
Threads for the C Standard Library

WG14 Document: N1372
Date: 2009-03-24

Introduction

This document is a proposal for an approach to add threads to the C Standard
library. As discussed in the WG14 meeting held in Delft in April of 2008. A
thread in this document is a separate flow of execution within an application. On a
multi-processor system threads can execute simultaneously on different
processors. On a single-processor system and on a multi-processor system with
fewer available processors than active threads two or more threads must share a
processor. The details of switching a processor from one thread to another are
handled by the operating system and are not covered in this document.

At the WG14 meeting in Milpitas in September of 2008 the committee approved
this proposal for inclusion in the next revision of the C Standard, subject to
improvements in wording. This document has been revised in response to those
suggested improvements. It proposes that all declarations and definitions
described here shall be placed in the new header <threads.h>.

WG 14/N1372

-2-

CONTENTS
FUNCTIONS .. 4

The call_once function ... 4
The cnd_broadcast function.. 4
The cnd_destroy function... 4
The cnd_init function.. 5
The cnd_signal function... 5
The cnd_timedwait function.. 6
The cnd_wait function.. 6
The mtx_destroy function... 7
The mtx_init function.. 7
The mtx_lock function.. 8
The mtx_timedlock function.. 8
The mtx_trylock function... 9
The mtx_unlock function... 9
The thrd_abort function..Error! Bookmark not defined.
The thrd_create function... 10
The thrd_current function .. 10
The thrd_detach function... 10
The thrd_equal function... 11
The thrd_exit function ... 11
The thrd_join function ... 12
The thrd_sleep function... 12
The thrd_yield function... 12
The tss_create function... 13
The tss_delete function... 13
The tss_get function .. 13
The tss_set function .. 14
The xtime_get function ... 14

TYPES .. 15
cnd_t .. 15
thrd_t .. 15
tss_t .. 15
mtx_t .. 15
tss_dtor_t .. 15
thrd_start_t.. 15
once_flag ... 15
mtx_plain ... 16
mtx_recursive ... 16
mtx_timed ... 16
mtx_try.. 16

RETURN CODES .. 16
thrd_timedout ... 16

WG 14/N1372

-3-

thrd_success.. 17
thrd_busy ... 17
thrd_error .. 17
thrd_nomem .. 17

MACROS.. 17
ONCE_FLAG_INIT ... 17
TSS_DTOR_ITERATIONS ... 17

WG 14/N1372

-4-

FUNCTIONS

The call_once function

Synopsis

void call_once(once_flag *flag, void (*func)(void));

Description

The call_once function uses the once_flag pointed to by flag to ensure
that func is called exactly once, the first time call_once is called with that
value of flag. Completion of an effective call to call_once synchronizes
with all subsequent calls to call_once with the same value of flag.

Returns

The call_once function returns no value.

The cnd_broadcast function

Synopsis

int cnd_broadcast(cnd_t *cond);

Description

The cnd_broadcast function unblocks all of the threads that are blocked on
the condition variable pointed to by cond at the time of the call. If no threads are
blocked on the condition variable pointed to by cond at the time of the call, the
function does nothing.

Returns

The cnd_broacast function returns:
• thrd_success – on success, or
• thrd_error – when the request could not be honored.

The cnd_destroy function

Synopsis

WG 14/N1372

-5-

void cnd_destroy(cnd_t *cond);

Description

The cnd_destroy function releases all resources used by the condition variable
pointed to by cond. The cnd_destroy function requires that no threads be
blocked waiting for the condition variable pointed to by cond.

Returns

The cnd_destroy function returns no value.

The cnd_init function

Synopsis

int cnd_init(cnd_t *cond);

Description

The cnd_init function creates a condition variable. If it succeeds it sets the
variable pointed to by cond to a value that uniquely identifies the newly created
condition variable. A thread that calls cnd_wait on a newly created condition
variable will block.

Returns

The cnd_init functions returns:
• thrd_success – on success, or
• thrd_nomem – no memory could be allocated for the newly created

condition, or
• thrd_error – when the request could not be honored.

