
WG 14 Document: N1403 

 

Towards support for attributes in C  
David Svoboda 
svoboda@cert.org 
Date: 2009-09-16  

General Attributes for C 
1 Overview  

The idea is to be able to annotate some entities in C with additional information. Currently, 
there is no means to do that short of inventing a new keyword and augmenting the grammar 
accordingly, thereby reserving yet another name of the user's namespace. This proposal will 
survey existing industry practice for extending the C syntax, and presents a general means for 
such annotations, including its integration into the C grammar.  It does not obviate the ability 
to add or overload keywords where appropriate, but it does reduce such need and add an 
ability to extend the language.  
 

1.1 Changelog 
 • A compiler must issue a warning unless it is certain that a noreturn function never 

returns. 
 • Added deprecated and warn_if_unused attributes 

 

2 The Problem  
At the Kona 2007 WG14 meeting, WG14 reviewed a number of papers outlining attributes 
for C. These included the proposals from C++ (WG 14 N1262 or WG 21 N2418), and a 
liaison statement from WG 14 to WG 21 (WG 14 N1273) was delivered and discussed at the 
WG 21 Bellevue 2008 meeting. 
However, since that time, the WG21 committee has approved attributes into the current draft 
of C++. (WG21 document N2914).  The document proposal that was accepted into C++ is 
N2761. Consequently, many open questions regarding current practice have become 
academic, as C++ will support attributes, and C++ compatibility is paramount. 

2.1 Acknowledgements 
This document is modeled after  WG21 document N2761, written by Jens Maurer and 
Michael Wong, and contains much content from that document. Consequently that 
document's authors should be credited for most of the content of this document. In particular, 
this document deviates from N2761 in omitting some C++-specific sections. Also the specific 
proposals are for the C standard, not the C++ standard. In particular, the proposed wording 
changes are to be applied to N1362. Finally, the author wishes to credit Blaine Garst, David 
Keaton, Clark Nelson, Tom Plum, Robert Seacord and Nick Stoughton for reviewing this 
document and providing helpful suggestions. 
 

3 The industry’s solution  



WG 14 Document: N1403 

 

Most compilers implement extensions on top of the C Standard [C99]. In order to not invade 
Standard namespace, compilers have implemented double underscore keywords, 
__attribute__(( )) [GNU], or __declspec() [MS]syntax. C# [C#] implements a single bracket 
system.  
This paper will study the __attribute__ and the __declspec syntax and make a 
recommendation on a specific syntax.  

The following are C++ entities that could benefit from attributes:  
• functions  

• variables  
• names of variables or functions  
• types  
• blocks  
• translation units  
• control-flow statements  
 

4 GNU’s attribute syntax  
Although the exact syntax is described in the GNU [GNU] manuals, it is a verbal description 
with no grammar rules attached. This is a qualifier on type, variable, or function. It is 
assumed that the compiler knows based on the attribute as to which of those it belongs to and 
parse accordingly. This functionality has been implemented by GCC since 2.9.3 and various 
compilers which need to maintain GCC source-compatibility. The IBM compiler is one of 
those and has implementation experience since 2001. Other compiler experience includes 
EDG.  
 
The description in the GCC manual is neither complete nor sufficiently specific to clearly 
avoid ambiguity. There are also somewhat incorrect implementations in existing GCC 
compilers. But the statement described in the GCC manual does describe an intended future 
direction. We suggest that we follow this future direction. In this paper, I will try to highlight 
those intended directions, describe any deviations and omissions from the manual 
descriptions, while giving sufficient feel for the syntax.  
 
The general syntax is:  
 
__attribute__((attribute-list))  
 
and:  
 
attribute-list  
The format is able to apply to structures, unions, enums, variables, or functions. An 
undocumented keyword __attribute is equivalent to __attribute__ and is used in GCC system 
headers. The user can also use the __ prefixed to the attribute name instead of the general 
syntax above. For C structs and C++ classes, here are some examples of usage. First, an 
attribute can only be applied to fully defined type declaration with declarators and declarator-
id.  
 
__attribute__((aligned(16))) class Z {int i;} ;  
__attribute__((aligned(16))) class Y ;  



WG 14 Document: N1403 

 

 
An attribute list placed at the beginning of a user-defined type applies to the variable of that 
type and not the type. This behavior is similar to __Declspec’s behavior.  
 
__attribute__((aligned(16))) class A {int i;} a ; // a has alignment of 16  
class A a1; // a1 has alignment of 4  
 
An attribute list placed after the class keyword will apply to the user-defined type. This is 
also __Declspec’s behavior.  
 
class __attribute__((aligned(16))) B {int i;} b ; // Class B has alignment of 16  
class B b1; // b1 also has alignment of 16  

 
Similarly, an attribute list placed before the declarator will apply to the user-defined type:  
 
class C {int i;} __attribute__((aligned(16))) c ; // Class C has alignment 16  
class C c1; //c1 also has alignment 16  

 
But an attribute list placed after the declarator will apply to the declarator-id:  
 
class D {int i;} d __attribute__((aligned(16))) ; //d has alignment 16  
class D d1; // d1 has alignment 4  
 

When all these attributes are present, the last one read for the class will dominate, but it could 
be overridden individually:  
 
__attribute__((aligned(16))) class __attribute__((aligned(32))) E {int i;} __attribute__  
((aligned(64))) e __attribute__((aligned(128))); // Class E has alignment 64  
class E e1; // e1 also has alignment 64  
class E e2 __attribute__((aligned(128))); // e2 has alignment 128  
class E __attribute__((aligned(128))) e3 ; //e3 has alignment 64  
class __attribute__((aligned(128))) E e4 ; //e4 has alignment 64  
__attribute__((aligned(128))) class E e5 ; //e5 has alignment 128  
 
While an attribute list is not allowed incomplete declaration without a declarator-id, it is 
allowed on a complete type declaration without a declarator-id. An attribute that is acceptable 
as a class attribute will be allowed for a type declaration:  
 
class __attribute__((aligned(16))) X {int i; }; // class X has alignment 16  
class X x; // x has alignment 16  
class V {int i; } __attribute__((aligned(16))) ; // class V has alignment 16  
class V v; //v has alignment 16  

 
An attribute specifier list is silently ignored if the content of the union, struct, or enumerated 
type is not defined in the specifier in which the attribute specifier list is used.  
 
struct __attribute__((alias("__foo"))) __attribute__((weak)) st1;  
union __attribute__((unused)) __attribute__((weak)) un1;  
enum __attribute__((unused)) __attribute__((weak)) enum1;  

