
ISO/IEC 9899:201x Committee Draft – March 1, 2009 WG14 N1362

147 Language 147

Document: N1410
Date: 2009/09/29

6.10 Preprocessing directives
Syntax
preprocessing-file:

groupopt

group:

group-part
group group-part

group-part:

if-section
macro-section
for-section
control-line
text-line
non-directive

if-section:

if-group elif-groupsopt else-groupopt endif-line

if-group:

if constant-expression new-line groupopt
ifdef identifier new-line groupopt
ifndef identifier new-line groupopt

elif-groups:

elif-group
elif-groups elif-group

elif-group:

elif constant-expression new-line groupopt

else-group:

else new-line groupopt

endif-line:

endif new-line

macro-section:
 macro-line replacement-groupopt endmacro-line

for-section:
 for-line replacement-groupopt endfor-line

ISO/IEC 9899:201x Committee Draft – March 1, 2009 WG14 N1362

148 Language 148

macro-line:
macro identifier new-line
macro identifier lparen identifier-listopt) new-line
macro identifier lparen ...) new-line
macro identifier lparen identifier-list, ...) new-line

for-line:
for control-identifier integer-expression-start integer-expression-end new-line

replacement-group:

group

endmacro-line:

endmacro new-line

endfor-line:
endfor new-line

control-identifier:
identifier

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier lparen identifier-listopt) replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list , ...) replacement-list new-line
integer identifier integer-expression new-line
printf lparen identifier-list)

text-line:
pp-tokensopt new-line

non-directive:
pp-tokens new-line

lparen:
a (character not immediately preceded by white-space

replacement-list:
pp-tokensopt

pp-tokens:

preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

Description
2 A preprocessing directive consists of a sequence of preprocessing tokens that satisfies the following

constraints: The first token in the sequence is a # preprocessing token that (at the start of translation
phase 4) is either the first character in the source file (optionally after white space containing no new-

ISO/IEC 9899:201x Committee Draft – March 1, 2009 WG14 N1362

149 Language 149

line characters) or that follows white space containing at least one new-line character. The last token in
the sequence is the first newline character that follows the first token in the sequence.146 A new-line
character ends the preprocessing directive even if it occurs within what would otherwise be an
invocation of a function-like macro.

3 A text line shall not begin with a # preprocessing token. A non-directive shall not begin with any of the

directive names appearing in the syntax.

4 When in a group that is skipped (6.10.1), the directive syntax is relaxed to allow any sequence of

preprocessing tokens to occur between the directive name and the following new-line character.

Constraints
5 The only white-space characters that shall appear between preprocessing tokens within a preprocessing

directive (from just after the introducing # preprocessing token through just before the terminating
new-line character) are space and horizontal-tab (including spaces that have replaced comments or
possibly other white-space characters in translation phase 3).

Semantics
6 The implementation can process and skip sections of source files conditionally, include other source

files, and replace macros. These capabilities are called preprocessing, because conceptually they occur
before translation of the resulting translation unit.

7 The preprocessing tokens within a preprocessing directive are not subject to macro expansion unless
otherwise stated.

8 EXAMPLE In:
#define EMPTY
EMPTY # include <file.h>

the sequence of preprocessing tokens on the second line is not a preprocessing directive, because it does
not begin with a # at the start of translation phase 4, even though it will do so after the macro EMPTY
has been replaced.

9 #printf behaves similarly to the library printf, except that only the format specifiers %s and %d are
observed.

10 #integer identifier integer-expression new-line defines a preprocessor variable of type bigint upon

which integer arithmetic may be performed. For example

#integer fred 0

defines fred and initializes fred to a value of 0 and

#integer fred fred + 1

does the indicated arithmetic and assigns it back to fred.

146Thus, preprocessing directives are commonly called ‘‘lines’’. These ‘‘lines’’ hav e no other syntactic
significance, as all white space is equivalent except in certain situations during preprocessing (see the
character string literal creation operator in 6.10.3.2, for example).