The cnd_signal function

Synopsis

int cnd_signal(cnd_t *cond);

Description

The cnd_signal function unblocks one of the threads that are blocked on the
condition variable pointed to by cond at the time of the call. If no threads are

WG 14/N1372

-6-

blocked on the condition variable at the time of the call, the function does nothing
and return success.

Returns

The cnd_signal function returns:
• thrd_success – on success or
• thrd_error – when request could not be honored.

The cnd_timedwait function

Synopsis

int cnd_timedwait(cnd_t *cond,
mtx_t *mtx,
const xtime *xt);

Description

The cnd_timedwait function atomically unlocks the mutex mtx and
endeavors to block until the condition variable pointed to by cond is signaled by
a call to cnd_signal or to cnd_broadcast, or until after the time specified
by the xtime object pointed to by xt. When the calling thread becomes
unblocked it locks the variable pointed to by mtx before it returns. The
cnd_timedwait function requires that the mutex pointed to by mtx be
locked by the calling thread.

Returns

The cnd_timedwait function returns:
• thrd_success – upon success, or
• thrd_timeout – if time specified in the call was reached without

acquiring the requested resource, or
• thrd_error – when the request could not be honored.

The cnd_wait function

Synopsis

int cnd_wait(cnd_t *cond, mtx_t *mtx);

Description

The function atomically unlocks the mutex pointed to by mtx and endeavors to
block until the condition variable pointed to by cond is signaled by a call to

WG 14/N1372

-7-

cnd_signal or to cnd_broadcast. When the calling thread becomes
unblocked it locks the mutex pointed to by mtx before it returns. If the mutex
pointed to by mtx is not locked by the calling thread, the function cnd_wait
will act as if the function abort() is called.

Returns

The cnd_wait function returns:
• thrd_success – on success or
• thrd_error – when the request could not be honored.

The mtx_destroy function

Synopsis

void mtx_destroy(mtx_t *mtx);

Description

The mtx_destroy function releases any resources used by the mutex pointed to
by mtx. No threads can be blocked waiting for the mutex pointed to by mtx.

Returns

The mtx_destroy function returns no value.

The mtx_init function

Synopsis

int mtx_init(mtx_t *mtx, int type);

Description

The function creates a mutex object with properties indicated by type, which
must have one of the six values:

• mtx_plain — for a simple non-recursive mutex
• mtx_timed — for a non-recursive mutex that supports timeout
• mtx_try — for a non-recursive mutex that supports test and return
• mtx_plain | mtx_recursive — for a simple recursive mutex
• mtx_timed | mtx_recursive — for a recursive mutex that supports

timeout
• mtx_try | mtx_recursive — for a recursive mutex that supports test

and return

WG 14/N1372

-8-

If mtx_init function succeeds it sets the mtx_t pointed to by mtx to a value
that uniquely identifies the newly created mutex.

Returns

The mtx_init function returns:
• thrd_success – on success, or
• thrd_error – when request could not be honored.

The mtx_lock function

Synopsis

int mtx_lock(mtx_t *mtx);

Description

The function blocks until it locks the mutex pointed to by mtx. If the mutex is
non-recursive it shall not be locked by the calling thread. Prior calls to
mtx_unlock on the same mutex shall synchronize with this operation.

Returns

The mtx_lock function returns:
• thrd_success – on success, or
• thrd_busy – resource requested is already in use, or
• thrd_error – when the request could not be honored.

The mtx_timedlock function

Synopsis

int mtx_timedlock(mtx_t *mtx, const xtime *xt);

Description

The mtx_timedlock function endeavors to block until it locks the mutex
pointed to by mtx or until the time specified by the xtime object xt has passed.
Prior calls to mtx_unlock on the same mutex shall synchronize with this
operation. The mutex pointed to by mtx shall be of type:

• mtx_timed or
• mtx_timed | mtx_recursive.