 
When an attribute does not apply to types, it is diagnosed. Where attribute specifiers follow 
the closing brace, they are considered to relate to the structure, union, or enumerated type 
defined, not to any enclosing declaration the type specifier appears in, and the type is not 
complete until after the attribute specifiers.  
 
struct {} __attribute__((unused)) __attribute__((weak)) st4;  
struct {int i;} __attribute__((unused)) __attribute__((weak)) st4a;  



WG 14 Document: N1403 

 

struct struct3 {int j;} __attribute__((alias("__foo"))) __attribute__((weak)) st5;  
union {int i;} __attribute__((alias("__foo"))) __attribute__((weak)) un4;  
union union3 {int j;} __attribute__((unused)) __attribute__((weak)) un5;  
enum { } __attribute__((alias("__foo"))) __attribute__((weak));  
enum {k};  
enum {k1} __attribute__((unused)) __attribute__((weak));  
enum enum3 {l} __attribute__((unused)) __attribute__((weak));  
enum enum4 {m,};  
enum enum5 {m1,} __attribute__((alias("__foo"))) __attribute__((weak));  

 
Any list of qualifiers and specifiers at the start of a declaration may contain attribute 
specifiers, whether or not a list may in that context contain storage class specifiers. An 
attribute specifier list may appear immediately before the comma, =, or semicolon 
terminating a declaration of an identifier other than a function definition.  
 
int i __attribute__((unused));  
static int __attribute__((weak)) const a5 __attribute__((alias("__foo"))) 
__attribute__((unused));  
// functions  
__attribute__((weak)) __attribute__((unused)) foo() __attribute__((alias("__foo"))) 
__attribute__((unused));  
__attribute__((unused)) __attribute__((weak)) int e();  
 
An attribute specifier can appear as part of a declaration counting declarations of unnamed 
parameters and type names, and relates to that declaration (which may be nested in another 
declaration, for example in the case of a parameter declaration), or to a particular declarator 
within a declaration. Where an attribute specifier is applied to a parameter declared as a 
function or array, it should apply to the function or array rather then to the pointer to which 
the parameter is implicitly converted.  
 
void func1(int __attribute__((weak, alias("__foo"))) name);  
void func1(int __attribute__((weak, alias("__foo"))) name) {  
  int i;  
}  
void func2(int __attribute__((noreturn)) array[]);  
void funcptr(void);  
void func3(int __attribute__((noreturn)) funcptr());  
 
An attribute specifier list may appear after the colon following a label, other that a case or 
default label. The only attribute it makes sense to use is unused.  
 
int main() {  
  typedef int INT1; // INT1 is a <typedef name>  
  typedef int INT2; // INT2 is a <typedef name>  
  short i;  
 
  // Syntactically an attribute specifier list can follow a label, but semantically the 
only  
  // attribute it makes sense to use is "unused" which we do not support (yet). So we 
will  
  // emit a warning here  
  INT1: __attribute__((alias("oxford"))) __attribute__((unused)) __attribute__((weak))  
  i = 3;  
  LABEL1: __attribute__((unused)) __attribute__((weak))  
  i = 4;  
  // old behaviour still valid  
  INT2:  
  i = 3;  
  LABEL2:  
  i = 4;  
 
  // attribute specifiers cannot appear after case and default labels  
  switch(i) {  
  case 0:  



WG 14 Document: N1403 

 

    i++;  
    break;  
  case 1: __attribute__((unused))  
    i++;  
    break;  
  default: __attribute__((unused))  
    break;  
  }  
  return 0;  
}  

4.1 Attribute specifiers as part of aggregate types, and 
enumerations  

• An attribute specifier list is silently ignored if the content of the union, struct, or 
enumerated type is not defined in the specifier in which the attribute specifier list is 
used (same as GCC)  
• A diagnostic message is emitted when attribute specifiers that do not apply to types 
are used on aggregate types and enums.  

 

4.2 Attribute specifiers in comma separated list of declarations  
• The first attribute specifier list applies to all the declarators, any other attributes 

specifier applies to the identifier declared, not to all the subsequent identifiers 
declared in the declaration. This is the intended future behavior documented in the 
GCC manual, which differs from the current GCC (3.0.1) behavior:  

 
Example:  

int __attribute__((attr1)) foo1 __attribute__((attr2)),  
__attribute__((attr3)) foo2 __attribute__((attr4)),  
__attribute__((attr5)) foo3 __attribute__((attr6));  
attr1 applies to foo1, foo2, foo3 because it is a declaration specifier  
attr2 applies to foo1 because it is part of the foo1 declarator  
attr3, attr4 apply to foo2 because they are part of the foo2 declarator  
attr5, attr6 apply to foo3 because they are part of the foo3 declarator  

 

4.3 Attribute specifiers immediately before a comma, = or 
semicolon  

• the attribute specifier list should apply to the outermost adjacent declarator, not to the 
declared object or function. This is the intended future GCC behaviour, which differs 
from the current GCC behaviour.  

 
Example:  

void (****f) (void) __attribute__((noreturn));  

"noreturn" should apply to the function ****f, but currently (for GCC) applies to 
the identifier f.  

 

4.4 Attribute specifiers at the start of a nested declarator apply to 
the outermost adjacent declarator  

• The GCC intended future semantics differs from the current behaviour.  



WG 14 Document: N1403 

 

 
Example:  

void (__attribute__((noreturn)) ****f) (); // "noreturn" applies to the 
function ****f, not to f  
char* __attribute__((aligned(8))) *f; // "aligned" applies to char*, so f is a 
pointer to 8-byte aligned pointer to char  

• When an attribute specifier follows the * of a pointer declarator it should be a type 
attribute, and will be ignored with a silent informational message if it is not  
• When an attribute specifier follows the * of a pointer declarator, it must follow any 
type qualifier present, and cannot be mixed with them.  

     void foo( int * const __stdcall __attribute__((weak)) i ); // allowed  
void foo ( int * const __attribute__((weak)) __stdcall i ); // illegal  
void foo ( int * __attribute__((weak)) const __stdcall i ); // illegal  

 

4.5 Attribute specifiers list following a label  
• An attribute specifier list following a case or default label will cause a syntax (parse) 

error (same as GCC)  
• because the only attribute it makes sense to use after a label is "unused", an attribute 
specifier list following a label (other than case or default) will always be ignored  
• A declaration starting with an attribute specifier that immediately follows a label is 
will be considered to apply to the label because this is consistent with what GCC 
(3.0.1) does. The attribute specifier can be applied to the declaration by inserting a 
semicolon between the colon that follows the label and the declaration:  

L1: __attribute__((weak)) int i = 0; // weak applies to L1  
L1: ; __attribute__((weak)) int i = 0; // weak applies to variable i  

 

4.6 Problems with GNU __attribute__  
There are some problems with this syntax through implementation experience. The syntax is 
long and ugly. It generally makes declarations unreadable if even one attribute is included.  
 