ISO/IEC 9899:201x Committee Draft – March 1, 2009 WG14 N1362

150 Language 150

11 # for identifier integer-constant-start integer-constant-out-of-bounds new-line defines a
preprocessor loop controlled by an identifier of type bigint with an initial value of integer-expression-
start and a final value of integer-expression-end for example:

 #integer array_size 8
 int myArray[array_size]=
 {

#for count 0 array_size-1
count,

#endfor
};

produces the following:
int myArray[]=
{

0,
1,
2,
3,
4,
5,
6,
7,

};

6.10.1 Conditional inclusion

Constraints

1 The expression that controls conditional inclusion shall be an integer constant expression except that: it

shall not contain a cast; identifiers (including those lexically identical to keywords) are interpreted as
described below;147) and it may contain unary operator expressions of the form

defined identifier
or
defined (identifier)

which evaluate to 1 if the identifier is currently defined as a macro name (that is, if it is predefined or if
it has been the subject of a #define preprocessing directive without an intervening #undef
directive with the same subject identifier), 0 if it is not.

2 Each preprocessing token that remains (in the list of preprocessing tokens that will become the
controlling expression) after all macro replacements have occurred shall be in the lexical form of a token
(6.4).

Semantics

3 Preprocessing directives of the forms
if constant-expression new-line groupopt
elif constant-expression new-line groupopt

check whether the controlling constant expression evaluates to nonzero.

147 Because the controlling constant expression is evaluated during translation phase 4, all identifiers
either are or are not macro names — there simply are no keywords, enumeration constants, etc.

ISO/IEC 9899:201x Committee Draft – March 1, 2009 WG14 N1362

151 Language 151

4 Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the

controlling constant expression are replaced (except for those macro names modified by the defined
unary operator), just as in normal text. If the token defined is generated as a result of this
replacement process or use of the defined unary operator does not match one of the two specified
forms prior to macro replacement, the behavior is undefined. After all replacements due to macro
expansion and the defined unary operator have been performed, all remaining identifiers (including
those lexically identical to keywords) are replaced with the pp-number 0, and then each preprocessing
token is converted into a token. The resulting tokens compose the controlling constant expression which
is evaluated according to the rules of 6.6. For the purposes of this token conversion and evaluation, all
signed integer types and all unsigned integer types act as if they hav e the same representation as,
respectively, the types intmax_t and uintmax_t defined in the header <stdint.h>.148 This
includes interpreting character constants, which may involve converting escape sequences into execution
character set members. Whether the numeric value for these character constants matches the value
obtained when an identical character constant occurs in an expression (other than within a #if or
#elif directive) is implementation-defined.149) Also, whether a single-character character constant
may have a neg ative value is implementation-defined.

5 Preprocessing directives of the forms

ifdef identifier new-line groupopt
ifndef identifier new-line groupopt

check whether the identifier is or is not currently defined as a macro name. Their conditions are
equivalent to #if defined identifier and #if !defined identifier respectively.

6 Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it controls is
skipped: directives are processed only through the name that determines the directive in order to keep
track of the level of nested conditionals; the rest of the directives’ preprocessing tokens are ignored, as
are the other preprocessing tokens in the group. Only the first group whose control condition evaluates
to true (nonzero) is processed. If none of the conditions evaluates to true, and there is a #else
directive, the group controlled by the #else is processed; lacking a #else directive, all the groups
until the #endif are skipped.150)

Forward references: macro replacement (6.10.3), source file inclusion (6.10.2), largest integer types
(7.18.1.5).

6.10.2 Source file inclusion

Constraints

148 Thus, on an implementation where INT_MAX is 0x7FFF and UINT_MAX is 0xFFFF, the constant
0x8000 is signed and positive within a #if expression even though it would be unsigned in
translation phase 7.
149 Thus, the constant expression in the following #if directive and if statement is not guaranteed to
evaluate to the same value in these two contexts.

#if 'z' - 'a' == 25
if ('z' - 'a' == 25)

150 As indicated by the syntax, a preprocessing token shall not follow a #else or #endif directive
before the terminating new-line character. Howev er, comments may appear anywhere in a source file,
including within a preprocessing directive.

ISO/IEC 9899:201x Committee Draft – March 1, 2009 WG14 N1362

152 Language 152

1 A #include directive shall identify a header or source file that can be processed by the
implementation.

Semantics

2 A preprocessing directive of the form

include <h-char-sequence> new-line
searches a sequence of implementation-defined places for a header identified uniquely by the specified
sequence between the < and > delimiters, and causes the replacement of that directive by the entire
contents of the header. How the places are specified or the header identified is implementation-defined.

3 A preprocessing directive of the form

include "q-char-sequence" new-line

causes the replacement of that directive by the entire contents of the source file identified by the
specified sequence between the " delimiters. The named source file is searched for in an
implementation-defined manner. If this search is not supported, or if the search fails, the directive is
reprocessed as if it read

include <h-char-sequence> new-line
with the identical contained sequence (including > characters, if any) from the original directive.