WG 14/N1372

-9-

Returns

The mtx_timedlock function returns:
• thrd_success – on success, or
• thrd_busy – resource requested is already in use, or
• thrd_timeout – if time specified was reached without aquiring the

requested resource, or
• thrd_error – when the request could not be honored.

The mtx_trylock function

Synopsis

int mtx_trylock(mtx_t *mtx);

Description

The mtx_trylock function endeavors to lock the mutex pointed to by mtx. If
the mutex is already locked the function returns without blocking. Prior calls to
mtx_unlock on the same mutex shall synchronize with this operation. The
mutex pointed to by mtx shall be of type:

• mtx_try, or
• mtx_try | mtx_recursive, or
• mtx_timed, or
• tmx_timed | mtx_recursive.

Returns

The mtx_trylock function returns:
• thrd_success – on success, or
• thrd_busy – resources requested is already in use, or
• thrd_error – when the request could no be honored.

The mtx_unlock function

Synopsis

int mtx_unlock(mtx_t *mtx);

Description

The mtx_unlock function unlocks the mutex pointed to by mtx. The mutex
pointed to by mtx shall be locked by the calling thread.

Returns

WG 14/N1372

-10-

The mtx_unlock function returns:
• thrd_success – on success or
• thrd_error – when the request could no be honored.

The thrd_create function

Synopsis

int thrd_create(thrd_t *thr, thrd_start_t func,
void *arg);

Description

The thrd_create function creates a new thread executing func(arg). If
the thrd_create function succeeds it sets the thread thr to a value that
uniquely identifies the newly created thread.

Returns

The thrd_create functions returns:
• thrd_success – on success, or
• thrd_nomem – no memory could be allocated for the thread requested, or
• thrd_error – when request could not be honored.

The thrd_current function

Synopsis

thrd_t thrd_current(void);

Description

The thrd_current function identifies the thread that called it.

Returns

The thrd_current function returns a value that uniquely identifies the thread
that called it.

The thrd_detach function

Synopsis

int thrd_detach(thrd_t thr);

Description

WG 14/N1372

-11-

The thrd_detach function tells the operating system to dispose of any
resources allocated to the thread identified by thr when that thread terminates.
The value of the thread identified by thr value shall not have been set by a call
to thrd_join or thrd_detach.

Returns

The thrd_detach function returns:
• thrd_success – on success or
• thrd_error – when the request could no be honored.

The thrd_equal function

Synopsis

int thrd_equal(thrd_t thr0, thrd_t thr1);

Description

The thrd_equal function will determine whether the thread identified by
thr0 refers to the thread identified by thr1.

Returns

The thrd_equal function returns zero if the thread thr0 and the thread thr1
refer to different threads. Otherwise thrd_equal returns a non-zero value.

The thrd_exit function

Synopsis

void thrd_exit(int res);

Description

The thrd_exit function terminates execution of the calling thread and sets its
result code to res.

Returns

The thrd_exit function returns no value.

WG 14/N1372

-12-

The thrd_join function

Synopsis

int thrd_join(thrd_t thr, int *res);

Description

The thrd_join function blocks until the thread identified by thr has
terminated. If the parameter res is not a null pointer it stores the thread's result
code in the integer pointed to by res. The value of the thread identified by thr
value shall not have been set by a call to thrd_join or thrd_detach.

Returns

The thrd_join function returns:
• thrd_success – on success or
• thrd_error – when request could no be honored.

The thrd_sleep function

Synopsis

void thrd_sleep(const xtime *xt);

Description

The thrd_sleep function suspends execution of the calling thread until after
the time specified by the xtime object pointed to by xt.

Returns

The thrd_sleep function returns no value.

The thrd_yield function

Synopsis

void thrd_yield(void);

Description

The thrd_yield function endeavors to permit other threads to run even if the
current thread would ordinarily continue to run.

WG 14/N1372

-13-

Returns

The thrd_yield function returns no value.

The tss_create function

Synopsis

int tss_create(tss_t *key, tss_dtor_t dtor);

Description

The tss_create function creates a thread-specific storage pointer with
destructor dtor, which may be null.