The attribute syntax is not mangled leading to possible type collision. This causes problems 
when attributed types are used in C++ templates and overloading.  Attributed types can be 
mangled, although this is strictly not part of the C++ Standard specification. But mangling 
will help to resolve the overloading problem.  These issues do not apply to C. 
 
The syntax as implemented differs from the manual, and is somewhat different from the 
standard C syntax. This proposal intends to correct most of these differences in favor of the C 
standard syntax, but largely maintains compatibility with GNU’s intended future direction 
and therefore the large body of Open Source software.  
 
We will use this syntax as guidance, but will try to obtain syntax rules that we feel makes 
more sense for readability.  
 

5 Microsoft __DeclSpec syntax  
The Microsoft __Declspec syntax [MS] is more precise and offers a grammar.  



WG 14 Document: N1403 

 

The __declspec keywords should be placed at the beginning of a simple declaration. The 
compiler ignores, without warning, any __declspec keywords placed after * or & and in front 
of the variable identifier in a declaration.  
A __declspec attribute specified in the beginning of a user-defined type declaration applies to 
the variable of that type. For example:  
__declspec(dllimport) class X {} varX;  

In this case, the attribute applies to varX. A __declspec attribute placed after the class or 
struct keyword applies to the user-defined type. For example:  
class __declspec(dllimport) X {};  

In this case, the attribute applies to X.  
This syntax is a subset of the more wild GNU attribute syntax, and actually offers no 
contradiction to the GNU syntax.  

	  

6 This Proposal  
There are different designs on the syntactic construct of an attribute -- that is, the group of 
tokens which specify an attribute. There have been considerable discussions on this topic. We 
would like an approach which uses some aspect of the GNU syntax, but remove that which is 
deemed to be too controversial. We would also like to make it short (small number of 
characters) to facilitate readability. Summarizing the different opinions, we offer two 
suggestions in this paper. We will defer detailed discussion of them in section 8. Since this 
feature is likely to be used in header files which are shared between C and C++, we would 
like to obtain acceptance by both programming communities.  The proposal process for 
N2761 sought a consensus from both WG14 and WG21. 
 
With the exception of section 8, the discussion in this paper applies equally to both syntactic 
proposals. Without lost of generality, we will use the double-square bracket construction 
from here on in this paper.  
 
For a general struct, union, or enum declaration, it will not allow attribute placement in a 
struct  head, between the struct keyword, and the type declarator. Also, unlike GNU attribute 
and MS Declspec, attribute at the beginning will not apply to the declared variable, but to the 
type declarator. This will have the effect of losing GNU attribute’s ability of declaring an 
attribute at the beginning of a declaration list, and having it apply to the entire declaration. 
We feel that this loss of convenience in favor of clearer understanding is desirable.  
 
[[attr1]] struct S [[ attr2 ]] { } [[ attr3 ]] s [[ attr4 ]], t [[ attr5 ]];  
attr1 applies to declarator-ids s, t  
attr2 applies to the definition of struct S  
attr3 applies to type S  
attr4 applies to declarator-id s  
attr5 applies to declarator-id t  
 
A general function declaration can be decorated as follows. Only one attribute specifier is 
allowed in a decl-specifier seq, and it applies to the function return type.  
 



WG 14 Document: N1403 

 

[[attr1]] int [[ attr2]] * [[attr3]] ( * [[attr4]] * [[attr5]] f [[attr6]] ) ( ) [[attr7]], e[[attr8]];  
attr1 applies to the pointer-to-pointer to function f, and to e  
attr2 applies to the return type of int  
attr3 applies to the return type *  
attr4 applies to the first * in the pointer-to-pointer to f  
attr5 applies to the second * in the pointer-to-pointer to f  
attr6 applies to the function variable f  
attr7 applies to the function (**f)()  
attr8 applies to e  
 
 
Parameter declaration can also apply through a general type declaration.  
An array declaration will apply as follows:  
 
int [[attr2]] a [10] [[attr3]]; 
attr2 applies to type int. 
attr3 applies to the array a. 
 
For a global decoration or a basic statement:  
[[attr1]];  
attr1 applies to the translation unit from this point onwards  
 
For a block:  
[[attr1]] { }  
attr1 applies to the block in braces.  
 
For a control construct, annotation can be added at the beginning:  
for [[ attr1 ]] (i=0; i<num_elem; i++) {process (list_items[i]); }  
attr1 applies to the control flow statement for.  
 
After the WG21 C++ meeting in July 2007 in Toronto where the proposal was very well 
accepted, additional syntax was added for other control flow statements such as do, and while 
in addition to  

• Case  
• Switch  
• Default  
• If  
• Else  
• Labels  
• Return  
• Goto  
• Throw  
• Using  
• bitfields  

 
These were added for this paper.  
 
All other positions are disallowed for attribute decorations.  
 



WG 14 Document: N1403 

 

Although this syntax is meant to be used for standard extensions, it could also be used for 
vendor-specific extensions. Vendor-specific extension will be required to use double-
underscores for their attribute names. A good rule to follow may be to prefix the attribute 
with the vendor name such as:  
[[ibm::align, noreturn, align(size_t), omp::for ]]  
 

6.1 Complex examples  
Another issue is where to place the attribute when we wish to associate an attribute with the 
definition of a class or enum type. Currently it is placed after the class keyword and the 
declarator-id. Others have argued for its placement between the class-key and the declarator-
id. This is referring to the problem that Lawrence Crowl brought up which involves placing 
the [[ ]] between the struct-key and the declarator-id, e.g.:  
 
struct [[attr]] S s;  
 
He argued that this would prevent having to clone S and then apply that cloned S with the 
attribute to s whereas a  
 
struct S [[attr]] s;  
 
would require cloning S with the attribute.  
 
This is a kind of implementer complication. We argue that we already do that (cloning) when 
we have const/vol qualifiers anyway. This will be no worse.  
 
A typedef will modify the cloned instance similar to a const  
 
typedef struct foo [[attr]] foo;  
 
Only in these two cases  
 
struct S [[ attr ]] ;  
struct S [[ attr ]] { … };  
 
does the attr modify S such that all instance of struct S will have the attribute.  
 
But  
 
typefef struct S [[ attr ]] { … } S;  
 
will modify the struct type S and the variable S and not a copy of it.  
 

7 Guidance on when to use/reuse a keyword and when to use an 
attribute  



WG 14 Document: N1403 

 

So what should be an attribute and what should be part of the language? 
 