4 A preprocessing directive of the form
include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after
include in the directive are processed just as in normal text. (Each identifier currently defined as a
macro name is replaced by its replacement list or replacement group of preprocessing tokens.) The
directive resulting after all replacements shall match one of the two previous forms.151) The method by
which a sequence of preprocessing tokens between a < and a > preprocessing token pair or a pair of "
characters is combined into a single header name preprocessing token is implementation-defined.

5 The implementation shall provide unique mappings for sequences consisting of one or more nondigits or
digits (6.4.2.1) followed by a period (.) and a single nondigit. The first character shall not be a digit.
The implementation may ignore distinctions of alphabetical case and restrict the mapping to eight
significant characters before the period.

6 A #include preprocessing directive may appear in a source file that has been read because of a

#include directive in another file, up to an implementation-defined nesting limit (see 5.2.4.1).

7 EXAMPLE 1 The most common uses of #include preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

151 Note that adjacent string literals are not concatenated into a single string literal (see the translation
phases in 5.1.1.2); thus, an expansion that results in two string literals is an invalid directive.

ISO/IEC 9899:201x Committee Draft – March 1, 2009 WG14 N1362

153 Language 153

8 EXAMPLE 2 This illustrates macro-replaced #include directives:

#if VERSION == 1
#define INCFILE "vers1.h"
#elif VERSION == 2
#define INCFILE "vers2.h" // and so on
#else
#define INCFILE "versN.h"
#endif
#include INCFILE

Forward references: macro replacement (6.10.3).

6.10.3 Macro replacement

Constraints

1 Two replacement lists are identical if and only if the preprocessing tokens in both have the same

number, ordering, spelling, and white-space separation, where all white-space separations are considered
identical. Two replacement groups are identical if and only if the preprocessing tokens in both have the
same number, ordering, spelling and white space separation where all white space separations, not
including a single, isolated new-line character, are considered identical.

2 An identifier currently defined as an object-like macro shall not be redefined by another #define

preprocessing directive unless the second definition is an object-like macro definition and the two
replacement lists are identical. Likewise, an identifier currently defined as a function-like macro shall
not be redefined by another #define preprocessing directive unless the second definition is a
function-like macro definition that has the same number and spelling of parameters, and the two
replacement lists or the two replacement groups are identical.

3 There shall be white-space between the identifier and the replacement list in the definition of an object-

like macro.

4 If the identifier-list in the macro definition does not end with an ellipsis, the number of arguments

(including those arguments consisting of no preprocessing tokens) in an invocation of a function-like
macro shall equal the number of parameters in the macro definition. Otherwise, there shall be more
arguments in the invocation than there are parameters in the macro definition (excluding the ...).
There shall exist a) preprocessing token that terminates the invocation.

5 The identifier __VA_ARGS__ shall occur only in the replacement-list or replacement-group of a

function-like macro that uses the ellipsis notation in the parameters.

6 A parameter identifier in a function-like macro shall be uniquely declared within its scope.

ISO/IEC 9899:201x Committee Draft – March 1, 2009 WG14 N1362

154 Language 154

Semantics

7 The identifier immediately following the define or macro is called the macro name. There is one

name space for macro names. Any white-space characters preceding or following the replacement list or
replacement-group of preprocessing tokens are not considered part of the replacement list for either form
of macro.

8 If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a

preprocessing directive could begin, the identifier is not subject to macro replacement.

9 A preprocessing directive of the form

define identifier replacement-list new-line
or

macro identifier replacement-group # endmacro

defines an object-like macro that causes each subsequent instance of the macro name152) to be replaced
by the replacement list of preprocessing tokens that constitute the remainder of the directive. The
replacement list is then rescanned for more macro names as specified below.

10 A preprocessing directive of the form
define identifier lparen identifier-listopt) replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list , ...) replacement-list new-line
macro identifier lparen identifier-listopt) replacement-group # endmacro
macro identifier lparen ...) replacement-group # endmacro
macro identifier lparen identifier-list , ...) replacement-group # endmacro

defines a function-like macro with parameters, whose use is similar syntactically to a function call. The
parameters are specified by the optional list of identifiers, whose scope extends from their declaration in
the identifier list until the new-line character that terminates the #define preprocessing directive or
the #endmacro that terminates the #macro processing directive. Each subsequent instance of the
function-like macro name followed by a (as the next preprocessing token introduces the sequence of
preprocessing tokens that is replaced by the replacement list or replacement group in the definition (an
invocation of the macro). The replaced sequence of preprocessing tokens is terminated by the matching
) preprocessing token, skipping intervening matched pairs of left and right parenthesis preprocessing
tokens. Within the sequence of preprocessing tokens making up an invocation of a function-like macro,
new-line is considered a normal white-space character.