Returns

If the tss_create function is successful it sets the thread-specific storage
pointed to by key to a value that uniquely identifies the newly created pointer
and returns thrd_success, else a thrd_error is returned and the thread-
specific storage pointed to by key is set to an undefined value.

The tss_delete function

Synopsis

void tss_delete(tss_t key);

Description

The function releases any resources used by the thread-specific storage pointer
key.

Returns

The tss_delete function returns no value.

The tss_get function

Synopsis

void *tss_get(tss_t key);

Description

WG 14/N1372

-14-

The tss_get function returns the value for the current thread held in the thread-
specific storage pointer identified by key.

Returns

The tss_get function returns the value for the current thread if successful, else
a 0.

The tss_set function

Synopsis

int tss_set(tss_t key, void *val);

Description

The tss_set function sets the value for the current thread held in the thread-specific
storage pointer identified by key to val.

Returns

The tss_set function returns:
• thrd_success – on success or
• thrd_error – when request could no be honored.

The xtime_get function

Synopsis

int xtime_get(xtime *xt, int base);

Description

The xtime_get function sets the xtime object pointed to by xt to hold the
current time based on the time base base.

Returns

If the xtime_get function is successful it returns the non-zero value base,
which must be TIME_UTC; otherwise it returns 01.

1 Although an xtime object describes times with nanosecond resolution the actual resolution in an xtime
object is system dependent.

WG 14/N1372

-15-

TYPES

cnd_t
typedef o-type cnd_t;

The type is an object type o-type that holds an identifier for a condition variable.

thrd_t

typedef o-type thrd_t;

The type is an object type o-type that holds an identifier for a thread.

tss_t

typedef o-type tss_t;

The type is an object type o-type that holds an identifier for a thread-specific
storage pointer.

 mtx_t

typedef o-type mtx_t;

The type is an object type o-type that holds an identifier for a mutex.

tss_dtor_t

typedef void (*tss_dtor_t)(void*);

The type is the function type for a destructor for a thread-specific storage pointer.

thrd_start_t

typedef int (*thrd_start_t)(void*);

The type is the function type that is passed to thrd_create to create a new
thread.

once_flag

typedef o-type once_flag;

The type is an object type o-type that holds a flag for use by call_once.

WG 14/N1372

-16-

mtx_plain

enum { mtx_plain = };

The compile-time constant is passed to mtx_init to create a mutex object that
supports neither timeout nor test and return.

mtx_recursive

enum { mtx_recursive = };

The compile-time constant is passed to mtx_init to create a mutex object that
supports recursive locking.

mtx_timed

enum { mtx_timed = };

The compile-time constant is passed to mtx_init to create a mutex object that
supports timeout.

mtx_try

enum { mtx_try = };

The compile-time constant is passed to mtx_init to create a mutex object that
supports test and return.

xtime

struct { time_t sec; long nsec; };

The type is a structure that holds a time sec in seconds plus a time nsec in
nanoseconds.

RETURN CODES
thrd_timedout

enum { thrd_timedout = };

The compile-time constant is returned by a timed wait function to indicate that the
time specified in the call was reached without acquiring the requested resource.

WG 14/N1372

-17-

thrd_success

enum { thrd_success = };

The compile-time constant is returned by a function to indicate that the requested
operation succeeded.

thrd_busy

enum { thrd_busy = };

The compile-time constant is returned by a function to indicate that the requested
operation failed because a resource requested by a test and return function is
already in use.

thrd_error

enum { thrd_error = };

The compile-time constant is returned by a function to indicate that the requested
operation failed.

thrd_nomem

enum { thrd_nomem = };

The compile-time constant is returned by a function to indicate that the requested
operation failed because it was unable to allocate memory.

MACROS

ONCE_FLAG_INIT

#define ONCE_FLAG_INIT <object initializer>

The macro yields a value that can be used to initialize an object of type
once_flag.

TSS_DTOR_ITERATIONS

#define TSS_DTOR_ITERATIONS <integer constant expression>

The macro yields the maximum number of times that destructors will be called
when a thread terminates.