It was agreed that attributes would be something that helps but can be ignorable with little 
serious side-effects.  
 
If you are proposing a new feature, the decision of when to use the attribute feature and when 
to overload or invent a new keyword should follow a clear guideline. At the Oxford 
presentation of this paper (C++ WG21 April 2007), we were asked to offer guidance in order 
to prevent wholesale dumping of extension keywords into the attribute extension. The 
converse is no one will use the attribute feature and all electing to create or reuse keywords in 
the belief that this elevates their feature in importance.  
 
Certainly, we would advise anyone who propose an attribute to consider comments on the 
following area which will help guide them in making the decision of whether to use attributes 
or not:  

• The feature is used in declarations or definitions only.  
• Is the feature is of use to a limited audience only (e.g., alignment)?  
• The feature does not modify the type system (e.g., thread_local) and hence does not 
require new mangling?  
• The feature is a "minor annotation" to a declaration that does not alter its semantics 
significantly. (Test: Take away the annotation. Does the remaining declaration still 
make sense?  
• Is it a vendor-specific extension?  
• Is it a language Bindings on C that has no other way of tying to a type or scope(e.g. 
OpenMP)  
• What is the effect in typedefs, will it require cloning?  

 
Some guidance for when not to use an attribute and use/reuse a keyword  

• The feature is used in expressions as opposed to declarations.  
• The feature is of use to a broad audience.  
• The feature is a central part of the declaration that significantly affects its 
requirements/semantics (e.g., constexpr).  
• The feature modifies the type system and/or overload resolution in a significant way 
(e.g., rvalue references). (However, something like near and far pointers should 
probably still be handled by attributes, although those do affect the type system.)  
• The feature is used everywhere on every instance of class, or statements  

 
Where each vendor wishes to create a vendor-specific attribute, the use is conditionally-
supported with implementation-defined behavior.  
 
We have also added specific guidance on the choice of when to use an attribute to avoid 
misuse. There was general agreement that attributes should not affect the type system, and 
not change the meaning of a program regardless of whether the attribute is there or not. 
Attributes provide a way to give hint to the compiler, or can be used to drive out additional 
compiler messages that are attached to the type, or statement.  
 
They provide a more scoped way of relating to C statements then what pragmas can do. As 
such, they can detect ODR violation more easily.  
 



WG 14 Document: N1403 

 

We created a list of good and bad attributes that can be used as guidelines.  
 
Good choices in attributes include:  

• align(unsigned int)  
• pure (promise that a function always returns the same value)  
• probably(unsigned int) (hint for if, switch, ...)  

- if [[ probably(true) ]] (i == 42) { ... }  
• noreturn (the function never returns)  

• deprecated (functions)  
• noalias (promises no other path to the object)  
• unused (parameter name)  
• final on virtual function declaration and on a class  
• not_hiding (name of function does not hide something in a base class)  
• register (if we had a time machine)  
• owner (a pointer is owned and it is the owner’s duty to delete it)  

 
Bad choices in attributes include:  

• restrict (affects the type system)  
• huge (really long long type, e.g. 256bits)  
• const  

 
For a particular interesting use of attributes, Michael Spertus has suggested an owner 
attribute with the following syntax:  
 

char * [[owner]] strdup( char *[[not_owner]]);  
int pthread_mutex_lock(pthread_mutex_t *[[not_owner]]);  
 

Part of what makes memory management hard is that when you get a ptr from someone, you 
don’t know if you are responsible for freeing it. For example, any user of strdup needs to 
know that they are responsible for freeing the pointer returned by strdup. Similarly, the caller 
of pthread_mutex_lock is not giving pthread_mutex_lock the responsibility for managing the 
lifetime of the pthread_mutex_t to pthread_mutex_lock.  
 
The owner attribute says that the user of this pointer is responsible for managing the object’s 
lifetime.  
 
The not_owner attribute says that the user of this pointer has no responsibility for managing 
the object’s lifetime.  
 
Assigning an [[not_owner]] pointer to an [[owner]] pointer is not allowed because you can’t 
give away something you don’t own.  
 
Not all pointers are suitable for this annotation. For example, one sometimes calls a function 
that may or may not save a pointer to one of its arguments. However, that does not reduce the 
usefulness of being able to notate that a function (e.g., a factory function) is returning a 
pointer that the caller needs to manage or the value of calling a function and knowing that it 
will not perturb the lifetime of its pointer arguments.  
 
What makes this a good candidate for attributes is that code that runs with these attributes 



WG 14 Document: N1403 

 

also runs identically if the attributes are ignored, albeit with less type checking.  
 

8 Alternative Syntax and controversial issues  
Different syntax for specifying an attribute were discussed on the WG21 reflector, during 
private conversations and EWG presentations. For the purpose of this paper, we will 
summarize these discussions into two representative syntax below, and present them as 
proposals.  
 

8.1 "Double-square" syntax  
In this syntax, the specification of attributes begins with the characters "[[" and ends with 
"]]". There are variations where the two brackets are treated as one token or two tokens.  
 
attribute-specifier :  [ [ attribute-list ] ]  
 
The idea is to find a (one) character or character pair which does not form the starting tokens 
in the right hand of existing production rules. An opening square bracket pair satisfies this 
requirement.  
This syntax is succinct, concise, and short. The usual GNU attribute and MS declspec syntax 
is long and makes declarations difficult to read. The MS square bracket syntax, while even 
shorter can cause ambiguity for arrays, and may lead to difficulty with some parsers. So we 
have chosen to not duplicate it.  
 
While reviewing this syntax, some WG14 members pointed out that the following syntax is 
preferable. We will call this the “function-like” syntax.  
 
declarative_attribute(thread_local)  
 
This allows it to be manipulated by the preprocessor. This syntax is even longer then the 
GNU syntax. We understand the desire to make it possible for preprocess manipulation such 
as to make the attribute disappear for compilers that don’t understand this. But we believe 
this is a different issue as every compiler must parse this as it is a standard-compliant feature.  
 
The double-square syntax can provide for potential compatibility for GNU. It also provides a 
path for WG14 to adapt a similar but alternate attribute keyword for C1x. If this name is 
something like ATTRIBUTE(…), then a possible translation is:  
 
#define ATTRIBUTE (…) [[ __VA_ARGS__]]  
 
We thought about having [[ as a single token. We believe it helps the parser to disambiguate:  
 
int a [10] [[thread_local ]];  
int b[10];  
 
where the parser only has to do a one-token look ahead to distinguish the two cases. Clark 
Nelson convinced us that there will always be a look-ahead issue. The difference is that in 
one case it is a one-character look-ahead if it is a token, or a one token look-ahead if it is a 



WG 14 Document: N1403 

 

double token. So we will not add [[ as a new token and leave it as two tokens. We also do not 
want people to write:  

 
int a [10][  
// here comes an attribute  
[ adfalfdfhl ]  
]  
 

8.2 "Function-like" syntax  
attribute-specifier :  std ( attribute-list )  
 
In this syntax, the attribute specification begins with the tokens "std(" and ends with ")". 
Instead of "std", we can use other variations of spelling. Underscore prefix can also be added. 
If ( ) is ambiguous, then we can also use (( )).  
 
