22/wgl1/ docs/ papers/ 2007/ n2271. html

[1] Denning, P.J., (1970), Virtual memory ACM Computing Surveys (CSUR) vol. 2 no. 3 pp. 153-189

[2] Bell Laboratories, (1979), The Manual for the Seventh Edition of Unix can be found at http:
//cm.bell-labs.com/7thEdMan/bswv7.html

[3] McCallum, J.C., (2010), A list of historical memory sizes and prices can be found at http://www.
jcmit.com/memoryprice.htm

[4] A list of historical memory interconnect speeds can be found at http://en.wikipedia.org/wiki/
List_of_device_bit_rates#Memory_Interconnect.2FRAM_buses

[5] Douglas, N., (2010), nedmalloc http://www.nedprod.com/programs/portable/nedmalloc/
[6] Lea, D., (2010), dlmalloc http://g.oswego.edu/
[

7] Berger, E.D. and Zorn, B.G. and McKinley, K.S., (2002), Reconsidering custom memory allocation
ACM SIGPLAN Notices vol. 37 no. 11 pages 12

15)To be published.

24

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1494.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1494.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1850.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1850.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2045.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2045.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2271.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2271.html
http://cm.bell-labs.com/7thEdMan/bswv7.html
http://cm.bell-labs.com/7thEdMan/bswv7.html
http://www.jcmit.com/memoryprice.htm
http://www.jcmit.com/memoryprice.htm
http://en.wikipedia.org/wiki/List_of_device_bit_rates#Memory_Interconnect.2FRAM_buses
http://en.wikipedia.org/wiki/List_of_device_bit_rates#Memory_Interconnect.2FRAM_buses
http://www.nedprod.com/programs/portable/nedmalloc/
http://g.oswego.edu/

	Contents
	Foreword
	Introduction
	1 Normative references
	2 Scope
	3 The proposed changes to the C programming language standard
	7.5 Errors <errno.h>
	7.22 General utilities <stdlib.h>
	7.22.3 Memory management functions
	7.22.3.1 The aligned_alloc function
	7.22.3.2 The aligned_realloc function
	7.22.3.3 The batch_alloc1 function
	7.22.3.4 The batch_alloc2 function
	7.22.3.5 The batch_alloc5 function
	7.22.3.6 The calloc function
	7.22.3.7 The free function
	7.22.3.8 The malloc function
	7.22.3.9 The malloc_usable_size function
	7.22.3.10 The realloc function
	7.22.3.11 The try_aligned_realloc function
	7.22.3.12 The try_realloc function

	4 Implementation notes
	Estimated implementation costs

	Bibliography