11 The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms the list
of arguments for the function-like macro. The individual arguments within the list are separated by
comma preprocessing tokens, but comma preprocessing tokens between matching inner parentheses do
not separate arguments. If there are sequences of preprocessing tokens within the list of arguments that
would otherwise act as preprocessing directives,153) the behavior is undefined.

152 Note that adjacent string literals are not concatenated into a single string literal (see the translation
phases in 5.1.1.2); thus, an expansion that results in two string literals is an invalid directive.
153 Despite the name, a non-directive is a preprocessing directive.

ISO/IEC 9899:201x Committee Draft – March 1, 2009 WG14 N1362

155 Language 155

12 If there is a ... in the identifier-list in the macro definition, then the trailing arguments, including any

separating comma preprocessing tokens, are merged to form a single item: the variable arguments. The
number of arguments so combined is such that, following merger, the number of arguments is one more
than the number of parameters in the macro definition (excluding the ...).

6.10.3.1 Argument substitution

1 After the arguments for the invocation of a function-like macro have been identified, argument

substitution takes place. A parameter in the replacement list, unless preceded by a # or ##
preprocessing token or followed by a ## preprocessing token (see below), is replaced by the
corresponding argument after all macros contained therein have been expanded. Before being
substituted, each argument’s preprocessing tokens are completely macro replaced as if they formed the
rest of the preprocessing file; no other preprocessing tokens are available.

2 An identifier _ _VA_ARGS_ _ that occurs in the replacement list shall be treated as if it were a

parameter, and the variable arguments shall form the preprocessing tokens used to replace it.

3 When a for-section is nested in a macro-section, the argument list of the enclosing macro-section shall

be applied to the for-section. For example:

#macro UnRolledLoop(loopLimit,array,index)
#for count 0 loopLimit-1
 array[index+count]=count;
#endfor

#endmacro
#integer array_size 16
#integer unroll 4
int array[array_size];
int index;

for (index=0; index < array_size); index+=unroll)
{
 UnRolledLoop(unroll,array,index)
}

produces the following:

int array[16];
int index;

for (index=0; index < 16; index+=4)
{

array[index+0]=0;
array[index+1]=1;
array[index+2]=2;
array[index+3]=3;

}

4 When a for-section is encountered without an enclosing macro-section, only the control-identifier is
available for argument substitution.

ISO/IEC 9899:201x Committee Draft – March 1, 2009 WG14 N1362

156 Language 156

5 When a macro-section is processed, argument substitution occurs within all the text lines up until the
matching #endmacro, and then this output is re-scanned. Therefore nested #macro/#endmacro and
#for/#endfor repeat blocks can be modified by parameter substitution from outer macro-section
blocks before they are directly processed.

6 Nested macro-section, if-section and for-section blocks must be fully formed and contain a terminating

#endmacro/#endif/#endfor within the surrounding macro-section, if-section or for-section block.

7 When #endfor is encountered, the control-identifier from the matching #for ceases to be defined.

6.10.3.2 The # operator

Constraints

1 Each # preprocessing token in the replacement list or replacement group for a function-like macro shall

be followed by a parameter as the next preprocessing token in the replacement list.

Semantics

2 If, in the replacement list or replacement group, a parameter is immediately preceded by a #

preprocessing token, both are replaced by a single character string literal preprocessing token that
contains the spelling of the preprocessing token sequence for the corresponding argument. Each
occurrence of white space between the argument’s preprocessing tokens becomes a single space
character in the character string literal. White space before the first preprocessing token and after the last
preprocessing token composing the argument is deleted. Otherwise, the original spelling of each
preprocessing token in the argument is retained in the character string literal, except for special handling
for producing the spelling of string literals and character constants: a \ character is inserted before each
" and \ character of a character constant or string literal (including the delimiting " characters),
except that it is implementation-defined whether a \ character is inserted before the \ character
beginning a universal character name. If the replacement that results is not a valid character string literal,
the behavior is undefined. The character string literal corresponding to an empty argument is "". The
order of evaluation of # and ## operators is unspecified.

ISO/IEC 9899:201x Committee Draft – March 1, 2009 WG14 N1362

157 Language 157

6.10.3.3 The ## operator

Constraints

1 A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for either

form of macro definition.