One key advantage of this syntax is that it follows the prior art in GCC. There are other 
compiler vendors supporting the GCC syntax, and the programming community is familiar 
with it. Existing code can readily adapt to this syntax.  
 
Depending on what we choose as the "function name", function-like syntax can be short, 
addressing a concern expressed in the previous subsection. Also, square brackets are 
traditionally associated with arrays in the C family of languages. Double-square syntax can 
disappear in the middle of a complicated array declaration, and can be mistaken as part of a 
multidimensional array by a human reader. It therefore has its own share of readability issues. 
Double-square syntax is not necessarily better than function-like syntax in this regard.  
 
One issue with function-like syntax is that the function name could collide with names in 
existing programs. Adding underscore prefix would not completely solve the problem as 
these names are reserved for the implementer. However, the problem may not be as severe as 
it seems. Given "std" is already used elsewhere in the language, it is unlikely that a compiler 
vendor would use names like "std" or "_Std" in an existing implementation. The same applies 
to the use of "std" in an existing program. Furthermore, we can assume that C compiler 
vendors are paying attention to the current C1x effort. It should not be difficult to find a 
suitable underscore name if "std" doesn't work.  
 

 
	  

8.3 Keyword syntax  
attribute-specifier :  attribute-keyword 
attribute-specifier :  attribute-keyword ( attribute-list )  
attribute-keyword : __STDC_NORETURN | __STDC_ALIGN | … 
 
In this syntax, the attribute specification begins with an attribute keyword, which is unique 
for each attribute. The keyword begins with the prefix __STDC_ and continues with the 



WG 14 Document: N1403 

 

attribute name. The parenthesized attribute-list may be omitted if it is empty. Instead of 
__STDC_, we can use other variations of spelling. Underscore prefix can also be added. If ( ) 
is ambiguous, then we can also use (( )).  
 
One issue with this syntax is that it requires a new keyword for each attribute. However it is 
shorter and more concise than the previous two proposals.  The requirement that __STDC_ 
be part of any attribute keyword serves to deter namespace pollution.  
 

8.4 Compatibility with Existing practice and feedback from 
WG14  

In summary, and after discussions with the C liaisons in the Bellevue meeting (WG21, 
February 2008), the main differences in opinion between the WG14 and WG21 committees 
were:  
 
First, C places great emphasis on backwards compatibility with existing syntax, and in 
particular does not like the design choice in C++ where we break existing positional 
placement practices. While we do not have a specific list of these breakages, we present such 
a list in this paper (which applies to a specific release of GNU and note that GNU is also 
changing with each release). The leading issue of concern was felt to be the one of allowing 
attributes in the storage qualifier location, and applied to the declarator-ids at the far right of 
the declaration. To quote from paper WG14/N2418 (http://www.open-
td.org/jtc1/sc22/wg21/docs/papers/2007/n2418.pdf): 
 
An attribute list placed at the beginning of a user-defined type applies to the variable of that 
 type and not the type. This behavior is similar to __Declspec’s behavior.  
 
__attribute__((aligned(16))) class A {int i;} a ; // a has alignment of 16  
class A a1; // a1 has alignment of 4  
 
This is a feature (or an accident) which C++ has deliberately avoided for a number of 
 reasons. First, it breaks with the clean design in that an attribute is associated with an 
entity  far from its position. Second, it leads to ambiguity because some future storage 
modifiers  may demand that we look into the semantics of the modifier to determine 
which entity it would associate with (the declarator-id a or the type A).  
 
Secondly, C prefers the function-like syntax (similar to GNU attributes) the bracketed-
notation syntax chosen by C++. C generally favors standardizing existing practice rather then 
invent new syntax.  
 
When N2761 was submitted to WG21, we discussed the merits of these issues. We feel 
obliged to explain that C++ chose this design deliberately and wish to consider 2 resolutions: 
  
 1. C++ wanted to create a consistent design where there is little doubt of what entity the 

attribute should be attached. We largely succeeded, we believe. In most cases, the 
attribute attaches to the entity to the left. In block scope cases, it does attach to the 
entity (the brace block) to the right, but where those cases exists, we feel it is the 
natural choice of programmers and is done also to avoid parsing ambiguity. However, 



WG 14 Document: N1403 

 

C++ does acknowledge the need to support existing practice and would consider 
updating our paper to accommodate the syntax above under strict conditions of 
positioning and binding. 

 
 1. On the delimiter issue, C++ chose new syntax because we deliberately chose 

semantics and syntax constraints different then the GNU syntax. Reusing an existing 
syntax under such circumstance would be incorrect. C++ members were almost in 
unanimous agreement that we would continue to strongly support the double-bracket 
syntax. The C liaisons present (Nick, Barry, Clark, Bill) felt that this is not nearly as 
big an issue as #1 for C, the positional placement issue and a compromise would be 
more likely especially since C++ is less likely to move (and a bridge between 
syntaxes exists).  
 2.  

For N2761, we chose to adapt resolution 1:  to extend C++ to allow attributes at the 
beginning of simple declarations and member declarations (not excluding function 
declarations)and have it applied only to the declarator-id (and it must be the first position and 
not be swapped with the static keyword.  
 
For N2761, we also chose to adapt resolution 2 (that we would like to retain our delimiter 
choices) and urge C to adapt similar delimiter, and feel that in case C does not, some kind of 
macro magic will bridge the two syntaxes.  
 

8.5 Vendor-specific extensions  
Currently, vendor-specific extensions are added using the vendor name as a prefix and double 
colon followed by the attribute name (for attributes in C++). There is controversy on this as 
some opinions prefer double underscore prefix and postfix to the vendor name. The other 
controversial issue is the potential need for naming compiler vendor companies officially 
with a registered name to prevent name collisions. This would involve directly naming 
compiler vendors. This position remains controversial.  
 

9 OpenMP binding to C  
One serendipitous benefit of a feature design is if it can be used to solve an unexpected 
problem. This feature can be used to bind OpenMP [OpenMP] syntax more closely to C. 
OpenMP is an industry specification for loop parallelism with a common binding for Fortran, 
C and C++. It is popular with industry, research, and government. It describes syntax using 
pragmas for C and C++ for shared memory parallelism. One of the N2761 authors is a 
member of the OpenMP language committee, and the steering committee.  
 
There are many problem with the pragma syntax including its inability to convey scope, error 
and type information. This has limited OpenMP’s acceptance in C and C++. In Fortran, the 
binding is more natural. An alternate syntax that would work better with C/C++ has been 
requested by the OpenMP committee.  
 
The attribute syntax while not perfect can be used to map almost every syntax construct in C. 
After discussion with Christian Terbiven, Dieter An Mey, and Bern Mohr in April of 2007, 



WG 14 Document: N1403 

 

they were very enthusiastic on the potential of this proposal to allow an augmented syntax for 
C++ and C if they also adapt this syntax.  
 
The [ ] here has the usual meaning as optional element and should not be confused with the [[ 
]] notation of the attribute syntax. It is not part of the syntax.  
 
According to the current OpenMP 2.5 [OpenMP] specification, a parallel loop construct 
looks as follows:  
 
#pragma omp for [clause[[,] clause] ... ] new-line  

for-loop  
 
and is bound to a parallel region that looks as follows:  
 
#pragma omp parallel [clause[ [, ]clause] ...] new-line  

structured-block  
 
while both constructs can be combined into the following:  
 
#pragma omp parallel for [clause[[,] clause] ...] new-line  

for-loop  
 
These three code snippets could be written using the proposed attribute syntax as shown 
below:  
 
for [[omp::for(clause, clause), … ]] (loop-head)  
  loop-body  
 

The enclosing parallel region would look like this:  
[[omp::parallel(clause,clause), … ]] { }  

When there are several clauses or the clauses contain a lot of variables, the for keyword 
and the actual loop can get quite far apart but this is normally the case when many attributes 
are used.  
 
In OpenMP, a barrier is written as follows:  
#pragma omp barrier  

 
In the attribute syntax, this might look as follows:  
[[omp::barrier]] { }  

 
Everything in the structured block { } will get executed by all threads in parallel, no 
worksharing constructs are allowed inside the block, the actual barrier is at the end of the 
block.  
 
All other OpenMP 2.5 constructs and directives could be translated to omp::clause or 
omp::directive in the attribute syntax.  
 
Here is a motivating example showing a clear advantage of the attribute syntax for OpenMP: 
Reductions in orphaned worksharing constructs. Assume the following program where we 
have a parallel region calling a subrouting containing a worksharing construct:  
#pragma omp parallel  
{  



WG 14 Document: N1403 

 

  double result = evaluate_my_function(…);  
}  
 
double evaluate_my_function(…)  
{  
  double sum;  
#pragma omp for reduction(+:sum)  
  for (int i = 0; i < something_large; i++)  
  {  
    sum += computation(i, …);  
  }  
  return sum;  
}  
 

As a reduction variable cannot be a private variable, the current solution is to declare sum 
static, which also alters the original program:  
static double sum;  
 

Using the attribute syntax with OpenMP, one could possibly write:  
double sum [[omp::shared]];  
 

The attribute syntax leaves several problems untouched and open, as the parallelization is still 
not really in the language. For example  

• It is not possible for a function to determine if it is called inside of a worksharing 
construct.  
• It is not possible to directly bind any information regarding the parallelization on a 
template type to allow for specialization (and thus optimization).  

 
 

 

10 Proposed Wording Changes  
General drafting note: These words introduce the term "appertains" for the syntactic 
relationship between the placement of an attribute-specifier and various source constructs 
such as labels or statement to which it applies. In contrast, the term "applies" is used to 
describe the semantic restrictions on an attribute.  
 
Modify 6.2.3, paragraph 6 as indicated: 
 The following identifiers have no linkage: an identifier declared to be anything other 
than an  object or a function; an identifier declared to be a function parameter; a block 
scope identifier  for an object declared without the storage-class specifier extern;	  an	  
identifier	  that	  appears	  	  in	  an	  attribute-‐token.	  

 
Modify 6.4.1, paragraph 2 as indicated:  

The above tokens (case sensitive) are reserved (in translation phases 7 and 8) for use 
as keywords, and shall not be used otherwise except in an attribute-token (6.9). The 
keyword... 
  

Modify 6.7 grammar as indicated:  
declaration:  
  simple-declaration 



WG 14 Document: N1403 

 

  static_assert-declaration  
  attribute-declaration 
 
simple-declaration: 
  attribute-specifieropt declaration-specifiers attribute-
specifieropt init-declarator-listopt ;  
 
attribute-declaration:  
  attribute-specifier ;  
 

Modify 6.7 paragraph 6 as indicated: 
The declaration specifiers consist of a sequence of specifiers that indicate the linkage, 
storage duration, and part of the type of the entities that the declarators denote. The 
init- declarator-list is a comma-separated sequence of declarators, each of which may 
have additional type information, or an initializer, or both. The declarators contain the 
identifiers (if any) being declared.  In a simple-declaration, the first optional 
attribute-specifier appertains to every  entity that is declared, and the second 
optional attribute-specifier appertains to the declaration-specifiers. 

Add the following paragraph to 6.7: 
Except where otherwise specified, the meaning of an attribute-declaration is 
implementation-defined.  

 
Modify 6.7.2.1 grammar as indicated: 

struct-or-union-specifier:  
  struct-or-union identifieropt attribute-specifieropt { struct-
declaration-list }  
  struct-or-union identifier attribute-specifieropt 

Modify 6.7.2.1 paragraph 6 as indicated:  
Structure and union specifiers have the same form. The keywords struct and union 
indicate that the type being specified is, respectively, a structure type or a union type. 
The optional attribute-specifier appertains to the struct or union; the attributes 
in the attribute-specifier are henceforth considered attributes of the struct or 
union whenever it is named.  

 
Modify 6.7.2.2 grammar as indicated:  

enum-specifier:  

   enum identifieropt attribute-specifieropt { enumerator-list }    
 attribute-specifieropt 

enum identifieropt attribute-specifieropt { enumerator-list , } 
 attribute-specifieropt 

enum identifier attribute-specifieropt 
Add a new paragraph before 6.7.2.2 paragraph 5 (Example): 

The first optional attribute-specifier in the enum-specifier appertains to the 
enumeration; the attributes in that attribute-specifier are henceforth considered 
attributes of the enumeration whenever it is named. The second optional 



WG 14 Document: N1403 

 

attribute-specifier in the enum-specifier may only appear if the enumeration-list is 
present; it appertains to the enumeration-list.  