Semantics

2 If, in the replacement list or replacement group of a function-like macro, a parameter is immediately

preceded or followed by a ## preprocessing token, the parameter is replaced by the corresponding
argument’s preprocessing token sequence; however, if an argument consists of no preprocessing tokens,
the parameter is replaced by a placemarker preprocessing token instead.154)

3 For both object-like and function-like macro invocations, before the replacement list or replacement

group is reexamined for more macro names to replace, each instance of a ## preprocessing token in the
replacement list or replacement group (not from an argument) is deleted and the preceding preprocessing
token is concatenated with the following preprocessing token. Placemarker preprocessing tokens are
handled specially: concatenation of two placemarkers results in a single placemarker preprocessing
token, and concatenation of a placemarker with a non-placemarker preprocessing token results in the
non-placemarker preprocessing token. If the result is not a valid preprocessing token, the behavior is
undefined. The resulting token is available for further macro replacement. The order of evaluation of ##
operators is unspecified.

4 EXAMPLE In the following fragment:

#define hash_hash # ## #
#define mkstr(a) # a
#define in_between(a) mkstr(a)
#define join(c, d) in_between(c hash_hash d)
char p[] = join(x, y); // equivalent to
// char p[] = "x ## y";

The expansion produces, at various stages:

join(x, y)
in_between(x hash_hash y)
in_between(x ## y)
mkstr(x ## y)
"x ## y"

In other words, expanding hash_hash produces a new token, consisting of two adjacent sharp signs, but this new token is
not the ## operator.

154 Placemarker preprocessing tokens do not appear in the syntax because they are temporary entities that
exist only within translation phase 4.

ISO/IEC 9899:201x Committee Draft – March 1, 2009 WG14 N1362

158 Language 158

5 EXAMPLE In the following fragment:
 given that SYSTEM is defined on the command line as either
 -DSYSTEM= EQUAL_TEMPERAMENT
 or
 -DSYSTEM= EQUAL_TEMPERAMENT

typedef enum
{
#if SYSTEM==EQUAL_TEMPERAMENT

intervalCflat=-1, intervalC,intervalCsharp,
intervalDflat=intervalCsharp,intervalD,intervalDsharp,
intervalEflat=intervalDsharp,intervalE,intervalEsharp,
intervalFflat=intervalE,intervalF=intervalEsharp,intervalFsharp,
intervalGflat=intervalFsharp,intervalG,intervalGsharp,
intervalAflat=intervalGsharp,intervalA,intervalAsharp,
intervalBflat=intervalAsharp,intervalB,intervalBsharp

#else
intervalCflat=0, intervalC,intervalCsharp,
intervalDflat,intervalD,intervalDsharp,
intervalEflat,intervalE,intervalEsharp,
intervalFflat,intervalF,intervalFsharp,
intervalGflat,intervalG,intervalGsharp,
intervalAflat,intervalA,intervalAsharp,
intervalBflat,intervalB,intervalBsharp

#endif
}notenames;

#macro printpitch (octave, interval,system)
{
double frequency;
#if system==EQUAL_TEMPERAMENT
 // note the valid use of single line comment here...
 frequency=440*exp(((double)octave-4.0L+((double)(interval-intervalA))/12.0L)*ln(2));
#elif system == JUST_TEMPERAMENT
 double ratios[]={ /*define these according to accepted values */};
 frequency=440*exp(((double)octave-4.0L)*ln(2))*ratios[interval];
#else
 frequency=0.0;
#endif
 printf("%s temperament pitch of octave:%d, interval:%d is %7.3f\n",#system,
octave,interval,frequency);
}
#endmacro

printpitch(3,intervalFsharp,SYSTEM)

The preprocessor should generate the following, with -DSYSTEM=EQUAL_TEMPERAMENT:

{
double frequency;
 // note the valid use of single line comment here...
 frequency=440*exp(((double)3-4.0L+((double)(intervalFsharp-intervalA))/12.0L)*ln(2));
 printf("%s temperament pitch of octave:%d, interval:%d is %7.3f\n","Equal",octave,interval,frequency);
}

6 EXAMPLE In the following fragment:

typedef struct _myRecord_t

ISO/IEC 9899:201x Committee Draft – March 1, 2009 WG14 N1362

159 Language 159

{
 char *pszLiteralString;

}myRecord_t;

#integer MyRecordIndex_next 0

#macro MyArrayEntry(symbol)