 
Modify 6.7.5 grammar as indicated: 

declarator:  
  pointeropt direct-declarator attribute-specifieropt 
… 
pointer:  
 * type-qualifier-listopt attribute-specifieropt 

 •  * type-qualifier-listopt attribute-specifieropt 
pointer  

Modify 6.7.5 paragraph 2 as indicated: 
 Each declarator declares one identifier, and asserts that when an operand of the same 
form as  the declarator appears in an expression, it designates a function or object with 
the scope,  storage duration, and type indicated by the declaration specifiers. The 
optional attribute- specifier following a declarator-id appertains to the entity that is 
declared.  
Modify 6.7.5 paragraph 4 as indicated: 

In the following subclauses, consider a declaration  
        attribute-specifieropt T attribute-specifieropt D1  
where T contains the declaration specifiers that specify a type T (such as int) and D1 
is   declarator that contains an identifier ident. The type specified for the identifier 
ident in the various forms of declarator is described inductively using this notation. 
The first optional attribute-specifier appertains to the entity being declared. The 
second optional attribute-specifier appertains to the type T. 

Modify 6.7.5.1, paragraph 1 as indicated: 
 If, in the declaration ‘‘T D1’’, D1 has the form  
           * attribute-specifieropt type-qualifier-listopt D  
 and the type specified for ident in the declaration ‘‘T D’’ is ‘‘derived-declarator-type-
list T  ’’, then the type specified for ident is ‘‘derived-declarator-type-list type-qualifier-list 
pointer  to T ’’. For each type qualifier in the list, ident is a so-qualified pointer. The optional 
 attribute-specifier appertains to the type-qualifier-list. 
Modify 6.7.5.2, paragraph 3 as indicated: 

If, in the declaration ‘‘T D1’’, D1 has one of the forms:  
         D[ type-qualifier-listopt assignment-expressionopt ]  attribute-specifieropt 
         D[ static type-qualifier-listopt assignment-expression ]  attribute-
specifieropt 
         D[ type-qualifier-list static assignment-expression ]  attribute-specifieropt 
         D[ type-qualifier-listopt * ]  attribute-specifieropt 
and the type specified for ident in the declaration ‘‘T D’’ is ‘‘derived-declarator-type-
list T ’’, then the type specified for ident is ‘‘derived-declarator-type-list array of T 
’’.126) (See 6.7.5.3 for the meaning of the optional type qualifiers and the keyword 
static.) The optional attribute-specifier appertains to the array type. 

Modify 6.7.5.3, paragraph 5 as indicated: 
If, in the declaration ‘‘T D1’’, D1 has the form  
         D( parameter-type-list )  attribute-specifieropt 



WG 14 Document: N1403 

 

or  
         D( identifier-listopt )  attribute-specifieropt 
and the type specified for ident in the declaration ‘‘T D’’ is ‘‘derived-declarator-type-
list T ’’, then the type specified for ident is ‘‘derived-declarator-type-list function 
returning T ’’. The optional attribute-specifier appertains to the function type. 

 
Modify 6.7.6 grammar as indicated: 

type-name:  
  specifier-qualifier-list abstract-declaratoropt attribute-
specifieropt  
abstract-declarator:  
  pointer attribute-specifieropt 
  pointeropt attribute-specifieropt direct-abstract-declarator  
 

 
Modify 6.8 grammar as indicated : 

statement:  

   labeled-statement 
   attribute-specifieropt compound-statement  
   attribute-specifieropt expression-statement  
   attribute-specifieropt selection-statement  
   attribute-specifieropt iteration-statement  
   attribute-specifieropt jump-statement  
Modify 6.8 paragraph 2 as indicated: 

A statement specifies an action to be performed. Except as indicated, statements are  
executed in sequence. The optional attribute-specifier appertains to the respective 
statement.  

Modify 6.8.1 grammar as indicated : 
 labeled-statement:  
   attribute-specifieropt identifier : statement  
   attribute-specifieropt case constant-expression : statement  
   attribute-specifieropt default : statement  
Modify 6.8.1 paragraph 4 as indicated : 

Any statement may be preceded by a prefix that declares an identifier as a label name.  
Labels in themselves do not alter the flow of control, which continues unimpeded 
across  
them. The optional attribute-specifier appertains to the label. 
 

Add a new section 6.9, before the “External Definitions” section entitled "Attributes". Its 
contents are:  

Attributes specify additional information for various source constructs such as types, 
variables, names, blocks, or translation units.  
attribute-specifier:  
 [ [ attribute-list ] ]  

attribute-list:  



WG 14 Document: N1403 

 

 attributeopt 
 attribute-list , attributeopt  

attribute:  
 attribute-token attribute-argument-clauseopt  

attribute-token:  
 identifier  

 attribute-argument-clause: 
   ( attribute-argument-list )  
 attribute-argument-list: 
   attribute-argument 
   attribute-argument-list, attribute-argument 
 attribute-argument: 
   assignment-expression 

   type-id 
 

For each individual attribute, the form of the attribute-argument-clause will be 
specified.  
An attribute-specifier that contains no attributes has no effect. The order in which the 
attribute-tokens appear in an attribute-list is not significant. A keyword (6.4.1) 
contained in an attribute-token is considered an identifier. An identifier in an 
attribute-token has no linkage (6.2.2 Linkages of identifiers). The attribute-token 
determines additional requirements on the attribute-argument-clause (if any).   
Each attribute-specifier is said to appertain to some entity or statement, identified by 
the syntactic context where it appears. If an attribute-specifier that appertains to some 
entity or statement contains an attribute that does not apply to that entity or 
statement, the behavior of the program is undefined. For an attribute-token not 
specified in this International Standard, the behavior is implementation-defined. 

 

11 Specific attribute proposals: 
This proposal will standardize the use of some attributes: 
 

11.1 noreturn  

This attribute is useful for a few library functions such as abort and exit which cannot return. 
The user can also define their own functions that never return using this attribute.  
 
void fatal [[noreturn]] (void);  
void fatal(…)  
{  
  … 
  exit(1);  
}  
 
The noreturn keyword tells the compiler to assume that fatal() cannot return. It can then 
optimize without regard to what would happen if fatal ever did return. This makes slightly 
better code. More importantly, it helps avoid spurious warnings of uninitialized variables. 
You cannot assume that registers saved by the calling function are restored before calling the 
noreturn function. It does not make sense for a noreturn function to have a return type other 
than void.   
 



WG 14 Document: N1403 

 

This is a good attribute for standardization because it gives additional information that can be 
used by the optimizer, but does not alter the semantics of the program if removed.  It is 
supported by both MSVC and GCC. 
 
Standard functions that should have the noreturn attribute:  
 longjmp() 
 raise() 
 abort() 
 exit() 
 _Exit() 
 
Proposed Changes: 
Add a new subsection to the Attributes section: 
 

The noreturn attribute  
The attribute-token noreturn specifies that a function does not return. It shall 
appear at most once in each attribute-list and no attribute-argument-clause shall be 
present. The attribute applies to the declarator-id in a function declaration. The first 
declaration of a function shall specify the noreturn attribute if any declaration of 
that function specifies the noreturn attribute. If a function is declared with the 
noreturn attribute in one translation unit and the same function is declared 
without the noreturn attribute in another translation unit, the program is ill-
formed; no diagnostic required.  
The implementation should produce a diagnostic message if a function f is declared 
with the noreturn attribute, but the implementation cannot be certain that the 
function does not indeed return. The implementation may then proceed with the 
translation of the program. If a function f is called where f was previously declared 
with the noreturn attribute, and f eventually returns, the behavior is undefined.  
[ Example:  
void f [[ noreturn ]] () {  
  abort(); // ok  
}  
void g [[ noreturn ]] (int i) { // ill-formed if called with i <= 
0  
  if (i > 0)  
    abort();  
}  
]  
 

11.2 deprecated  

This attribute is useful for functions, global variables and global types. 
 
It indicates that an object (function / variable / type) is deprecated, considered obsolete. A 
compiler should flag any usage of a deprecated object.  The documentation for a deprecated 
object is encouraged to direct programmers to alternate objects to use instead. For instance, 
the gets() function documentation might direct readers to fgets().  
 



WG 14 Document: N1403 

 

The deprecated attribute is supported by GCC. It is also supported by MSVC, but only for 
functions, as MSVC's __declspec does not apply to types or variables.  A similar mechanism 
for deprecated functions, variables and classes is widely used in Java. 
 
Proposed Changes: 
Add a new subsection to the Attributes section: 
 

The deprecated attribute  
The attribute-token deprecated specifies that an object has been deprecated. It shall 
appear at most once in each attribute-list and no attribute-argument-clause shall be 
present. The attribute applies to the declarator-id in a function declaration. The 
deprecated attribute may also appear in a variable or type that has static or external 
linkage. 
The first declaration of an object shall specify the deprecated attribute if any 
declaration of that object specifies the deprecated attribute. If an object is declared 
with the deprecated attribute in one translation unit and the same object is declared 
without the deprecated attribute in another translation unit, the program is ill-
formed; no diagnostic required.  
The implementation must issue a diagnostic message for any usage of a function, 
variable, or type with the deprecated attribute. The implementation may then 
proceed with the translation of the program.  
 

11.3 warn_unused_result 

This attribute is useful for any functions that return a useful result. 
 
char* create_string [[warn_unused_result]] (void);  
char* create_string(…)  
{  
  char* string = malloc(STRING_SIZE); 
  … 
  return string; 
} 
create_string(); // memory leak! 

 
The warn_unused_result keyword instructs the compiler to issue a warning if the result of a 
function with this attribute is discarded. A function may have this keyword because 
discarding its result may produce a memory leak or resource leak.  Likewise, a function may 
have this keyword because its return value serves as the only indicator of its success; hence 
discarding its return value destroys any evidence of its success or failure.  
 
This attribute can also be used by programmers as they update APIs and deprecate their own 
obsolete objects. It is supported by GCC. 
 
Standard functions that should have the warn_unused_result attribute:  
 sin(), cos(), and other mathematical functions 
 isalnum(), isdigit(), and other character-classification functions (including wide-char 
functions) 
 tmpfile(), tmpnam(), fopen(), freopen(),  
 feof(), ferror() 



WG 14 Document: N1403 

 

 rand() 
 malloc(), calloc(), realloc() 
 getenv() 
 bsearch() 
 memcmp(), strcmp(), strcoll(), strncmp(), memchr(), strchr(), strrchr(), strspn(), 
strstr(), strlen(), and analogous wide-char functions 
 
Proposed Changes: 
Add a new subsection to the Attributes section: 
 

The warn_if_unused attribute  
The attribute-token warn_if_unused specifies that a function produces a return 
value that should not be discarded. It shall appear at most once in each attribute-list 
and no attribute-argument-clause shall be present. The attribute applies to the 
declarator-id in a function declaration. The first declaration of a function shall 
specify the warn_if_unused attribute if any declaration of that function specifies 
the warn_if_unused attribute. If a function is declared with the 
warn_if_unused attribute in one translation unit and the same function is 
declared without the warn_if_unused attribute in another translation unit, the 
program is ill-formed; no diagnostic required.  
The implementation should produce a diagnostic message if a function f that has been 
declared with the warn_if_unused attribute is ever invoked in a context where its 
return value is discarded.  That is, its value is not assigned to a variable, nor is its 
value used as part of an expression. The implementation may then proceed with the 
translation of the program.  
The  warn_if_unused attribute shall not be applied to a function that returns void. 
  

Acknowledgement  
We would like to recognize the following people for their help in urging this work, their 
extended discussions and recommendations: Alisdair Meredith, Lawrence Crowl, Clark 
Nelson, Tom Plum, Attilla Feher, Ettore Tiotto, Sasha Kasapinovic, Yan Liu, Jeff Heath, 
Zbigniew Sarbinowski, Christopher Cambly, Sean Perry, Barry Hedquist, Francis 
Glassborow, Michael Spertus, Lois Goldthwaite, Bill Seymour, Walter Brown, Raymond 
Mak, Edison Kwok, Howard Nasgaard, Christian Terboven, Dieter An-Mey, Bern Mohr, 
Raul Silvera, Paul McKenney, Herb Sutter, Daveed Vandevoorde, Bjarne Stroustrup. We 
would also like to recognize WG14 members and the C/C++ liasions who contributed to 
improving this proposal for both languages. Daniel Krugler made valuable corrections and 
adaptations for the interaction between the new 0x features and this feature.  
 

Reference  
[C99] ISO/IEC 9899:201x, C Standard  
[GNU] Section 5.25: Attribute Syntax, http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Attribute-
Syntax.html#Attribute-Syntax 
[MS] http://msdn2.microsoft.com/en-us/library/dabb5z75(VS.80).aspx 



WG 14 Document: N1403 

 

[C#] http://msdn2.microsoft.com/en-us/library/aa287992(VS.71).aspx  
[n2224] Seeking a Syntax for Attributes in C++09, http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2007/n2224.html 
[n2761] Towards support for attributes in C++, http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.html 

[OpenMP]	  http://www.openmp.org/drupal/node/view/8	  