#if MyRecordIndex_next != 0
,
#endif
{
 .pszLiteralString=#symbol;
}
#integer MyRecordIndex_##symbol MyRecordIndex_next
#integer MyRecordIndex_next (MyRecordIndex_next + 1)

#endmacro

myRecord_t myArray[]=
 MyFirstArrayEntry(joe)
 MyNextArrayEntry(sam)
 MyNextArrayEntry(fred)

;

The preprocessor should generate the following:

myRecord_t myArray[]=
 {
 .pszLiteralString="joe";
 }
 ,{
 .pszLiteralString="sam";
 }
 ,{
 .pszLiteralString="fred";
 }
 ;

And the state of the preprocessor symbol table shall be as if the following statements had been
encountered:

#define MyRecordIndex_joe 0
#define MyRecordIndex_sam 1
#define MyRecordIndex_fred 2

 #define MyRecordIndex_next 3

 Note that a #integer is stored in the preprocessor as a signed BIG_INT.

6.10.3.4 Rescanning and further replacement

ISO/IEC 9899:201x Committee Draft – March 1, 2009 WG14 N1362

160 Language 160

1 After all parameters in the replacement list or replacement group have been substituted and # and ##
processing has taken place, all placemarker preprocessing tokens are removed. Then, the resulting
preprocessing token sequence is rescanned, along with all subsequent preprocessing tokens of the source
file, for more macro names to replace.

2 If the name of the macro being replaced is found during this scan of the replacement list or replacement

group (not including the rest of the source file’s preprocessing tokens), it is not replaced. Furthermore,
if any nested replacements encounter the name of the macro being replaced, it is not replaced. These
nonreplaced macro name preprocessing tokens are no longer available for further replacement even if
they are later (re)examined in contexts in which that macro name preprocessing token would otherwise
have been replaced.

3 The resulting completely macro-replaced preprocessing token sequence is not processed as a

preprocessing directive even if it resembles one, but all pragma unary operator expressions within it are
then processed as specified in 6.10.9 below.

6.10.3.5 Scope of macro definitions

1 A macro definition lasts (independent of block structure) until a corresponding #undef directive is

encountered or (if none is encountered) until the end of the preprocessing translation unit. Macro
definitions have no significance after translation phase 4.

2 A preprocessing directive of the form

undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if the specified
identifier is not currently defined as a macro name.

3 EXAMPLE 1 The simplest use of this facility is to define a ‘‘manifest constant’’, as in

#define TABSIZE 100
int table[TABSIZE];

4 EXAMPLE 2 The following defines a function-like macro whose value is the maximum of its arguments. It has the
advantages of working for any compatible types of the arguments and of generating in-line code without the overhead of
function calling. It has the disadvantages of evaluating one or the other of its arguments a second time (including side effects)
and generating more code than a function if invoked several times. It also cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

ISO/IEC 9899:201x Committee Draft – March 1, 2009 WG14 N1362

161 Language 161

5 EXAMPLE 3 To illustrate the rules for redefinition and reexamination, the sequence

#define x 3
#define f(a) f(x * (a))
#undef x
#define x 2
#define g f
#define z z[0]
#define h g(~
#define m(a) a(w)
#define w 0,1
#define t(a) a
#define p() int
#define q(x) x
#define r(x,y) x ## y
#define str(x) # x
f(y+1) + f(f(z)) % t(t(g)(0) + t)(1);
g(x+(3,4)-w) | h 5) & m
(f)^m(m);
p() i[q()] = { q(1), r(2,3), r(4,), r(,5), r(,) };
char c[2][6] = { str(hello), str() };

results in

f(2 * (y+1)) + f(2 * (f(2 * (z[0])))) % f(2 * (0)) + t(1);
f(2 * (2+(3,4)-0,1)) | f(2 * (~ 5)) & f(2 * (0,1))^m(0,1);
int i[] = { 1, 23, 4, 5, };
char c[2][6] = { "hello", "" };

ISO/IEC 9899:201x Committee Draft – March 1, 2009 WG14 N1362

162 Language 162

6 EXAMPLE 4 To illustrate the rules for creating character string literals and concatenating tokens, the sequence
#define str(s) # s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \
x ## s, x ## t)
#define INCFILE(n) vers ## n
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)
#define HIGHLOW "hello"
#define LOW LOW ", world"
debug(1, 2);
fputs(str(strncmp("abc\0d", "abc", '\4') // this goes away
== 0) str(: @\n), s);
#include xstr(INCFILE(2).h)
glue(HIGH, LOW);
xglue(HIGH, LOW)

results in

printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", '\\4') == 0" ": @\n",s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello" ", world"

or, after concatenation of the character string literals,

printf("x1= %d, x2= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", '\\4') == 0: @\n",s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello, world"

Space around the # and ## tokens in the macro definition is optional.

7 EXAMPLE 5 To illustrate the rules for placemarker preprocessing tokens, the sequence

#define t(x,y,z) x ## y ## z
int j[] = { t(1,2,3), t(,4,5), t(6,,7), t(8,9,), t(10,,), t(,11,), t(,,12),

t(,,) };

results in

int j[] = { 123, 45, 67, 89,10, 11, 12, };

ISO/IEC 9899:201x Committee Draft – March 1, 2009 WG14 N1362

163 Language 163

8 EXAMPLE 6 To demonstrate the redefinition rules, the following sequence is valid.

#define OBJ_LIKE (1-1)
#define OBJ_LIKE /* white space */ (1-1) /* other */
#define FUNC_LIKE(a) (a)
#define FUNC_LIKE(a)(/* note the white space */ \

a /* other stuff on this line */)

But the following redefinitions are invalid:

#define OBJ_LIKE (0) // different token sequence
#define OBJ_LIKE (1 - 1) // different white space
#define FUNC_LIKE(b) (a) // different parameter usage
#define FUNC_LIKE(b) (b) // different parameter spelling

9 EXAMPLE 7 Finally, to show the variable argument list macro facilities:

#define debug(...) fprintf(stderr, _ _VA_ARGS_ _)
#define showlist(...) puts(#_ _VA_ARGS_ _)
#define report(test, ...) ((test)?puts(#test):\
printf(_ _VA_ARGS_ _))
debug("Flag");
debug("X = %d\n", x);
showlist(The first, second, and third items.);
report(x>y, "x is %d but y is %d", x, y);

results in

fprintf(stderr, "Flag");
fprintf(stderr, "X = %d\n", x);
puts("The first, second, and third items.");
((x>y)?puts("x>y"):
printf("x is %d but y is %d", x, y));

6.10.4 Line control

Constraints

1 The string literal of a #line directive, if present, shall be a character string literal.

ISO/IEC 9899:201x Committee Draft – March 1, 2009 WG14 N1362

164 Language 164

Semantics

2 The line number of the current source line is one greater than the number of new-line characters read or

introduced in translation phase 1 (5.1.1.2) while processing the source file to the current token.

3 A preprocessing directive of the form

line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source
line that has a line number as specified by the digit sequence (interpreted as a decimal integer). The digit
sequence shall not specify zero, nor a number greater than 2147483647.

4 A preprocessing directive of the form

line digit-sequence "s-char-sequenceopt" new-line

sets the presumed line number similarly and changes the presumed name of the source file to be the
contents of the character string literal.

5 A preprocessing directive of the form

line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after line
on the directive are processed just as in normal text (each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens). The directive resulting after all replacements
shall match one of the two previous forms and is then processed as appropriate.

6.10.5 Error directive

Semantics

1 A preprocessing directive of the form

error pp-tokensopt new-line

causes the implementation to produce a diagnostic message that includes the specified sequence of
preprocessing tokens.

ISO/IEC 9899:201x Committee Draft – March 1, 2009 WG14 N1362

165 Language 165

6.10.6 Pragma directive

Semantics

1 A preprocessing directive of the form

pragma pp-tokensopt new-line

where the preprocessing token STDC does not immediately follow pragma in the directive (prior to
any macro replacement)155 causes the implementation to behave in an implementation-defined manner.
The behavior might cause translation to fail or cause the translator or the resulting program to behave in
a non-conforming manner. Any such pragma that is not recognized by the implementation is ignored.

2 If the preprocessing token STDC does immediately follow pragma in the directive (prior to any

macro replacement), then no macro replacement is performed on the directive, and the directive shall
have one of the following forms156 whose meanings are described elsewhere:

#pragma STDC FP_CONTRACT on-off-switch
#pragma STDC FENV_ACCESS on-off-switch
#pragma STDC CX_LIMITED_RANGE on-off-switch
on-off-switch: one of

ON OFF DEFAULT

Forward references: the FP_CONTRACT pragma (7.12.2), the FENV_ACCESS pragma (7.6.1), the
CX_LIMITED_RANGE pragma (7.3.4).

155 An implementation is not required to perform macro replacement in pragmas, but it is permitted
except for in standard pragmas (where STDC immediately follows pragma). If the result of macro
replacement in a non-standard pragma has the same form as a standard pragma, the behavior is still
implementation-defined; an implementation is permitted to behave as if it were the standard pragma,
but is not required to.
156 See ‘‘future language directions’’ (6.11.8).

ISO/IEC 9899:201x Committee Draft – March 1, 2009 WG14 N1362

166 Language 166

6.10.7 Null directive

Semantics

1 A preprocessing directive of the form

new-line
has no effect.

6.10.8 Predefined macro names

1 The following macro names157 shall be defined by the implementation:

_ _DATE_ _ The date of translation of the preprocessing translation unit: a character string literal of
the form "Mmm dd yyyy", where the names of the months are the same as those generated by
the asctime function, and the first character of dd is a space character if the value is less
than 10. If the date of translation is not available, an implementation-defined valid date shall be
supplied.

_ _FILE_ _ The presumed name of the current source file (a character string literal).158

_ _LINE_ _ The presumed line number (within the current source file) of the current source line (an
integer constant).158)

_ _STDC_ _ The integer constant 1, intended to indicate a conforming implementation.

_ _STDC_HOSTED_ _ The integer constant 1 if the implementation is a hosted implementation or
the integer constant 0 if it is not. ∗

_ _STDC_VERSION_ _ The integer constant 199901L.159159)

_ _TIME_ _ The time of translation of the preprocessing translation unit: a character string literal of

the form "hh:mm:ss" as in the time generated by the asctime function. If the time of
translation is not available, an implementation-defined valid time shall be supplied.

157 See ‘‘future language directions’’ (6.11.9).
158 The presumed source file name and line number can be changed by the #line directive.

159 This macro was not specified in ISO/IEC 9899:1990 and was specified as 199409L in ISO/IEC

9899/AMD1:1995. The intention is that this will remain an integer constant of type long int that is
increased with each revision of this International Standard.

ISO/IEC 9899:201x Committee Draft – March 1, 2009 WG14 N1362

167 Language 167

2 The following macro names are conditionally defined by the implementation:

_ _STDC_IEC_559_ _ The integer constant 1, intended to indicate conformance to the specifications in

annex F (IEC 60559 floating-point arithmetic).

_ _STDC_IEC_559_COMPLEX_ _ The integer constant 1, intended to indicate adherence to the

specifications in informative annex G (IEC 60559 compatible complex arithmetic).

_ _STDC_ISO_10646_ _ An integer constant of the form yyyymmL (for example, 199712L). If this

symbol is defined, then every character in the Unicode required set, when stored in an object of type
wchar_t, has the same value as the short identifier of that character. The Unicode required set consists
of all the characters that are defined by ISO/IEC 10646, along with all amendments and technical
corrigenda, as of the specified year and month.

_ _STDC_MB_MIGHT_NEQ_WC_ _ The integer constant 1, intended to indicate that, in the encoding for

wchar_t, a member of the basic character set need not have a code value equal to its value when used
as the lone character in an integer character constant.

3 The values of the predefined macros (except for _ _FILE_ _ and _ _LINE_ _) remain constant

throughout the translation unit.

4 None of these macro names, nor the identifier defined, shall be the subject of a #define or a

#undef preprocessing directive. Any other predefined macro names shall begin with a leading
underscore followed by an uppercase letter or a second underscore.

5 The implementation shall not predefine the macro _ _cplusplus, nor shall it define it in any

standard header.

Forward references: the asctime function (7.23.3.1), standard headers (7.1.2).

ISO/IEC 9899:201x Committee Draft – March 1, 2009 WG14 N1362

168 Language 168

6.10.9 Pragma operator

Semantics

1 A unary operator expression of the form:

_Pragma (string-literal)

is processed as follows: The string literal is destringized by deleting the L prefix, if present, deleting the
leading and trailing double-quotes, replacing each escape sequence \" by a double-quote, and
replacing each escape sequence \\ by a single backslash. The resulting sequence of characters is
processed through translation phase 3 to produce preprocessing tokens that are executed as if they were
the pp-tokens in a pragma directive. The original four preprocessing tokens in the unary operator
expression are removed.

2 EXAMPLE A directive of the form:

#pragma listing on "..\listing.dir"

can also be expressed as:

_Pragma ("listing on \"..\\listing.dir\"")

The latter form is processed in the same way whether it appears literally as shown, or results from macro replacement, as in:

#define LISTING(x) PRAGMA(listing on #x)
#define PRAGMA(x) _Pragma(#x)
LISTING (..\listing.dir)

